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Abstract: Due the high penetration of intermittent renewable energy sources (IRESs), transmission
line currents show large fluctuations and thus significant uncertainty. This makes it difficult to
operate a power system without violating transmission capacity constraints. This paper evaluates the
dynamic line ratings (DLRs) of overhead lines based on changes in the line current owing to the high
penetration of intermittent renewable energy sources. In particular, by focusing on extremely large
(but rare) forecasting errors in the intermittent renewable energy source output, which are generally
inevitable in most forecasting methods, a model for representing the forecasting error in line with
current variation due to intermittent renewable energy source output is developed. The model is
based on a shape parameter that represents the equivalent current variation required for the same
temperature increase as that due to the extremely large forecasting error. Finally, based on the annual
minute-by-minute irradiance data, preventive control of the transmission network with dynamic line
ratings is evaluated using worst-case parameter values.

Keywords: dynamic line ratings (DLRs); electro-thermal coordination; forecasting error; maximum
allowable temperature limit; photovoltaic (PV) systems; renewable energy sources

1. Introduction

Electric power generation from intermittent renewable energy sources (IRESs), including
photovoltaic (PV) systems and wind power generators, exhibits significant output fluctuations. Given the
increased penetration of IRESs, these output fluctuations may cause large power flow variations in
transmission lines. Moreover, in addition to increased variability, it is very difficult to predict the
output of IRESs accurately. Various methods for predicting IRES output have been developed using
different time scales, spatial scales, and procedures [1–6]. In all these methods, it is critical to ensure
the secure operation of power systems with IRESs. However, it has been noted that the distribution
of the forecasting error is a heavy-tailed one instead of a normal one [7,8]. Therefore, even in the
case of short-term predictions (e.g., those for less than 30 min) [9], extremely large forecasting errors
must be considered during the operation of power systems, even though such errors occur rarely.
Consequently, the planning and operation of such power systems can become less efficient even though
their security levels are improved.
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On the other hand, the capacity of overhead transmission lines is fundamentally determined
by the temperature limit of the line conductor and not by the line current or the apparent power
limit. Such temperature-based transmission capacity constraints are called dynamic line ratings
(DLRs) [10,11]. Given recent advances in information and communication technology (ICT) and
computational techniques (e.g., those used for meteorological predictions), real-time monitoring and
forecasting technologies [12,13] might become available for DLR in the future. Although DLR was
proposed several decades ago [10,11], the possibility and practicality of employing DLR [14–16] in the
real-time operation of power systems have arisen only recently.

There have been numerous studies on DLR from a power system operations viewpoint.
For instance, while taking into account future uncertainties in weather conditions, a robust economic
dispatching method was proposed, based on both centralized and decentralized approaches [17].
Further, given the uncertainties related to wind power, a weather-based optimal power flow has been
proposed [18]. However, these studies have tended to essentially focus on a single interval (snap shot)
in the future. On the other hand, the DLR has been considered in unit commitment with security
constraints of a transmission line fault [19]. From a practical power system operation viewpoint, the
adaptive transmission capacity is evaluated based on the lead-time for control actions for alleviating the
transmission line overload [20]. Reference [21] proposed a method for incorporating DLR with real-time
weather conditions into existing system integrity protection schemes. Reference [22] evaluated the
effect of DLR under assumed contingencies (N-1 and N-2 criteria) in a power system with high
wind power penetration. However, almost all such studies have focused on the step-change in the
transmission line current owing to the clearing of transmission line faults. A probabilistic modelling
and simulation method for line temperature was developed based on Monte Carlo simulations while
assuming the penetration of renewable energy sources [23]. However, this method does not explicitly
consider the forecasting error (in particular, extremely large forecasting errors). Further, it requires
additional computational resources because of the Monte Carlo simulation. From a practical viewpoint,
a simpler and less computationally intensive model is needed for power system operation and control.

