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Abstract: Circuit breakers (CBs) are the main protection devices for both alternating current (AC)
and direct current (DC) power systems, ranging from tens of watts up to megawatts. This paper
reviews the current status for solid-state circuit breakers (SSCBs) as well as hybrid circuit breakers
(HCBs) with semiconductor power devices. A few novel SSCB and HCB concepts are described
in this paper, including advantage and limitation discussions of wide-band-gap (WBG) devices in
basic SSCB/HCB configuration by simulation and 360 V/150 A experimental verifications. Novel
SSCB/HCB configurations combining ultra-fast switching and high efficiency at normal operation are
proposed. Different types of power devices are installed in these circuit breakers to achieve adequate
performance. Challenges and future trends of semiconductor power devices in SSCB/HCB with
different voltage/power levels and special performance requirements are clarified.
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1. Introduction

In electric transmission, distribution systems and industrial fields, sensitive equipment must
be protected from long-period overload and instant short-circuit conditions. Among all protection
devices, the circuit breaker (CB) is the most efficient. With the rapid growth of the capacity of electric
systems, the maximum perspective fault currents have become higher than at any time in the past,
which requires even higher ultimate short-circuit breaking capacity for CBs, associated with ultra-fast
breaking capability, to avoid misinterruption of faults in both alternating current (AC) or direct current
(DC) systems. Otherwise the cable or terminal equipment might be destroyed [1].

For hierarchical low-voltage power networks, one main mechanical circuit breaker (MCB) works
together with several molded-case circuit breakers (MCCB). The main MCB should continue its service
in a certain degree of downstream fault condition with current-limiting (CL) behavior and wait for
the MCCB to clear the fault. With short-circuit faults the particular MCCB must disconnect as soon as
possible to avoid the effects of failure to do so [2].

For higher power applications with either high current, high voltage, or both, e.g., high-voltage
direct-current (HVDC) or medium-voltage direct-current (MVDC) systems, natural zero-voltage
crossing does not exist anymore because of their unipolarity, therefore causing more serious problems
for high power DC networks with MCBs. Applications with sensitive loads such as computer servers
or medical treatment equipment necessitate either ultra-fast fault clearance or instant current limitation
ability for CBs. The basic requirements of present and future circuit breakers should be:
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(i) “Fully controllable”: The conducting and breaking of CBs should be fully controllable either by
automatic mechanical tripping or digital controls;

(ii) “Higher switching speed”: CBs should break the fault current as soon as they could to avoid
huge fault current destroying end equipment;

(iii) “Low conduction loss”: CBs should maintain the same scale of conduction loss as previous MCBs,
therefore the efficiency for normal operation must be appropriate;

(iv) “Smaller arcing”: For both DC and AC applications, electric arcing should be avoided or
suppressed to retain long lifetime of the CB itself, and at the same time, ensure definitized
tripping of the CB system.

In recent times, power semiconductor devices have been applied expansively in circuit breakers as
they are practically controlled switches [2]. The object called ‘solid-state circuit breaker (SSCB)’, is the
CB with pure semiconductor devices [3,4]. With silicon-based power devices, SSCBs offer tripping
speeds of up to hundreds of microseconds. Furthermore, as there is no mechanical components or
parts, neither contact erosion, electric arc, nor strong mechanical shake exists. On the other hand,
SSCBs present several disadvantages: (a) the unignorable on-state resistance means significant power
loss, which could cause critical heat and lower system efficiency; (b) semiconductors are sensitive
to transit over-voltage and heat-causing over-currents, which makes them a natural weakness of
the whole electric system and needs more self-protection technology; (c) the costs and physical
volume of semiconductor devices is no doubt a limitation for further development; (d) bidirectional
semiconductor devices [5,6] are needed for bidirectional applications (e.g., AC or power regeneration
fields), thus doubling the number of devices, redoubling the costs and complexity of control,
and reducing reliability. As a result, pure SSCBs are now used in low-power low-voltage (e.g., 24 V)
systems, where switching speed must be guaranteed, and power loss is not a priority. In future, by
applying next-generation wide bandgap devices e.g., silicon carbide (SiC) or gallium nitride (GaN),
the performance of SSCBs may be improved because of lower power loss, higher junction temperature,
better avalanche breakdown capability and so on.

Another main category of CB with semiconductor devices is actually a combination of SSCB and
MCB in a proper way to configure a new family, which is named “hybrid circuit breaker (HCB)” [7].
Taking the benefits of both sides, HCBs display lower power losses than SSCBs and higher switching
speeds than MCBs.

This paper discusses current status and future trends of semiconductor devices in SSCBs and
HCBs. In Section 2, a review of the previous and current status of SSCB and HCB is given with
comparisons and discussions. In Section 3, basic SSCB and HCB configurations are investigated with
novel control methods for fast switching and current limiting. Limitations of basic configurations are
described. Three novel circuit breaker configurations with features of fast switching and acceptable
normal-mode power loss are proposed afterwards. A discussion of semiconductor devices in CB
applications is put forward as a guideline for further design. Future trends and challenges are briefly
discussed in Section 4. The conclusions of this paper are gathered and sublimated in Section 5.

2. Review of Solid-State/Hybrid Circuit Breakers

As already discussed in Section 1, a circuit breaker should work properly to either switch fast
enough or be able to depress the fault current [8]. It is clear that the configuration of a circuit breaker will
vary with different applications, therefore there is no universal circuit breaker design concept. In the
review part, CBs for higher-voltage applications e.g., HVDC or MVDC which requires series-connected
semiconductors are simplified as one single device. Dynamic voltage balancing may be achieved by
gate control, paralleled resistors or arrestors.
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2.1. Fast-Breaking Mechanical Devices

Fast mechanical switches (FMSs) are used in a modern MCB [9–11]. The FMS could trip and clear
faults in hundreds of microseconds (usually within 10 ms), which makes it possible to interrupt a
low-frequency AC current of 50 Hz or 60 Hz before it goes up to the anticipated maximum value [12,13].
Reference [14] describes a brief operation guide of MCCBs. The arcing phenomena of MCBs are
presented in [15,16]. FMS is the fundamental of mechanical part of HCBs, which restricts the tripping
speed of the CB system.

