Supplementary material to:

"A method to facilitate uncertainty analysis in LCAs of buildings"

This document represents the supplementary material to the main article. Its purpose is mainly to show that the results on the case with an LCI with as few as to entries are solid regardless of the two specific processes under consideration. For this reason, five random pairs of processes have been extracted from the full dataset and for each pair five runs of the algorithm have been performed to allow for any 'lucky sampling' to emerge and be identified.

Figure 1 shows for the $1^{\text {st }}$ pair the final graphs of the mean difference (in percentage) between μ (Figure S1 a) and σ (Figure S1 b) of the two hypotheses. Figure S2 shows the results for the $2^{\text {nd }}$ pair, Figure S 3 for the $3^{\text {rd }}$, Figure S 4 for the $4^{\text {th }}$, and Figure S 5 for the $5^{\text {th }}$. In all cases (a) in the figure refers to the results for the mean and (b) to the results for the standard deviation. In the $5^{\text {th }}$ case the sampling was intentionally bias to select twice the same process as to represent two independent process that by chance have exactly the same minimum, maximum, mean and standard deviation. In this specific case the results about the mean and standard deviation still holds true, the only difference being that the resulting overall distribution has a clear shape of a triangular distribution - a well-known fact in statistics when summing two identical uniform distribution [1].

Each run of the algorithm additionally produces 50 other plots which are related to histograms for each sampling value (10^{i+1} with $i=1, \ldots, 7$) at each run and μ and σ differences at each cycle. We believe all those plots would be unnecessary here in this document, for its purpose is solely to show that any two entries randomly selected from the database produce the same output. However, we are happy to provide them if deemed necessary.

a)

b)

Figure S1 - μ and σ variation (percentage) between the two hypotheses across 5 runs ($1^{\text {st }}$ random combination of two LCI entries)

b),

Figure S2 - μ and σ variation (percentage) between the two hypotheses across 5 runs (2 $2^{\text {nd }}$ random combination of two LCl entries)

b)

Figure S3- μ and σ variation (percentage) between the two hypotheses across 5 runs ($3^{\text {rd }}$ random combination of two LCI entries)

Figure S4- μ and σ variation (percentage) between the two hypotheses across 5 runs ($4^{\text {th }}$ random combination of two LCl entries)

b),

Figure S5- μ and σ variation (percentage) between the two hypotheses across 5 runs ($5^{\text {th }}$ random combination of two LCl entries)

References

[1] MIT Open Course Ware - Probability Notes, Chapter 4, Sums of Random Variables. Available at: https://ocw.mit.edu/courses/physics/8-044-statistical-physics-i-spring-2013/readings-notes-
slides/MIT8 044S13 ProbabilityCh4.pdf under a Attribution-NonCommercial-ShareAlike 4.0
International (CC BY-NC-SA 4.0) Creative Commons License. 8.044 Statistical Physics 1. Spring 2013