In general, in most transmission line wires used widely, the time constant at which the line
conductor temperature changes is approximately 10–15 min; this is because of the thermal inertias
of the line conductors [24]. In conventional power systems, the clearing of a transmission line fault
is considered to result in a significant change in the line current within the short time involved
(10–15 min). Consequently, in present power systems, the line protection schemes used for alleviating
transmission line overloads focus on line fault clearing [21]. However, when the penetration of IRESs
is high, the transmission line current fluctuates significantly and does not change in a step-like manner.
In particular, among a wide variety of DLRs, electro-thermal coordination is the term covering the
operation and planning of transmission systems based on temperature instead of current [25], rather
than changes in the ambient meteorological parameters.

Further, it is important to model the variations in the line current caused by extremely large
forecasting errors in IRES output. For such models, it is necessary to operate power systems such
as one that is able to predict the rise in line temperature owing to extremely large forecasting errors.
In particular, it is necessary to determine the variations in the line current in short time intervals
(e.g., intervals of 1 min) in order to simulate the line conductor temperature accurately. However, most
forecasting methods developed for IRESs are designed to generate outputs at a single time point
or instance in the future. Therefore, a continuous-time model that can be used to perform accurate
simulations for the desired time interval must be developed.

This paper proposes an evaluation method of DLR based on a continuous-time line current
variation model for representing extremely large forecasting errors in IRES output in order to
estimate the rise in line temperature accurately, assuming that the transmission line current fluctuates
significantly because of the high penetration of IRESs. Moreover, a method for determining the shape
parameter that represents the variation in the equivalent current for the continuous-time model
based on long-term historical PV output data is developed. A persistent model is used for short-term
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forecasting (5, 10, 15, and 20 min ahead) of PV output. A quantitative analysis is performed on the
forecasting error, and the shape parameter is determined based on the worst-case forecasting error.
Using this shape parameter, the effect of the DLR is evaluated and compared to that of the conventional
current-based line capacity case.

2. Simulation Model for Line Temperature

2.1. Steady-State Model

Conventionally, the rated current (continuously allowable current limit) is determined based on
the steady-state conditions of line current and weather conditions, including the ambient temperature,
solar irradiation, wind speed, and wind direction [26–28]. For calculating the maximum continuously
allowable current limit in most countries, weather conditions are adopted based on the worst-case
historical weather condition data. Under the above conditions, the continuously allowable current
limit is determined on the basis of the following heat balance equation:

I2Rac × 10−5 + qs = qr + qC (1)

where I is the current (A), Rac is the AC resistance (Ω/km), qs is the heat gain from solar radiation
(W/cm), qr is the radiative cooling (W/cm), and qC is the convective cooling (W/cm).

The left hand side refers to the heated components, which represent internal resistive joule
loss and solar heat gain. The right hand side refers to the cooling components, which represent
convective cooling and radiative cooling. These four components are described in detail in Appendix A.
Assuming steady-state conditions, the maximum continuous current limit can be determined by the
heat balance equation.

2.2. Transient-State Model

On the other hand, for high penetration of intermittent renewable energy resources, the line
current also greatly fluctuates from a short-term system operational point of view. Therefore, it is
necessary to consider a transient state of line conductor temperature. The line temperature at transient
state conditions can be calculated using the following thermal model of the conductor:

dθ

dt
=

(
Rac(θ) · I2 × 10−5 + qs

)
−
(

qr(θ) + qc(θ)
)

C
, (2)

where θ is the temperature difference between the conductor and the ambient surroundings and C is
the heat capacity of the line conductor (J/(cm·◦C)).

As a simple method for solving the above first-order ordinary differential equation (Equation (2)),
the modified Euler’s method is used in this study. In general, the ambient meteorological conditions
have a significant impact on the line temperature (i.e., θ). However, because this paper focuses on
the change in line current due to the extremely large forecasting error of IRES, those meteorological
parameters are assumed as conventional worst-case conditions. For further development, the proposed
line current model explained in the following section can be utilized in arbitrary meteorological
conditions if we can identify accurate meteorological parameters.