2.2. Basic Solid-State/Hybrid Circuit Breakers

As shown in Figure 1, a Japanese team introduced in 1994 a current-limiting circuit breaker
(CL-CB) for low-voltage power systems [12]. The CL-CB consists of high-speed mechanical switch,
solid-state switch e.g., gate turn-off thyristor (GTO), snubber circuit and voltage protection element e.g.,
zinc oxide (ZnO) arrester. This is considered a common topology of CL-CB. After twenty-three years
of progress, solid-state switches are changing to insulated-gate bipolar transistors (IGBTs) and SiC
metal-oxide-semiconductor field-effect transistor (MOSFETs); and mechanical switches are becoming
faster and faster.
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2.3. CL-CBs with Switched Resistive Components

2.3.1. CL-CBs with Ordinary Resistors

In 1980, the United States Electric Power Research Institute (EPRI) had proposed a CL method
in which semiconductor devices are not used, as shown in Figure 2. Only a constant-value resistor is
used for current limiting [17]. A paralleled capacitor is an additional component which avoids arcing
of the contacts.
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As shown in Figure 3, a high speed switch (HSS) with a trip time less than 1 ms achieved by
installing an electromagnetic repulsion mechanism and a spring mechanism was proposed [18]. A CL
component was also proposed in [18], consisting of HSS, a CL resistor and a counter pulse circuit.
When a fault occurs, the fault current could be enforced to zero by adding a counter pulse current. As in
Figure 3, a current limiting device with resistive elements was put forward in [19] for medium-voltage
distribution network.
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Figure 3. CL device with high-speed switch and resistor in 1998.

By combining fast mechanical switches, diode components, snubber circuits and CL impedances
in opposite directions, Figure 4 shows a HCB with separated current flowing path [20]. When the fault
occurs, one of the two mechanical switches opens depending on the direction of fault current. Then
the current will be commutated to its relevant current-limiting impedance for absorption.
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2.3.2. CL-CBs with Positive Temperature Coefficient Thermistors

An HCB with CL ability which is a complex hybrid structure with positive temperature coefficient
(PTC) resistor [2], as shown in Figure 5, was proposed in 1996. This CL-CB is put forward based
on Figure 1. With the PTC resistor, a huge fault current could be reduced automatically when the
mechanical switch is turned off. After the fault switch decreases to a reasonable value, the GTO will turn
off to commutate the remaining current into the arrester to clear the fault. The time constant of a PTC
resistor is high, which reduces the applications of this configuration in high-speed-response situations.
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As shown in Figure 6, an CL HCB with PTC resistor was proposed in 2003 [21]. The CB consists
of a fast transfer switch (FTS), a fast disconnecting switch (FDS), a bi-directional semiconductor switch
(e.g., with four diodes and a GTO), a PTC resistor and a load switch (LS). The FTS turns off at a fault to
force the current into a semiconductor branch. Then GTO will turn off to let the PTC resistor absorb
the energy. Finally, the lowered current will be broken by the LS, which also contributes to insulation
of the CB system.
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2.3.3. CL-CBs with Superconductors

High temperature superconductors could be used as CL devices. In 1995, a current limiter was
proposed on this basis [8]. With negligible resistance below under a critical temperature, and relatively
high resistance above the critical temperature, the current limiting could be achieved automatically
and smoothly. Superconductors may be used for power distribution systems which are not sensitive to
cost and dimensions [22–24].

As shown in Figure 7, a superconductor-based HCB for HVDC was proposed in [25] with residual
current breaker for insulation, superconductor fault current limiter (SFCL) for automatic current
limiting, an ultrafast disconnector switch as main mechanical switch, a line commutation switch (LCS)
to guide the fault current into the main semiconductor switch, and a surge arrester bank to absorb the
energy stored on the line inductor.
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On the other hand, superconductors could be treated as an automatic commutation switch to
transfer the current from a mechanical switch to a main semiconductor switch [26]. Some experts have
investigated superconductors as inductive components, and used them in CL applications [27,28].

2.4. CL-CBs with Other Switched Components

Apart from resistive components, other passive components, e.g., inductors and capacitors,
could also be used together with semiconductor devices for current limiting. As a series-connected
component, inductors are used widely for CL purposes, but the voltage overshoot caused by inductive
currents must be taken into account to ensure the safety of the semiconductor devices. On the contrary,
there is no overvoltage problem for capacitors as CL components, but the current cannot be limited
properly because the limitation process is indirect. Another option is forming a combination of
capacitor and inductor as a resonant circuit. The impedance of this kind of circuit could change from
negligible to a high value by adding semiconductor switches, which is considered more suitable as a
CL component than a pure inductor or capacitor.
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2.4.1. CL-CBs with Inductive Components

To limit fault currents, a series-connected inductor is more effective [29] than a paralleled capacitor.
If an inductor is added without assistance of semiconductor switches, the impedance of the inductor
may cause considerable phase shifts and voltage drops, which results in bad voltage regulation and
higher system losses.

A CL device with a superconductor and two inductors was proposed in 2008, where the
superconductor only works as an automatic switch, and inductors work as current limiters [26].
As shown in Figure 8, the inductance of element L2 is higher than that of L1. When a fault occurs,
the resistance of the superconductor increases significantly, and the fault current commutates to the
two inductors. The semiconductor switches then trip to allow L2 to eliminate the fault current. This
configuration is complicated because of its passive and superconductive components.
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2.4.2. CL-CBs with Inductor-Capacitor (L-C) Components

In 1980, EPRI had also proposed a tuned-impedance CL devices, as shown in Figure 10. Without
fault, the mechanical switch is in open state, which cause almost zero impedance on a series L-C
resonant circuit. When a short-circuit fault happens, the switch turns on after fault detection, then
adds an additional impedance to the circuit to eliminate the fault current. The equivalent impedance
in the parallel mode is resistive, therefore no undesired phase shift is added [17].
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In 1998, a hybrid current-limiting interrupting device (HCLID) was proposed by experts at the
Technical University of Gdansk, Gdansk, Poland. The structure of the HCLID is simple: a mechanical
contact, two diode and two thyristors, together with an L-C series-connected circuit [31,32]. As seen
in Figure 11, the HCLID may inject a countercurrent into the main path to provide zero-crossing
conditions. The mechanical switch could open in reduced current status with fast speed and small
arcing. The pre-charged capacitor and inductor increase the dimensions and cost as well as complexity,
which is suitable for low-voltage low-power applications.
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L-C current limiting components have been mentioned in [33] in 2002. In Figure 12, a more
complex approach have been investigated to ensure CL performance and normal operating [34].
Current goes through mechanical switch, inductor of transformer and C2. Negligible impedance
formed by a resonant circuit. When a fault occurs, the mechanical switch is tripping with a very
small arc. The current commutate from main path to the series-connection of S1 and C1, where S1 is a
bi-directional controllable semiconductor switch e.g., thyristor, GTO, insulated-gate bipolar transistor
(IGBT) and integrated gate-commutated thyristor (IGCT). By using C1 and S2, the remaining circuit
results in a very high impedance with significant current limitation properties. The current-limiting
capability is strengthened by closing S2 to add more resistance and inductance. A power dissipative
element is used to absorb the remaining circuit energy when the circuit breaker is turned off to interrupt
the current.
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A solid-state fault current limiting (SSFCL) CB is put forward in Figure 13, using an L-C tank for
voltage network applications [35]. Two diodes and five thyristors are needed to form a rectifier. When
a fault occurs, this circuit changes into a rectifier bridge and rectifies the AC voltage.
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2.5. Controllable Semicondcutor Devices for Current-Limiting

