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Abstract: High performance flexible inverted organic solar cells (OSCs) employing the low temperature
cathode buffer bilayer combining the aqueous solution-processed ZnO and polyethylenimine
ethoxylated (PEIE) are investigated based on Poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butryric
acid methyl ester (P3HT:PC61BM) and Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-
2,6-diyl}{3-fluoro-2-[(2-ethylhexy)carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-phenyl-C71-butyric acid
methyl ester (PTB-7:PC71BM) material systems. It is found that, compared with pure ZnO or PEIE
cathode buffer layer (CBL), the proper combination of low-temperature processed ZnO and PEIE
as the CBL enhanced the short circuit current density (JSC), resulting in better device performance.
The increased JSC results from the enhanced electron collection ability from the active layer to the
cathode. By using the ZnO/PEIE CBL, a power conversion efficiency (PCE) as high as 4.04% for
the P3HT:PC61BM flexible device and a PCE as high as 8.12% for the PTB-7:PC71BM flexible device
are achieved, which are higher than the control devices with the pure ZnO CBL or pure PEIE CBL.
The flexible inverted OSC also shows a superior mechanical property and it can keep 92.9% of its
initial performance after 1000 bending cycles with a radius of 0.8 cm. These results suggest that the
combination of the low temperature aqueous solution processed ZnO and PEIE can be a promising
cathode buffer bilayer for flexible inverted OSCs.

Keywords: organic solar cells (OSCs); cathode buffer layer (CBL); ZnO; polyethylenimine
ethoxylated (PEIE)

1. Introduction

Due to the potential of low-cost, flexibility, light weight and compatibility with roll-to-roll
fabrication, organic solar cells (OSCs) have attracted much research attention [1–4]. After continuous
efforts in recent years, OSCs with power conversion efficiency (PCE) above 10%–12% have been
achieved, based on the widely used bulk heterojunction (BHJ) of donor-accepter blend [5–7]. Generally,
the structure of OSCs could be classified into two categories, namely conventional structure and
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inverted structure. The conventional structure usually uses a poly(3,4-ethylenedioxithiophene):
poly(styrenesulfonate) (PEDOT:PSS) hole transport layer on indium-tin-oxide (ITO) to collect holes and
a low-work-function metal [aluminum (Al) or calcium (Ca)] top cathode to collect electrons. However,
the acidic PEDOT:PSS layer can corrode the ITO electrode, leading to the indium diffusion into the
active layer and resulting in interface instability [8–11]. And the top low-work-function metal can
also be easily oxidized in air, resulting in poor stability [12–14]. Compared with the conventional
structure, the inverted structure have the opposite electrode polarities, where the modified ITO acts as
the cathode and a high-work-function metal such as silver (Ag) or gold (Au) acts as the top anode,
so that both the commonly used acidic PEDOT:PSS and low-work-function metal top cathode can be
avoided and morphology of the active layer become more stable. This structure has been considered
as an efficient approach for improving the cell stability [15–19].

In inverted OSCs, an electron-selective layer between the ITO cathode and active layer is
indispensable so that an ohmic contact for the decrease or elimination the electron-extraction barrier
could be formed. N-type metal oxides such as zinc oxide (ZnO), titanium oxide (TiOx), and tin
oxide (SnO2) have been introduced as a cathode buffer layer (CBL) to modify ITO as an effective
electron-collecting electrode in inverted OSCs [1,2,15,20]. In particular, ZnO is more attractive because
of its beneficial properties such as high electron mobility, high optical transparency, low-cost and simple
solution process. Besides the metal oxides, polyelectrolyte such as polyethylenimine ethoxylated (PEIE)
has also been widely used as CBL, which could also be processed by the simple solution processing
method. PEIE contains simple aliphatic amine groups, which can produce surface dipoles and reduce
the work function of the ITO electrode. Thus, the energy mismatch between the electrode and
the active layer could be lowered so that the carriers can be efficiently collected by the electrode.
The PCE of inverted OSCs with PEIE as CBL was comparable to inverted PSCs using ZnO as CBL.
Recent reports [21,22] have shown that by combining ZnO and PEIE as the cathode buffer bilayer,
the performance of OSCs could be further improved. However, in the reported cathode buffer
bilayer, the deposition of ZnO is almost on the sol-gel method. This method usually requires a high
process temperature (usually ≥300 ◦C), which is not compatible with flexible substrates such as
polyethylene terephthalate (PET). Colloid-processed Nc-ZnO could be processed at a low temperature,
but it possesses environmentally sensitive electrical performance in ambient atmosphere. In order
to fabricate the flexible devices, the CBL combining a stable low temperature ZnO and PEIE should
be developed.