3. Continuous-Time Forecasting Error Model for Renewable Energy Output

3.1. Conventional Step Change in Line Current

In conventional power system operation, the short-term allowable current limit is determined
by simulating the increase in line temperature while assuming a step-change in the current owing to
a transmission line fault (N-1 criterion), as shown in Figure 1. This figure assumes that, as the most
common case, one of the two circuits is disconnected owing to the clearing of a transmission line fault.
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As a result, after the transmission line fault has been cleared, the line current is temporarily doubled.
Consequently, the transmission line temperature in the non-fault circuit increases based on the thermal
inertia of the line conductor (i.e., as in Equation (2)). At this time, if the condition of the line wire
allows, the short-time allowable temperature limit can be allowed to rise until 120 ◦C is reached, which
is higher than the continuously allowable temperature limit (90 ◦C). This increase in the temperature
limit causes the wires to degrade. Therefore, the line temperature limit is assumed to be a continuously
permissible current limit in this paper. However, the proposed line current variation model can be
readily applied in the case of other temperature limits as well.
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Further, in this figure, it is assumed that a control action for line overload relief from 130% to 100%
(e.g., generation re-dispatch, load shedding, or any other such action) can be taken at, for instance,
30 min after a transmission line fault. Consequently, the transmission line conductor temperature is
reduced immediately. Finally, in conventional N-1-based operation, the line current limit under normal
operating conditions is determined based on a similar preventive control viewpoint.

3.2. Proposed Line Current Variation Model for Representing Extremely Large Forecasting Errors

This paper focuses on transmission line overloads caused by extremely large but rare forecasting
errors in the line current. In such cases, the change in the transmission line current is markedly different
from a step change in the current. Moreover, most forecasting methods can usually make predictions
for a single (or several discrete) future time interval(s) (e.g., for 15 min ahead). Consequently, the
line current profiles for the present time and the target time horizon may not usually be specified.
However, in order to simulate the line conductor temperature accurately, it is essential to consider the
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change in the line current at intervals of at least 1 min. A continuous-time model for large forecasting
errors is better suited for evaluating the line temperature with precision.

From a practical viewpoint, for extremely large forecasting errors, a number of different profiles
exist for the change in line current. However, the line temperature profile and, in particular, the
maximum temperature corresponding to extremely large errors are more important than that for the
estimated line current because the former affects the lifetime of the line conductor. Therefore, in this
paper, we propose an equivalent change in the line current that can result in the same temperature
increase as those caused by extremely large forecasting errors. The continuous-time model for
extremely large forecasting errors shown in Figure 2 can be developed as:

I(t) = Iex

(
t

Td

)γ

+ Ibase, (3)

where Iex is the assumed extremely large forecasting error at the target point in time, Td is the lead-time
for a control action, Ibase is the current at the present time, γ is the shape parameter, and t is time.

In Equation (3), γ is the most important parameter and represents the severity of the curve,
as shown in Figure 2. Further, Td, Ibase, and Iex are the forecasting lead-time for a control action, the
forecasted current value, and the assumed large forecasting error in Figure 2, respectively. These three
values are exogenous parameters in this analysis. Ibase and Iex are determined using a forecasting
method that is usually based on a persistent model for very short-term predictions (e.g., within 30 min)
for renewable energy generation. Td is the time interval between the present time and the target time
in Figure 2 and corresponds to the interval from 0 to 30 min in Figure 1.
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Figure 2. Line current variation model for large forecasting errors in intermittent renewable energy
sources (IRESs) output.

One advantage of this model is that only one parameter (γ) is used for simulating the temperature
increase of the transmission line due to the extremely large forecasting error. In particular, the line
temperature within the target period increases monotonically as the shape parameter (γ) is reduced.
Further, the physical meaning of the shape parameter is that a value of 1 indicates linear interpolation,
while a value of 0 indicates that the approaching step-changed current, which is approximated by
a time interval, depends on the length of the time interval (e.g., 1 min).