2.5.1. CL-CB with Semiconductor Power Switches

As shown in Figure 14 [36], an SSCB could work as a CL device. This ‘fault-current limiting
and interruption device (FCLID)’ has a bi-directional semiconductor switch, e.g., IGBT or power
metal-oxide-semiconductor field-effect transistor (MOSFET), resistor-capacitor (RC) snubber circuit,
and a voltage varistor (i.e., a nonlinear resistor). The semiconductor switches could be controlled with
pulse-width modulation (PWM) or a linear-region gate signal to limit the current.
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When with a short-circuit condition, the current is limited to a value higher than the nominal current,
therefore the power loss will higher than the nominal power input of the system. This configuration
could not work in CL mode on a long-term basis, and as the power must be absorbed by metal oxide
varistor (MOV) afterwise, MOV components with large dimensions are needed.

Figure 15 shows a HCB with multi-function [37]. This configuration consists of a fast mechanical
switch, a diode bridge, a controllable semiconductor device (GTO or IGBT) and protection components.
If a fault is noticed by the current sensor, the fast mechanical switch will switch off immediately.
The fault current commutates into the diode bridge. On and off status of the semiconductor part is
determined by the only controllable semiconductor switch. Either a PWM signal or linear gate voltage
signal could be applied. A resistor-capacitor-diode (RCD) snubber circuit works together with MOV
for semiconductor device transit protection.
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Figure 16 shows a typical CL-CB configuration, with which the current could be eliminated by
fast switching of mechanical switch and semiconductor switches [38].

Energies 2017, 10, 495 9 of 25 

 

Figure 16 shows a typical CL-CB configuration, with which the current could be eliminated by 
fast switching of mechanical switch and semiconductor switches [38]. 

 
Figure 16. Hybrid CL-CB in 2012. 

As shown in Figure 17, ASEA Brown Boveri (known as ABB) in Zurich, Switzerland, have 
proposed hybrid CB for HVDC systems without arcing and without more induction loss [39]. The 
commutation switch is a semiconductor with very low breakdown voltage, so that the on-state 
voltage and on-state loss are extremely low. When a fault occurs, the commutation switch will open, 
and the current commutates to main semiconductor branch. After the branch current becomes zero, 
the mechanical disconnector switch opens rapidly without arcing, and keeps a long insulation 
distance. Then main semiconductor switch opens to send all electronic energy to surge arrester bank. 
The main semiconductor switch as well as the surge arrester bank are series-connected for high 
voltages, as described at the beginning of this section. 

 
Figure 17. ABB hybrid HVDC circuit breaker in 2011. 

2.5.2. Active Bridge Configurations of CL-CBs 

Reference [40] introduced a CL-CB for AC grids with a three-phase thyristor bridge. As shown 
in Figure 18a, by using a three-phase series-connected isolating transformer, three-phase thyristor 
bridge and a DC inductor, this CL-CB could not influence the grid voltage in ordinary working mode, 
but when a short-circuit fault happens, the DC side inductance will be added into the circuit loop 
automatically, therefore achieving no delay for the fault current limitation. 

As shown in Figure 18b, if the transformer is taken off from the first figure, single-phase H-
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semiconductor devices from over-voltage damage [41]. 
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Figure 16. Hybrid CL-CB in 2012.

As shown in Figure 17, ASEA Brown Boveri (known as ABB) in Zurich, Switzerland, have
proposed hybrid CB for HVDC systems without arcing and without more induction loss [39].
The commutation switch is a semiconductor with very low breakdown voltage, so that the on-state
voltage and on-state loss are extremely low. When a fault occurs, the commutation switch will
open, and the current commutates to main semiconductor branch. After the branch current becomes
zero, the mechanical disconnector switch opens rapidly without arcing, and keeps a long insulation
distance. Then main semiconductor switch opens to send all electronic energy to surge arrester bank.
The main semiconductor switch as well as the surge arrester bank are series-connected for high
voltages, as described at the beginning of this section.
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2.5.2. Active Bridge Configurations of CL-CBs

Reference [40] introduced a CL-CB for AC grids with a three-phase thyristor bridge. As shown
in Figure 18a, by using a three-phase series-connected isolating transformer, three-phase thyristor
bridge and a DC inductor, this CL-CB could not influence the grid voltage in ordinary working mode,
but when a short-circuit fault happens, the DC side inductance will be added into the circuit loop
automatically, therefore achieving no delay for the fault current limitation.

As shown in Figure 18b, if the transformer is taken off from the first figure, single-phase H-bridge
configuration could also be used for CL purposes. Another AC-side inductor is added up to this circuit
working together with DC inductor. With the AC inductor, the current rating of the circuit could be
increased, however, an MOV must be connected across the AC inductor to protect the semiconductor
devices from over-voltage damage [41].

As shown in Figure 18c, let’s go one step further, replacing two thyristor with diodes, and two
thyristors with IGCT switches, then this third configuration could obtain a similar performance. Only
two controllable semiconductor devices are needed [42].
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A brief summary is put forward in Table 1 to show the circuit breakers in different categories, 
and discuss their advantages and disadvantages. Some observations are warranted: 

(a) Mechanical switches, as one half of the HCB configuration, need more investigation about lifting 
the tripping speed; 

(b) HCBs with auxiliary semiconductor switches will be widely used for HVDC systems because of 
their natural superiority: no-arcing, acceptable switching speed, and low transmission power 
loss; 

(c) Superconductor-based circuit breakers are quite expensive and have huge size/weight, so they 
may be only used in HVDC systems because of their insensitivity of floor space. Further 
investigation could be on implementation and higher-temperature superconductors; 

(d) As current-limiting is becoming more intelligent, semiconductor devices will be widely applied, 
but their reliability must be taken into account; 

(e) Resistive CL-CB has really high power dissipation, it might be only used for short-term limiting; 
(f) Inductive CL-CB and L-C based CL-CB are sensitive to frequency changes, so the robustness is 

not perfect. The dynamic response must be analyzed before any conduction; 

Figure 18. Inductor-bridge type solid state current limiters: (a) Three-phase series thyristor bridges with
isolating transformers (4-arms); (b) Single-phase thyristor bridges with DC inductor; (c) Half-controlled
IGCT bridges with AC and DC inductors.

Static synchronous series compensators (SSSC), as a series-connected semiconductor converter
module, were investigated by a few experts for CL purposes [43–46]. As shown in Figure 19, SSSC has
the same H-bridge structure as a static synchronous compensator (STATCOM), but uses series-connection
rather than paralleled connection [47]. The SSSC can provide controllable compensating voltage and
capacitive or inductive power, which could improve the quality of electric energy [48]. SSSC may be
a good multi-functional flexible fault current limitation component solution.
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2.6. Summary

A brief summary is put forward in Table 1 to show the circuit breakers in different categories,
and discuss their advantages and disadvantages. Some observations are warranted:

(a) Mechanical switches, as one half of the HCB configuration, need more investigation about lifting
the tripping speed;

(b) HCBs with auxiliary semiconductor switches will be widely used for HVDC systems because of
their natural superiority: no-arcing, acceptable switching speed, and low transmission power loss;

(c) Superconductor-based circuit breakers are quite expensive and have huge size/weight, so they
may be only used in HVDC systems because of their insensitivity of floor space. Further
investigation could be on implementation and higher-temperature superconductors;

(d) As current-limiting is becoming more intelligent, semiconductor devices will be widely applied,
but their reliability must be taken into account;

(e) Resistive CL-CB has really high power dissipation, it might be only used for short-term limiting;
(f) Inductive CL-CB and L-C based CL-CB are sensitive to frequency changes, so the robustness is

not perfect. The dynamic response must be analyzed before any conduction;
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(g) Bridge-connected CL-CB has the best flexibility and controllability, but may suffer from higher
power loss and the need for other additional components. Active CL-CB with SSSC may be a
good solution for DC/AC systems for its controllable reactive power generation capability and
its multi-function of short-circuit protection;

(h) Wide-band-gap (WBG) devices e.g., SiC MOSFET are recommended for fast breaking as well as
current limiting, but the overall cost should be taken into consideration.

Table 1. Summary of CL-CBs (mechanical or semiconductor) [49].

Categories Main Components Advantages Disadvantages

Fast
breaking
manner

One-time devices Fuses [1,50] Lowest size & cost Poor maintenance,
unclear melting time

Reusable components

FMS [2,9–11,13–16,51,52] Small size, low
power loss

Electric arc with contact
erosion, low speed

HCB/SSCB [12] Fast, small arcing Complex structure,
relatively high cost

Current
limiting
manner

Switched
passive

components

Resistive
elements

Switched resistor [17–20] Low cost, constant
resistive current High power dissipation

Switched PTC
resistors [2,21] Auto-limiting High power dissipation

Switched
superconductor
devices [8,22–26]

Auto-limiting with
resistive current High cost, huge size

With others

Switched inductor
[26,29,30]

No extra heat,
un-changeable

current

Sensitive to changing of
frequency

Switched L-C [17,31–35]
No extra heat,
relatively low

impedance for L-C

Sensitive to changing of
frequency

Controlled
passive &

power
devices

Semiconductor
switches &

energy
absorbers

PWM control [36,38] Simple structure,
resistive current

High power dissipation
of MOV

Gate voltage control [37] Simple structure,
resistive current

High power dissipation
of semiconductors

Other bridge
concepts

Controlled bridge with
inductor [40–42]

Controllable current,
no additional heat

high current harmonics
with thyristor

SSSC [47]
No additional heat,
controllable current,

low THD

Complex structure,
capacitor charging issues

3. Novel Circuit Breaker Concepts with Different Power Devices

This part discusses basic HCB/SSCB configurations with different control methods as well as
semiconductor devices. Novel configurations are proposed afterwards based on the basic topologies
with some good features. The applications of different power devices in these circuit breakers are
analyzed with further discussion.

3.1. Basic HCB/SSCB Configuration in Low-Voltage AC/DC Grids

Figure 20 shows the basic configuration of HCB/SSCB. SSCB consists of a semiconductor main
switch (SMS) and a metal oxide varisor (MOV). HCB is the combination of SSCB with fast mechanical
switch (FMS) and mechanical disconnector (MD). The latter two are optional for different applications.
Both PWM control (i.e., a pulsed gate signal) and linear region gate control (variable gate voltage
signal for semiconductors) of SMS are appropriate for AC and DC applications, even better with
WBG semiconductor devices of higher switching speed and higher junction temperature. A novel
phase-shift control method could be used for AC applications, avoiding supplementary impedance
(e.g., inductor and resistor) because of natural zero-voltage-crossing ability.
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Figures 24 and 25 show the experimental results of SSCB operation (tripping current 150 A for 
Figure 24) with SiC MOSFET and Si IGBT. As the peak current of Si IGBT based SSCB is higher than 
that of SiC MOSFET based SSCB, the switching speed of the latter is still higher. Figure 25a confirms 
this result. Figure 25b shows the normal operation efficiency comparison of these two SSCBs. It is 
observed that the power loss of the SiC MOSFET-based SSCB is lower than that of the Si IGBT-based 
SSCB when the current is small.  

Device selection and specification should be grounded in practical application requirements. It 
is apparent that, with SiC MOSFET, the clearing speed of HCB and SSCB will be higher than that 
with Si IGBT. The power loss of a SiC MOSFET-based SSCB may be lower than that of a Si IGBT one 
with appropriate device selections. 

Figure 20. Basic SSCB/HCB configuration diagram.