3.3. Method for Determining the Shape Parameter γ

Although the real time application of preventive control using γ is proposed in this study,
the appropriate value of worst-case γ is determined by the off-line analysis of historical line current
data. In order to achieve that, we first calculate the line temperature in advance, using historical line
current data off-line. Consequently, using the line conductor temperature after Td min, we can evaluate
the appropriate value of γ, which represents the increase in the line temperature after Td min, relative
to the present temperature of the conductor.
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When determining the value of the shape parameter, the line temperature is always more
significant with respect to permanent damage in the line wire. Therefore, the parameter γ is determined
so that the line temperature rises by the same amount as the increase caused by large forecasting
errors. Consequently, the equivalent variation in the line current can be obtained by adjusting the
shape parameter γ. In the simulation described later in this paper, in order to analyze the fundamental
characteristics of the proposed line current variation model, Iex and Td are changed on the basis of
sensitivity analysis.

3.4. Flowchart for Long-Term Evaluation from a Preventive Control Viewpoint

A flowchart is shown in Figure 3 for evaluating the benefits of DLR using the proposed model.
This figure shows the procedure for evaluating the temperature-based transmission capacity constraints
using the proposed model for forecasting errors in the IRES output while comparing it with the
conventional current-based transmission capacity. Before starting the simulation, the line current
I_org(t) and the corresponding line temperature θ_org(t) are calculated in advance based on Equation (2).
Next, the lead-time Td for the control action and the forecasting error in the current I_org(t), which is
determined using a forecasting method, at the time interval Td are calculated. The persistent method,
which is used in the simulation that follows, is one of most effective forecasting methods for very
short-term intervals (30 min or less).
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Next, in the case of the temperature-based transmission capacity (i.e., DLR), the forecasting error
for the line current is significant with respect to the transmission line temperature limit when the
temperature is relatively high. Therefore, we assume that the significant points of time corresponding
to both high temperature and large forecasting error need to be selected. Then, the appropriate value
of γ is determined at each point in time. Using the minimum value of γ as the worst-case value,
we can then simulate the preventive control action in the case of temperature-based transmission
capacity. In particular, at simulation time instant t, we assume that line current I(t) is initially set to
original current I_org(t). Using the worst-case γ and the assumed forecasting error Iex, a predicted
line temperature θpred(t + Td) can be calculated using the proposed model. Until the predicted line
temperature at Td (min) later is lower than the maximum allowable temperature limit θmax, the line
current I(t) must be reduced. Once the predicted line temperature θpred(t + Td) becomes lower than the
maximum allowable temperature limit, the line temperature θ(t + 1) can be determined using the line
current I(t) and the previous line temperature θ(t).

As a comparative case, the preventive control action with respect to conventional current-based
transmission capacity is evaluated using the control lead-time Td and the assumed forecasting error
Iex at the lead-time. More specifically, at simulation time instant t, we assume that line current I(t)
is initially set to original current I_org(t). Until the predicted line current at Td (min) later is lower
than the maximum allowable current limit Imax, the line current I(t) must be reduced. Next, the line
current I(t) can be determined. We then compare the two cases corresponding to the temperature-based
transmission capacity and the conventional current-based capacity for the same forecasting error Iex.

4. Simulation Evaluation

4.1. Simulation Conditions

In many cases, large-scale PV plants or wind farms are connected to buses in sub-transmission
or distribution networks. The line capacity overload problem first occurs in the networks when PV
plants or wind farms are connected to a bus intensively. Consequently, this paper focuses on the radial
network topology that is adopted in sub-transmission and distribution networks in some countries
(including Japan [29,30]).

In the radial network topology, it is comparatively easy to identify the relationship between the
line current variation and the forecasting error of renewable energy sources. In order to analyze the
fundamental characteristics of the line current variation model with line-temperature constraints,
this paper uses a simple two-bus test system [25], as shown in Figure 4. The simulation analysis was
performed for daytime (e.g., from 10:00 to 14:00), and the load in the receiving bus during daytime
was assumed to be constant in order to keep the transmission line current constant in the absence of
a PV system. Actual monitored solar irradiation data (minute by minute) for Osaka, Japan, were used
to generate the fluctuation in the output power of the PV system. We considered the spatial smoothing
effect of the solar irradiation data based on the transfer hypothesis [31,32]. Moreover, based on this
hypothesis, we have analyzed the effect of spatial smoothing on the variation in line temperature;
this paper adopted Case B (where the area is 100 km2) in [33]. In the test system, the transmission
line current from the sending bus to the receiving bus also fluctuated in order to compensate for the
PV output fluctuations. The line conductor was assumed to be ACSR (Aluminium Conductors Steel
Reinforced) wire (160 mm2). The continuously allowable temperature and current were 90 ◦C and
465 A, respectively. The ambient weather conditions were taken as worst-case conditions, which are
widely used in Japan, as shown in Table 1.

In this paper, as the weather parameter is assumed as the worst-case condition in Table 1,
the calculated temperature of line conductor based on the worst-case conditions is higher than the
(unknown) real temperature of the line conductor. In present power systems, the line temperature based
on the worst-case conditions would be acceptable as a conservative evaluation for system operators.
In a future power system, a more realistic temperature of the line conductor can be calculated if the
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real-time monitoring system for meteorological parameters can be utilized, particularly in a critical line
corridor. Consequently, the proposed line current variation model can be applied more appropriately
to the DLR environment with realistic weather conditions. The evaluation of when to utilize the
real-time monitoring system of meteorological parameters is part of further developments.
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Table 1. Ambient meteorological conditions.

Parameter Typical Value

Atmospheric temperature 40 (◦C)
Solar irradiation 0.1 (W/cm2)

Wind speed 0.5 (m/s)
Wind direction 45 (◦)

In future power systems, the wide deployment of demand response resources is necessary to
install many large-scale intermittent renewable energy resources [34,35]. Therefore, we focused on
the demand response as a control action for alleviating transmission line overloads. In the model
of the demand response, the control delay Td of the demand response was an important parameter;
its values were taken to be 5 min, 10 min, 15 min, and 20 min. For example, the ‘responsive reserve’
in ERCOT (the Electric Reliability Council of Texas) must reduce the demand within 10 min after
control signals are received [36]. In present power system operations, it might be difficult to control
a large amount of electricity demand within a short period of time from a customer convenience
point of view. However, as a special case of rapid load curtailment in some utilities, there are some
direct load controls for air-conditioners [37], water heaters [38], etc. Moreover, as a promising, fast,
and responsible equipment in future environments, customer-owned battery storage systems [39]
might be useful for rapid responses.

4.2. Evaluation of Forecasting Error

When using the line current variation model shown in Figure 2, the assumed forecasting error Iex

at the target time interval Td can be considered an exogenous parameter. In this paper, by adopting the
persistent model, the forecasting error for the transmission line current for four different lead-times
(5 min, 10 min, 15 min, and 20 min) for a fast demand response was evaluated from an annual
viewpoint. Based on the annual forecasting error data for the four different lead-times, the overload
risk of Iex was evaluated as shown in Figure 5. As stated at the simulation condition (Section 4.1,
assuming that load current between the sending area and the receiving area was constant, line current
forecasting error was normalized by PV rated capacity as shown in the figure.

The horizontal axis in Figure 5 represents the risk of exceeding the forecasting error. Specifically, if
Iex is set to the maximum forecasting error for each lead-time, the overload risk level is zero based on
the annual forecasting error data. If Iex is smaller than the maximum error, the risk level for overload
increases. Therefore, the assumed forecasting error, Iex, in Equation (3) was related to the overload risk
level, which can be regarded as a system operational policy.
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4.3. Evaluation of Shape Parameter γ

Although it is possible to calculate γ for each time instance (that is, on a minute-by-minute basis)
based on the annual data, such calculations would be meaningless most of the time. Therefore, in
order to determine the shape parameter γ, a few points in time were selected from the viewpoints of
both high conductor temperature and large line current forecasting error. From a preventive control
viewpoint with respect to power system operations, the worst-case value (i.e., the minimum value) of
γ is the most extreme for simulating the transmission line overload problem. Thus, as the criterion for
selecting a few significant time points from the historical data, we assumed that the line temperature
was higher than 82 ◦C (90 ◦C is the continuously allowable temperature limit) and that the forecasting
error in the line current was larger than 40 A (465 A is the continuously allowable current limit).
The number of target time points is listed in Table 2. Depending on the lead-time for the control action
(5 min, 10 min, 15 min, and 20 min), the number of target time points selected from the annual data
were 4, 26, 65, and 139, respectively.