3.1.1. Fast Breaking of SSCB or HCB with WBG Devices

For SSCB with WBG devices, the functions of component could be described as follows:

(a) FMS carries the main current with low conduction loss;
(b) SMS is to cut off fault current with a higher speed;
(c) MOV absorbs the remaining energy of line inductance to avoid over voltage across SMS;
(d) A mechanical disconnector is needed to ensure electrical insulation while all turned off.

Figure 21 shows the photograph of an HCB/SSCB testing prototype with SiC MOSFETs (15 Cree
C2M0025120D in a parallel, common-source configuration to allow bi-directional power flow) or
silicon (Si) IGBT (Infineon FZ600R17KE3) as a comparison. A GIGAVAC GX26CCB mechanical switch
is chosen as the FMS part of HCB.
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Figure 21. Photograph of a HCB/SSCB prototype with SiC power MOSFETs or Si IGBTs.

Figures 22 and 23 show the experimental results of HCB operation (tripping current 150 A for
Figure 22) with a SiC MOSFET and Si IGBT. In Figure 22a, it is apparent that the on-state resistance
of SiC MOSFET is very small (about 3.33 mΩ), therefore both FMS and SMS are conducting during
normal operation. Figure 23 shows that the total clear time (including turn-off time of FMS, turn-off
time of SMS and energy absorbing time by MOV) of SiC MOSFET based HCB is lower than for a Si
IGBT-based HCB.

Figures 24 and 25 show the experimental results of SSCB operation (tripping current 150 A for
Figure 24) with SiC MOSFET and Si IGBT. As the peak current of Si IGBT based SSCB is higher than
that of SiC MOSFET based SSCB, the switching speed of the latter is still higher. Figure 25a confirms
this result. Figure 25b shows the normal operation efficiency comparison of these two SSCBs. It is
observed that the power loss of the SiC MOSFET-based SSCB is lower than that of the Si IGBT-based
SSCB when the current is small.

Device selection and specification should be grounded in practical application requirements. It is
apparent that, with SiC MOSFET, the clearing speed of HCB and SSCB will be higher than that with
Si IGBT. The power loss of a SiC MOSFET-based SSCB may be lower than that of a Si IGBT one with
appropriate device selections.
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3.1.2. Current Limitation Method with PWM Strategy

With current limitation by PWM chopping for semiconductors, SiC MOSFETs get higher marks
than Si IGBTs because of their higher junction temperature and lower switching losses. Figure 26
shows a case study (simulation results) of PWM-based current limitation with a discontinuous current.
Although the current ripple is large, the downstream devices may be still working for specific loads
(e.g., incandescent lamps). The elimination of semiconductor device loss and junction temperature
could be obtained by reducing switching frequency.
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3.1.3. Current Limitation by Gate Voltage Control

As the on-state voltage of power MOSFET or IGBT could be controlled by changing the gate
voltage signal, the current limitation may be achieved by linear region control. In this condition,
power MOSFET or IGBT works as a variable resistor. WBG devices may be also better for this
application because of higher allowable power dissipation. But this is now still restricted because
of the power module package temperature limit. Figure 27 show a case study of this scheme with
Simulation Program with Integrated Circuit Emphasis (SPICE) software. A detailed Cree SiC MOSFET
C2M0025120D SPICE model (105 in parallel) is placed in the simulation for variable gate voltage
control with different drain to source resistance.
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limitation is implemented by phase-shifting of AC voltage and current, therefore obtaining controlled 
zero crossing of current. As the semiconductor switches is full on or off, there will be no significant 
power loss on SSCB, which means that there is no extra heat generated, as shown in Figure 28. With 
the schematic phase-shifting method in Figure 28, the semiconductor is in zero current switching 
(ZCS) condition, therefore reduce the power loss even more. All fully-controlled semiconductor 
devices could be applied. 

 

Figure 28. The principle of the phase-shifting current-limiting method. 

As shown in Figure 28, two components form the line current: the damping component ݅ୢୟ୫୮ 
and the repeating component ݅୰ୣ୮ୣୟ୲. When the fundamental angular frequency ߱୥ is constant (e.g., 
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Figure 27. Case study (simulation results) of linear region CL strategy with SiC MOSFET: (a) Line
current and junction temperature without current limiting; (b) With current limiting.

3.1.4. A Novel Current-Limiting Method for Basic HCB in Low-Voltage AC Grids

In this Section, a novel current-limiting control strategy is proposed and applied to basic SSCB
circuit breaker configurations without any added passive components (see Figure 20). The current
limitation is implemented by phase-shifting of AC voltage and current, therefore obtaining controlled
zero crossing of current. As the semiconductor switches is full on or off, there will be no significant
power loss on SSCB, which means that there is no extra heat generated, as shown in Figure 28. With the
schematic phase-shifting method in Figure 28, the semiconductor is in zero current switching (ZCS)
condition, therefore reduce the power loss even more. All fully-controlled semiconductor devices
could be applied.
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As shown in Figure 28, two components form the line current: the damping component idamp and
the repeating component irepeat. When the fundamental angular frequency ωg is constant (e.g., 50 Hz
or 60 Hz), the duty ratio of semiconductor device in one period is Dgate, the per-unit (p.u.) peak current
Ig,peak and p.u. root mean square (RMS) current Ig,RMS could be described as the functions of phase
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angle of the system impedance ϕsys and gate phase angle θgate ∈
[
0, π − ϕsys

]
, that is: Dgate =

ωgt2
π =

fDgate

(
θgate, ϕsys

)
, Ig,peak,pu =

Ig,peak
Iupm

= f Ipeak,pu

(
θgate, ϕsys

)
and Ig,RMS,pu =

Ig,RMS
Iupm

= f IRMS,pu

(
θgate, ϕsys

)
.