Table 2. Range of shape parameter values for different cases.

Probability Td = 5 min Td = 10 min Td = 15 min Td = 20 min

Min γ Max γ Min γ Max γ Min γ Max γ Min γ Max γ

0.00% 0.96 1.57 1.03 4.15 1.42 5.00 * 2.22 5.00 *
0.01% 0.78 1.35 0.90 3.92 1.31 5.00 * 1.97 5.00 *
0.03% 0.59 1.13 0.64 3.41 1.01 5.00 * 1.72 5.00 *
0.10% 0.45 0.97 0.37 2.88 0.63 4.64 1.11 5.00 *
0.30% 0.31 0.80 0.16 2.43 0.30 3.87 0.68 5.00 *
1.00% 0.06 0.87 −0.10 1.88 −0.08 2.90 0.53 5.00 *

No. of critical points of time 4 26 65 139

* More than 5.0 (terminated).

Furthermore, the minimum and maximum values of γ are also shown for each case in Table 2.
As the probability (risk) of exceeding the forecasting error, which is a fundamental characteristic,
becomes larger, the minimum and maximum values of γ both decrease because the forecasting
error Iex decreases, as shown in Figure 5. Consequently, the γ value decreases in order to reach the
increase required in the line conductor temperature for each forecasting lead-time. Furthermore, as Td
increases, the minimum and maximum values of γ both increase because the change in the line current
increases gradually.
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The value of γ is negative in the worst case where the probability (risk) is the highest (1.0%).
In order to illustrate this case, while focusing on the case corresponding to a lead-time Td of 10
min, a few examples with different probabilities (0.01%, 0.10%, and 1.00%) are shown in Figure 6.
In Figure 6a, it is assumed that the forecasting error Iex at the target time is larger than the actual error.
Therefore, in order to fit the estimated line temperature to the actual one, the appropriate γ value was
determined and found to be 0.90. Further, in the case of a probability of 0.10%, Iex was smaller than
0.01%. Therefore, the appropriate γ was determined to be 0.37. Consequently, the current variation, as
estimated using the proposed model, was close to the actual variation in the current. However, for
a probability of 1.0%, the value of γ was slightly negative (−0.10) in order to fit to the actual line
temperature at a subsequent 10-min interval because the Iex value was too small.Energies 2017, 10, 503 10 of 16 
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Figure 6. Relationship between shape parameter and probability of overload. (a) Probability = 0.01%
(Iex = 14.7% PVrated); (b) Probability = 0.10% (Iex = 11.6% PVrated); and (c) Probability = 1.0% (Iex = 8.7%
PVrated).

4.4. Comparison with Linear Interpolation

A simple linear interpolation of line current variation between line current at the existing time and
at the forecasted time can help to comparatively understand the proposed line current variation model.
Figure 7 shows the line temperature estimation error obtained using a simple linear interpolation
(γ = 1) in the event of the respective minimum γ value in Table 2. In the figure, a positive error in
line temperature implies an underestimation by linear interpolation, while a negative error indicates
overestimation by linear interpolation. In Table 2, minimum γ values range from approximately 0.0
to 1.0 in the cases of 5 min and 10 min, respectively. Consequently, in Figure 7, an occurrence of
underestimation by simple linear interpolation is shown. Furthermore, the estimation error for the
10 min case was larger than that for the 5-min case because the temperature estimation error was
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accumulated for the lead-time. In the cases of lead-times of 15 min and 20 min, the minimum γ values
ranged from 1.42 to −0.08 and from 2.22 to 0.53, respectively (see Table 2). Consequently, in Figure 7,
both overestimations and underestimations occur. Furthermore, similar to the 5-min and 10-min cases,
the estimation error width of the 20-min case was larger than that of the 15-min case because the
temperature estimation error accumulated. Considering the maximum allowable temperature limit
(90 ◦C), those estimation errors are significant.Energies 2017, 10, 503 11 of 16 
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4.5. Simulation Results on a Sample Day

This section explains the effects of the temperature-based transmission capacity constraints for
a sample day. As a simulation condition, this focused on 15-min-ahead and 5-min-ahead forecasts at
the 0.03% risk level, as shown in Figure 8a,b, respectively. In case of the forecast for 15 min, according to
Figure 5, Iex was comparatively larger (99.2 (A) corresponds to 15.9% PVrated). Therefore, in Figure 9a,
the conventional current-based transmission capacity poses a lower line current limit. However, in the
case of the temperature-based transmission capacity, although the same forecasting error (99.2 (A):
15.9% PVrated) was assumed, the line current changed slowly because the worst-case value of γ was
1.012. This led to a slow increase in the line conductor temperature. Consequently, the line current
limit, which can be flown through the sub-transmission line from a preventive control perspective,
was higher compared to the conventional current-based capacity constraints.

According to Figure 5, Iex in the case of the 5-min forecast was 64.1 (A) (equal to 10.3% PVrated)
and smaller than that for the 15-min case. Therefore, in Figure 8b, the line current corresponding to the
conventional current-based transmission capacity was larger than that for the 15-min case. In the case
of the temperature-based transmission capacity, considering the time constant for the increase in the
line temperature, the load control action could be taken before the line temperature began to plateau.
As a result, the transmission line current for the assumed large forecasting error could be increased.
Furthermore, as can be seen from Figure 8b, the line current could be increased temporarily instead of
following the steady-state limit when a sharp increase occurred in the line current.
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Figure 8. Line current under constraints (risk = 0.03%). (a) 15-min interval (Iex = 15.9% PVrated,
γ = 1.01); and (b) 5-min interval (Iex = 10.3% PVrated, γ = 0.59).

4.6. Simulation Results Using Annual Data

The temperature-based (i.e., dynamic line rating) and the conventional step-changed-current-
based transmission capacities were compared based on annual data. Specifically, the load curtailment
resulting from the real-time application of the temperature-based transmission capacity constraint to
the annual minute-to-minute data was evaluated. The load was assumed to be constant. The irradiation
data were from 10:00 to 14:00 for 365 days. In order to facilitate comparison of the two capacities, the
reduction percentage in load curtailment based on the temperature-based transmission capacity was
calculated as:

η =
EA − EB

EA
× 100 (%), (4)

where EA is the reduction in energy due to the step-changed current-based constraints ((A·min)/year)
and EB is the reduction in energy due to the temperature-based method (dynamic line rating)
((A·min)/year).

The simulation results are shown in Figure 9. For all lead-times, as the assumed risk level for
overload decreased, the benefit of using the temperature-based transmission capacity instead of
the conventional current-based transmission capacity became larger because the shape parameter
γ increased. Conversely, as the assumed risk level for overload increased, the benefit of the
temperature-based capacity decreased. Specifically, in this case, the temperature-based transmission
capacity was almost same as the conventional current-based transmission capacity.
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Figure 9. Benefits of DLR based on the line current variation model.

However, for the worst-case scenario, as shown in Figure 6, the probability was 0.10%, and the
modeled change in the current was similar to the actual change in the line current. Therefore, for
example, if the risk level (0.10%) was adopted as an appropriate parameter, the benefit of the
temperature-based transmission capacity remained at 40% for three lead-times (10 min, 15 min,
and 20 min). Further, in case of the 5-min lead-time, the benefit of the temperature-based transmission
capacity was still larger even though the risk level had increased. Thus the temperature change did
not start to plateau within 5 min because of the thermal inertia of the line conductor.

5. Discussion and Further Research

A more detailed model can be obtained if the actual data of the line current and line temperature
are used directly as opposed to those used in the proposed current variation model. However, in
addition to the fact that each occurrence of a large forecasting error results in a large amount of data,
it is relatively difficult for system operators to compare such unforeseen and extremely rare events at
different times and on different lines. By using the shape parameter (γ), the essential features can be
characterized using the proposed model (Equation (3)) in the case of the forecasting method actually
utilized. Consequently, these unforeseen and extremely rare events can be easily and comprehensively
understood by system operators.