Figure 29a shows the detailed control diagram upon this strategy. And a basic simulation result is
shown in Figure 29b. It is definite that peak current or RMS current could be controlled very well with
peak current reference signal. With the benefits of low cost, control robustness with linear load, good
control accuracy, low size, low weight, and finally lower heat dissipation, this control method could be
used in many areas. However, in the application fields which requires good AC current waveform
performance, simpler control or only DC operation, this method is not applicable.
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(a) The switching speed of a basic HCB depends on the tripping performance of FMS, which limits 
the switching speed of HCBs to several milliseconds; 

(b) The power loss of basic SSCBs is high and not acceptable in many cases, therefore they are not 
suitable in many applications; 
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limiting by gate voltage control introduces high power loss on semiconductor power devices, 
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3.1.5. Limitation of Basic SSCB/HCB Configurations

Although basic SSCB and HCB are simple in structure, and can be working in a series of mode
(fast switching, current limiting by PWM, current limiting by gate voltage control, current limiting by
phase shifting), there are a few limitations:

(a) The switching speed of a basic HCB depends on the tripping performance of FMS, which limits
the switching speed of HCBs to several milliseconds;

(b) The power loss of basic SSCBs is high and not acceptable in many cases, therefore they are not
suitable in many applications;

(c) Current limiting by PWM introduces high power losses on MOV components and current limiting
by gate voltage control introduces high power loss on semiconductor power devices, therefore
the application area is limited;

(d) Current limiting by phase shifting could only be used in AC systems and with large
current harmonics;
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(e) Although SiC devices may confer an advantage to basic SSCB/HCB configurations with fast
breaking (higher switching speed), PWM current limiting (higher switching speed and junction
temperature), linear gate voltage control current limiting (higher junction temperature), the cost
of SiC MOSFETs is still much higher than that of Si IGBTs, which bounds the spread of SiC
MOSFETs in circuit breaker applications.

3.2. Novel CB Configurations with Different Semiconductor Devices

Novel circuit breaker configurations based on SSCB/HCB concepts are investigated to improve
performance, as mentioned in Section 3.1.5. Three novel HCB/SSCB configurations are proposed
in this section: with Configuration 1 (hybrid), the fault current is broken by the FMS itself; With
Configuration 2 (hybrid), the fault current is broken by a series-connected semiconductor transfer
switch (STS) to ensure there is no arcing for the mechanical part; with Configuration 3 (pure SSCB),
the fault current is broken by SMS with the help of STS, which is an ultra-fast solution with acceptable
power loss.

3.2.1. Configuration 1: HCB with Capacitor

Configuration 1 is shown in Figure 30, which consists of an FMS, a semiconductor accessary
switch (SAS), a capacitor and an MOV arrester. FMS is used to carry the main normal operation current
and break any huge fault current (up to the ultimate short-circuit breaking capacity Icu) as well. SAS is
the semiconductor switch which can carry a surge current (i.e., fault current) for a certain amount of
time, and should be a thyristor-type device e.g., normal thyristor and GTO. A capacitor is implemented
to force the current across zero, therefore a thyristor-based SAS could turn off automatically.
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3.2.2. Configuration 2: HCB with STS and Capacitor

Configuration 2, which consists of an STS, an SAS, a capacitor and an MOV arrester, is shown in
Figure 31. STS is the series-connected semiconductor switch which can carry the normal operating
current and carry/break the fault current (up to Icu). With the voltage rating of only few tens of volts
and very small on-state resistance, paralleled connection of Si MOSFETs is a good choice for STS [53].
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Figure 31. Novel configuration 2: Hybrid solution of FMS + STS + SAS + Capacitor + MOV.

In normal operation, FMS and STS carry the main current (continuous nominal current and up to
10 times of overload current). The advantage of Configuration 2 is the absence of mechanical switch
arcing because the fault current can easily commutate to the SAS branch with STS.
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3.2.3. Configuration 3: Pure SSCB with Thyristor and STS (A Better Solution)

Configuration 3 (pure SSCB), which consists of an SMS, an STS, an SAS and an MOV arrester is
shown in Figure 32. The SMS is to carry the main normal operation and fault current. To get a lower
on-state power loss, SMS could be symmetrical thyristors. STS is the series-connected semiconductor
switch which can carry the normal operating current and carry/break the fault current as well. SAS
is the semiconductor switch which carries a surge current (i.e., fault current) for a certain amount of
time and then breaks it, which could be a IGBT or a GTO (in consideration of cost). MOV arrester is to
absorb the remaining energy of line inductance, and protect SMS from over-voltage.
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Figure 32. Novel configuration 3: Solid-state solution of SMS + STS + SAS + MOV.

In normal operation, a SMS (thyristor) carries the main current (continuous rated current and up to
10 times of overload current). When a short-circuit condition occurs, the fault could be detected. Then a
trip signal is sent first to STS. With a very short delay (in microseconds), the STS trips and commutates
the fault current to MOV branch rapidly with zero voltage. After the current of SMS branch definitely
goes to zero, SMS turns off automatically. Then the remaining energy of line inductance is absorbed by
MOV to reduce the line current to zero.

3.2.4. Comparisons of These Configurations

As the tripping time of HCB depends on the speed of a mechanical switch, it is clear that this pure
SSCB might be ten times faster than the HCB ones in Figures 31 and 32, and also have a very small
peak fault current. Simulations have been done in the PLECS software to check the performance of
these three novel CBs. The results of breaking procedure from Configuration 1 to Configuration 3 are
shown in Figure 33a–c. The overall comparison of these three configurations is described in Table 2.

Energies 2017, 10, 495 18 of 25 

 

3.2.3. Configuration 3: Pure SSCB with Thyristor and STS (A Better Solution) 

Configuration 3 (pure SSCB), which consists of an SMS, an STS, an SAS and an MOV arrester is 
shown in Figure 32. The SMS is to carry the main normal operation and fault current. To get a lower 
on-state power loss, SMS could be symmetrical thyristors. STS is the series-connected semiconductor 
switch which can carry the normal operating current and carry/break the fault current as well. SAS 
is the semiconductor switch which carries a surge current (i.e., fault current) for a certain amount of 
time and then breaks it, which could be a IGBT or a GTO (in consideration of cost). MOV arrester is 
to absorb the remaining energy of line inductance, and protect SMS from over-voltage. 

 

Figure 32. Novel configuration 3: Solid-state solution of SMS + STS + SAS + MOV. 

In normal operation, a SMS (thyristor) carries the main current (continuous rated current and 
up to 10 times of overload current). When a short-circuit condition occurs, the fault could be detected. 
Then a trip signal is sent first to STS. With a very short delay (in microseconds), the STS trips and 
commutates the fault current to MOV branch rapidly with zero voltage. After the current of SMS 
branch definitely goes to zero, SMS turns off automatically. Then the remaining energy of line 
inductance is absorbed by MOV to reduce the line current to zero. 

3.2.4. Comparisons of These Configurations 

As the tripping time of HCB depends on the speed of a mechanical switch, it is clear that this 
pure SSCB might be ten times faster than the HCB ones in Figures 31 and 32, and also have a very 
small peak fault current. Simulations have been done in the PLECS software to check the performance 
of these three novel CBs. The results of breaking procedure from Configuration 1 to Configuration 3 
are shown in Figure 33a–c. The overall comparison of these three configurations is described in  
Table 2. 

(a) (b)

Figure 33. Cont.



Energies 2017, 10, 495 19 of 25Energies 2017, 10, 495 19 of 25 

 

(c)

Figure 33. Simulation results of breaking procedure of Configuration 1, 2 and 3: (a) Configuration 1; 
(b) Configuration 2; (c) Configuration 3. 

Table 2. Overall summary of the proposed CB configurations with brief comparisons. 

Type Configuration 1 (HCB) Configuration 2 (HCB) Configuration 3 (SSCB)
Power loss Lowest Low Low with thyristor 

Total clear time About 5.5 ms About 6.5 ms Less than 0.4 ms 
Peak current About 15.7 kA About 15.8 kA About 1470 A 

Component 
features 

FMS 
Carry Icu for milliseconds 

and break 
Carry Icu for milliseconds, 

no need to break 
N/A 

SMS N/A N/A Carry 10 × In, no need to break 

SAS Carry Icu for milliseconds Carry Icu for milliseconds 
Carry 10 × In for microseconds 

and break 

STS N/A 
Carry Icu for milliseconds 

and break 
Carry 10 × In and break 

Capacitor Large film capacitor Large film capacitor N/A 

Advantages Lowest on-state loss 
Low on-state loss 
No arc for FMS 

Ultra-fast switching 
Acceptable on-state loss 

Disadvantages 
Large film capacitor 
Large MOV arrestor 

Larger film capacitor 
Higher turn-off time 

Complex structure 

It is shown in Table 2 that Configuration 2 suffers from even larger capacitor needs, and accurate 
FMS trip delay time information is needed to avoid STS overvoltage. Therefore, Configuration 1 (as 
HCB) and Configuration 3 (as SSCB) are recommended as the proper configuration for CB design. 
With Configuration 3, symmetrical thyristors could be easily applied to achieve acceptable power 
losses. 

Figure 34 gives a case study (experimental results) of peak current comparison and clear time 
comparison for HCB (similar to Configuration 1) and SSCB (similar to Configuration 3). In Figure 
34a, about 7.8 ms are needed as total clear time, which mainly depends on the trip time of the 
mechanical switch. The peak current can goes up to about 570 A for 150 A tripping. In Figure 34b, the 
total clear time is less than 1 ms, and the peak current is just about 150 A. Figure 35 shows the 
quantitative comparison of total clear time as a further comparison of HCB and SSCB. The ultra-high 
speed switching is advantageous in peak fault current, total clear time and also equipment non-
destruction rate. 

Figure 33. Simulation results of breaking procedure of Configuration 1, 2 and 3: (a) Configuration 1;
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Table 2. Overall summary of the proposed CB configurations with brief comparisons.

Type Configuration 1 (HCB) Configuration 2 (HCB) Configuration 3 (SSCB)

Power loss Lowest Low Low with thyristor

Total clear time About 5.5 ms About 6.5 ms Less than 0.4 ms

Peak current About 15.7 kA About 15.8 kA About 1470 A

Component
features

FMS Carry Icu for
milliseconds and break

Carry Icu for milliseconds,
no need to break N/A

SMS N/A N/A Carry 10 × In, no need to break

SAS Carry Icu for
milliseconds Carry Icu for milliseconds Carry 10 × In for microseconds

and break

STS N/A Carry Icu for milliseconds
and break Carry 10 × In and break

Capacitor Large film capacitor Large film capacitor N/A

Advantages Lowest on-state loss Low on-state loss
No arc for FMS

Ultra-fast switching
Acceptable on-state loss

Disadvantages Large film capacitor
Large MOV arrestor

Larger film capacitor
Higher turn-off time Complex structure

It is shown in Table 2 that Configuration 2 suffers from even larger capacitor needs, and accurate
FMS trip delay time information is needed to avoid STS overvoltage. Therefore, Configuration 1
(as HCB) and Configuration 3 (as SSCB) are recommended as the proper configuration for CB
design. With Configuration 3, symmetrical thyristors could be easily applied to achieve acceptable
power losses.

Figure 34 gives a case study (experimental results) of peak current comparison and clear
time comparison for HCB (similar to Configuration 1) and SSCB (similar to Configuration 3).
In Figure 34a, about 7.8 ms are needed as total clear time, which mainly depends on the trip
time of the mechanical switch. The peak current can goes up to about 570 A for 150 A tripping.
In Figure 34b, the total clear time is less than 1 ms, and the peak current is just about 150 A. Figure 35
shows the quantitative comparison of total clear time as a further comparison of HCB and SSCB.
The ultra-high speed switching is advantageous in peak fault current, total clear time and also
equipment non-destruction rate.
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3.3. Summary of Semiconductor Devices in CB Applications

A case study of semiconductor device in basic SSCB/HCB and three novel configurations is
shown in Table 3. For a basic SSCB, by using a SiC MOSFET with third quadrant operation (the same
as synchronous rectification), the power loss may be reduced to an acceptable value. SiC bipolar
junction transistor (BJT) and SiC junction gate field-effect transistor (JFET) have similar switching and
conducting features as SiC MOSFETs.

Table 3. Device examples for 360V DC LV circuit breaker designs.

Semiconductor Type Thyristor GTO MCT IGBT Si
MOSFET

SiC
MOSFET/BJT/JFET

Example part number VS-ST1200C12K0P DGT304RE SMCTTA65
N14A10

NGTB40N
120SWG

AUIRFSA
8409-7P C2M0040120D

Rated voltage 1200 V 1300 V 1400 V 1200 V 40 V 1200 V

Rated current 1100 A 390 A 65 A 40 A 370 A 40 A

Pulsed current 25.7 kA 4 kA 6 kA 200 A 1440 A 160 A

Reverse blocking Yes Yes No No No No

Loss parameters 1.3 V 2.0 V 1.2 V 2.4 V 0.5 mΩ 40 mΩ

Basic SSCB SMS ×
√

×
√

×
√

Configuration 1 SAS
√ √

× × × ×

Configuration 2 STS × × × ×
√

×
SAS

√ √
× × × ×

Configuration 3
SMS

√ √ √
× × ×

STS × × × ×
√

×
SAS ×

√
×

√
× ×

Thyrisors are good devices as SAS in Configuration 1 and Configuration 2 because of their high
pulse current. Compared with GTO and MOS-controlled thyristors (MCTs), thyristors may be the best
choice for SMS in Configuration 3 with the lowest on-state loss.
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4. Future Trends and Challenges for Semiconductor Devices in CB

In future, semiconductor devices will be widely used in circuit breaker applications, thus
forming a fundamental part of any intelligent power grid. There are three future trends for power
semiconductor devices.