In addition, as an example, the proposed line current variation model can be applied to the
problem described below. In a radial distribution network with a solidly grounded system or
a resistance-grounded system, the optimal coordination of overcurrent protective relays is a serious
problem that needs to be addressed in the case of the high penetration of distributed renewable
(including PV) sources [40,41]. In this case, two parameters (the pickup current and the time multiplier
setting) for the relay settings are determined under different system conditions based on inverse-time
characteristics [42]. The output variations and forecasting errors related to renewable energy can be
considered in the case of the optimal coordination of overcurrent relays.

6. Conclusions

The DLR of line conductor temperature based on conventional step-changed current had been
evaluated in the past; however, with regard to the high penetration of IRESs in this paper, the authors
proposed a line current variation model for representing the forecasting error of IRESs and evaluated
the DLR from a real-time application viewpoint for preventative control actions using the model.
In contrast to the case of the step-change current attributed to line contingencies, the variations
in line current due to the forecasting error of IRESs could be represented with a shape parameter
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in the proposed model. Consequently, the extremely large forecasting error of IRES output can be
characterized by using the shape parameter in the proposed model, unlike conventional and simple
linear-interpolation for the forecasting error between the present time and the forecasted time.

Through numerical simulations, the characteristics of the shape parameter were analyzed while
assuming that the persistent model was used for forecasting. The worst-case values of the shape
parameter for various lead-times and risk levels ranged from zero to two. Using the worst-case value
for the shape parameter, the real-time operation of the transmission system was evaluated from
a preventive control viewpoint. For example, when a risk level of 0.10% was adopted as being suitable,
the temperature-based transmission capacity was approximately 40% lower than the load curtailment
for three of the lead-times (10 min, 15 min, and 20 min). For a lead-time of 5 min, the benefit of
the temperature-based transmission capacity was even greater, resulting in an approximately 65%
reduction in load curtailment.

Finally, this paper focused on the fundamental characteristics of the proposed continuous-time
forecasting error model while assuming the worst-case ambient weather conditions. However, the
evaluation can easily be extended to other ambient conditions as well if seasonal ambient conditions
are used when determining the shape parameter γ.
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Appendix A

This paper adopts the International Council on Large Electric Systems (so-called CIGRE) model [26]
in order to calculate the transmission line temperature. In the heat balance equation (Equation (2)), there
are two heating components and two cooling components. In the heating components, AC resistance
and solar heat gain can be expressed as follows:

Rac(θ) = β · Rdc ·
{

1 + α(T + θ − 20)
}

, (A1)

qs = Ws · d · ηa, (A2)

where β is the AC/DC resistance ratio, Rdc is the DC resistance at 20 ◦C (Ω/km), α is the temperature
coefficient of resistance, T is the ambient temperature (◦C), Ws is the solar irradiation (W/cm2), d is the
diameter (cm), and ηa is the absorptivity.

On the other hand, calculations for the cooling components, namely the convective and radiative
cooling components, can be done respectively as follows:

- Radiative cooling (Stefan–Boltzman Law):

qr(θ) = ηe · π · d · θ · hr(θ). (A3)

hr(θ) = 0.000567

(
273+T+θ

100

)4
−
(

273+T
100

)4

θ
. (A4)

- Convective cooling (forced convection case: v ≥ 0.5 (m/s)):

qc(θ) = π · d · θ · h(θ) · Kϕ. (A5)

h(θ) =
(

2.42 × 10−2 + 7.2 × 10−5 × θ+2T
2

)
×
(

v× d×10−2×exp(−1.16×10−4×y)
1.32×10−5+ θ+2T

2 9.5×10−8

)0.471
× 0.641

d×102 , (A6)
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Kϕ =

{
0.42 + 0.58(cos ϕ)0.9 ; (0 ≤ ϕ ≤ 66)

0.42 + 0.68(cos ϕ)1.08 ; (66 < ϕ ≤ 90)
(A7)

where T is the ambient temperature (◦C), ηe is the emissivity, y is the elevation (m), v is the wind
velocity (m/s), ϕ is the wind direction angle (deg), and d is the diameter (cm).
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