4.1. HCB for HVDC or MVDC: Very High Power

In HVDC or MVDC systems, hybrid circuit breakers will be used with the help of semiconductor
power devices, as shown in Figure 17. CBs will consist of SMS, FMS, SAS, STS, MOV and so on.
Therefore, low-voltage Si MOSFET/IGBT will be used as STS, and Si thyristor/IGBT/IGCT/GTO will
be working as SAS. The performance of HVDC/MVDC hybrid circuit breakers will mainly depend on
the switching speed of mechanical switches.

As for discussion for WBG devices in HVDC/MVDC, for low-voltage STS, the voltage rating may
be only tens of volts. Therefore, a SiC MOSFET may be not a good choice with a voltage rating higher
than 600 V. With the future development of 15 kV SiC MOSFETs or SiC IGBTs, these two kinds of WBG
devices may be possible choices as SAS for HVDC/MVDC, but series-connection is still needed for
high voltage ratings. As switching speed and power loss of HVDC/MVDC circuit breaker are not the
priority issue, Si thyristor/IGBT/IGCT/GTOs will not become obsolete in the next ten years.

4.2. SSCB for Medium Power: Very High Speed

Pure solid-state circuit breakers will be used for medium power applications for MV/LV medium
power systems with the construction of SMS (thyristor) plus STS. Fast switching in microseconds of
SSCB in medium power conditions could be achieved, with acceptable power loss of the circuit breaker
part, as shown in Figure 32. Regarding WBG devices in medium power systems, as the cost of MV SiC
devices could be quite expensive, and the conducting loss of SiC devices is not much lower than that
of symmetrical Si thyristors, so there are few potential uses for SiC devices in medium power high
speed circuit breakers.

4.3. SSCB for Low Voltage: Ultra High Speed Switching or Multi-Functional

For low power LV applications, pure solid-state circuit breakers will be used with WBG devices,
as shown in Figure 20:

(a) Ultra-high-speed switching with SiC devices or GaN devices;
(b) Current-limitation capability with WBG devices with higher junction temperature;
(c) Integration of multi-functional operation for intelligent solid-state circuit breakers.

Concerning WBG devices in ultra-high speed low voltage circuit breakers, for low voltages of
less than 1.2 kV, SiC MOSFET and GaN high-electron-mobility transistor (HEMT) will certainly be
widely used. The device selection will be basically based on the voltage rating of the applications.
With low-inductance low-voltage DC applications, traditional MOV protection devices may be not
necessary, considering the extended avalanche breakdown capability of WBG devices. Therefore the
weight and dimensions will be reduced even further.

5. Conclusions

In this paper, a review of the current status of SSCB/HCB is first discussed. Increasing amounts
of semiconductor devices are being used in SSCB and HCB. SSSC, with no additional heat, controllable
current and low current total harmonic distortion (THD), may be a good choice for high performance
circuit breakers. Basic SSCB and HCB configurations are investigated with fast-switching analysis and
experimental comparisons between SiC MOSFETs and Si IGBTs. Novel control methods, including
current limiting with PWM and gate voltage control are described and verified with simulations. It is
obvious that with WBG semiconductor devices, basic SSCB and HCB will achieve better performance
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with higher switching speed and lower system size (lower heat dissipation requirements). Three novel
circuit breaker configurations (HCB with capacitor, HCB with STS and capacitor, SSCB with STS and
thyristor as SMS) are put forward to further improve the performance of SSCB and HCB. The novel
SSCB configuration with STS and thyristor as SMS, with ultra-fast switching speed (microseconds)
and acceptable on-state power loss, may be a great choice for medium voltage systems.

In the future, SSCB and HCB with semiconductor devices will be very powerful choices for
HVDC/MVDC systems, offering very high speed for medium power low-voltage systems and
ultra-high speed switching or multi-functional for low-voltage low power intelligent power grids.
WBG semiconductor switching devices will thus win a place in the future circuit breaker family.
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Abbreviations

ABB ASEA Brown Boveri Limited Company
AC Alternating current
BJT Bipolar Junction Transistor
CB Circuit breaker
CL Current-limiting
CL-CB Current-limiting circuit breaker
DC Direct current
EPRI Electric Power Research Institute
FCLID Fault-current limiting and interrupting device
FDS Fast-opening disconnecting switch
FMS Fast mechanical switch
FTS Fast-opening transfer switch
GaN Gallium nitride
GTO Gate turn-off thyristor
HCB Hybrid circuit breaker
HCLID Hybrid current-limiting interrupting device
HEMT High-electron-mobility transistor
HSS High speed switch
HVDC High-voltage direct-current
IGBT Insulated-gate bipolar transistor
IGCT Integrated gate-commutated thyristor
JFET Junction gate field-effect transistor
L-C Inductor-capacitor
LCS Line commutation switch
LS Load switch
LV Low voltage
MCB Mechanical circuit breaker
MCCB molded-case circuit breaker
MCT MOS-controlled thyristor
MD Mechanical disconnector
MOS Metal oxide semiconductor
MOSFET Metal-oxide-semiconductor field-effect transistor
MOV Metal oxide varistor
MV Medium voltage
MVDC Medium-voltage direct-current
PTC Positive temperature coefficient
p.u. Per-unit
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PWM Pulse-width modulation
RC Resistor-capacitor
RCD Resistor-capacitor-diode
RMS Root mean square
SAS Semiconductor accessary switch
SFCL Superconductor fault current limiter
Si Silicon
SiC Silicon carbide
SMS Semiconductor main switch
SPICE Simulation Program with Integrated Circuit Emphasis
SSCB Solid-state circuit breaker
SSFCL Solid state fault current limiting
SSSC Static synchronous series compensator
STATCOM Static synchronous compensator
STS Semiconductor transfer switch
THD Total harmonic distortion
WBG Wide-band-gap
ZCS Zero current switching
ZnO Zinc oxide
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