Recent results [21,23–25] have shown that the aqueous solution of ammine-zinc complex is a
promising technique to afford low temperature conversion to dense ZnO thin films. ZnO deposited
using this method was first adopted to fabricate thin film transistor and later applied in organic
light-emitting diodes and inverted OSCs. In particular, inverted OSCs based on ZnO CBL deposited
by this method have showed efficient performance [20,23,24]. Ka et al. [25] and we [20,24] have shown
that ZnO deposited by this aqueous solution could be processed at a low temperature so that most
flexible substrates can withstand. In previously work [24], we have demonstrated that the PCE of
flexible OSCs could reach 7.6% by using the aqueous solution processed ZnO as CBL. Besides, PEIE
could be deposited at a low temperature (100 ◦C). This makes PEIE also very attractive for using in
flexible devices. However, there is still no report about the cathode buffer bilayer combining the low
temperature aqueous solution processed ZnO and PEIE used in flexible inverted OSCs.

In this work, we employed the low temperature cathode buffer bilayer combining the
aqueous solution-processed ZnO and PEIE in flexible inverted OSCs based on Poly(3-hexylthiophene-
2,5-diyl):[6,6]-phenyl-C61-butryric acid methyl ester (P3HT:PC61BM) and Poly({4,8-bis[(2-ethylhexyl)oxy]
benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexy)carbonyl]thieno[3,4-b]thiophenediyl}):
[6,6]-phenyl-C71-butyric acid methyl ester (PTB-7:PC71BM). It is found that with proper combination
of ZnO and PEIE as the CBL, the short circuit current density (JSC) is obviously improved, resulting in
better device performance compared with pure ZnO or PEIE CBL. The increased JSC results from the
enhanced electron collection ability from the active layer to the cathode. At the same time, the flexible
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inverted OSCs showed a superior mechanical property. These results suggest that the combination of
the low temperature aqueous solution processed ZnO and PEIE can be a promising cathode buffer
bilayer for flexible inverted OSCs.

2. Results and Discussion

The schematic device structure of flexible inverted OSCs and the energy band diagram of the used
materials are illustrated in Figure 1a,b. The inverted OSCs were fabricated on flexible PET substrates
and with the structure of ITO/CBLs/P3HT:PC61BM or PTB7:PC71BM/MoO3/Ag. ZnO has conduction
band energy of around −4.4 eV and valence band energy of around −7.8 eV, which suggests that
electrons from the active layer can be transported into ZnO, while holes from the active layer can be
blocked. At the same time, PEIE contains simple aliphatic amine groups and it can produce surface
dipoles between the cathode and active layer. A very thin PEIE layer could reduce the work function
of cathode and help the electron extraction. There are four different combinations of ZnO and PEIE for
CBLs: pure ZnO, pure PEIE, ZnO/PEIE and PEIE/ZnO. Inverted OSCs based on the four different
CBLs are fabricated.
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Figure 1. (a) The layer structure and (b) the corresponding energy band diagram of materials of the flexible 
organic solar cells (OSCs). P3HT:PC61BM: Poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butryric 
acid methyl ester; PTB7:PC71BM: Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene- 
2,6-diyl}{3-fluoro-2-[(2-ethylhexy)carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-phenyl-C71-butyric acid 
methyl ester; CBL: cathode buffer layer; ITO: indium-tin-oxide; PET: polyethylene terephthalate; and 
PEIE: polyethylenimine ethoxylated. 

The current density versus voltage (J-V) characteristics of the P3HT:PC61BM devices with 
different CBLs are shown in Figure 2a, and the extracted device parameters are summarized in  
Table 1. The parameters are extracted according to the Shockley equation: 
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Figure 1. (a) The layer structure and (b) the corresponding energy band diagram of materials of the flexible
organic solar cells (OSCs). P3HT:PC61BM: Poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butryric
acid methyl ester; PTB7:PC71BM: Poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}
{3-fluoro-2-[(2-ethylhexy)carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-phenyl-C71-butyric acid methyl ester;
CBL: cathode buffer layer; ITO: indium-tin-oxide; PET: polyethylene terephthalate; and PEIE:
polyethylenimine ethoxylated.

The current density versus voltage (J-V) characteristics of the P3HT:PC61BM devices with different
CBLs are shown in Figure 2a, and the extracted device parameters are summarized in Table 1.
The parameters are extracted according to the Shockley equation:

J = J0(exp(
q(V − Rs J)

nkBT
)− 1) +

V − Rs J
Rsh

− Jp (1)

where J0 is the saturation current, Jp the photocurrent, Rs the series resistance, Rsh the shunt resistance,
n the ideality factor, q the electron charge, kB the Boltzmann constant, and T the temperature. By using
Equation (1) with our proposed explicit analytic expression method [26], the experimental data were
extracted and these parameters could rebuild the I-V curves of the OSCs with different CBLs as
shown in Figure 1a, which confirmed the validity of the extracted parameters. For the device with
pure ZnO CBL, a JSC of 9.16 mA/cm2, an open circuit voltage (VOC) of 0.65 V, and a fill factor (FF)
of 63.61% are achieved which result in a PCE of 3.84%. The device with pure PEIE CBL shows a
similar device performance with a PCE of 3.79%, a VOC of 0.65 V, a JSC of 9.19 mA/cm2, and a FF of
62.87%. These results are comparable or even better compared to the reported OSCs with pure ZnO or
PEIE CBL [24,27,28]. When we use PEIE/ZnO CBL in the device, a decreased device performance is
obtained with a PCE of 3.12%, a VOC of 0.64 V, a JSC of 8.21 mA/cm2, and a FF of 58.98%. Comparing
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with the above OSCs, the device with ZnO/PEIE CBL exhibits the best performance as shown in
Figure 2c,d, which obtains a PCE as high as 4.04%, with a JSC of 9.81 mA/cm2, a VOC of 0.65 V,
and a FF of 63.83%. The obviously increased JSC should account for the performance improvement.
To understand the improvement in the photovoltaic efficiency of the device with ZnO/PEIE CBL,
the collected photocurrent (Jph) as a function of effective voltage (Veff), which reflects the internal field
in the device, is plotted. Jph is obtained by subtracting the current density in the dark from the current
density under illumination. The Veff is defined as Veff = Vo − Va, where Vo is the compensation
voltage defined as the voltage where Jph = 0 and Va is the applied bias. As shown in Figure 2b, Jph
in the device with the ZnO/PEIE CBL is higher than in other devices from open-circuit condition to
short-circuit condition. These results indicate that higher charge collection ability is achieved by the
device with the ZnO/PEIE CBL, which is responsible for its higher PCE. The relatively low series
resistance for the device with the ZnO/PEIE CBL also confirms that the ZnO/PEIE bilayer could
further lower the energy barrier between the ITO electrode and the active layer, and then electron
transport from the active layer to ITO is facilitated. This is the main reason for the higher JSC.
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Figure 2. (a) The current density versus voltage (J-V) characteristics; (b) the collected photocurrent as 
a function of effective voltage (Jph-Veff) characteristics; (c) statistical chart of fill factor (FF) and open 
circuit voltage (VOC); and (d) statistical chart of power conversion efficiency (PCE) and short circuit 
current density (JSC) of the OSCs based on P3HT:PC61BM with different CBLs. 
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parameter summary of the flexible inverted PTB-7:PC71BM OSCs. These devices show the same 
variation tendency of performance as that in the devices based on the P3HT:PC61BM material 
system. The device with pure ZnO CBL achieves a PCE of 7.63% and with a VOC of 0.75 V, a JSC of 
15.39 mA/cm2 and a FF of 65.91%. And the device with pure PEIE CBL achieves a PCE of 7.28% with 
a VOC of 0.75 V, a JSC of 14.74 mA/cm2 and a FF of 65.32%. Both of them have a comparable 

Figure 2. (a) The current density versus voltage (J-V) characteristics; (b) the collected photocurrent as
a function of effective voltage (Jph-Veff) characteristics; (c) statistical chart of fill factor (FF) and open
circuit voltage (VOC); and (d) statistical chart of power conversion efficiency (PCE) and short circuit
current density (JSC) of the OSCs based on P3HT:PC61BM with different CBLs.

Table 1. Photovoltaic performance parameters for flexible inverted P3HT:PC61BM-based and
PTB7:PC71BM-based OSCs on PET.

Active Layer CBLs JSC (mA/cm2) VOC (V) FF (%)
PCE (%) Rs

(Ω/cm2)
Rsh

(Ω/cm2)Best Ave

P3HT:PC61BM

ZnO 9.16 0.65 63.61 3.84 3.74 2.1 501.8
PEIE 9.19 0.65 62.87 3.79 3.68 3.1 473.9

ZnO/PEIE 9.81 0.65 63.83 4.04 3.93 2.7 479.7
PEIE/ZnO 8.21 0.64 58.98 3.12 2.95 3.2 449.8

PTB-7:PC71BM

ZnO 15.39 0.75 65.91 7.63 7.59 4.9 610.5
PEIE 14.74 0.75 65.32 7.28 7.09 5.6 594.3

ZnO/PEIE 16.48 0.75 66.01 8.12 8.00 4.1 645.1
PEIE/ZnO 13.48 0.75 62.14 6.31 5.99 6.4 757.9
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The four different CBLs were also applied to PTB-7:PC71BM-based flexible inverted OSCs to
test its feasibility in other material systems. Figure 3a shows the J-V curves and Table 1 shows the
parameter summary of the flexible inverted PTB-7:PC71BM OSCs. These devices show the same
variation tendency of performance as that in the devices based on the P3HT:PC61BM material system.
The device with pure ZnO CBL achieves a PCE of 7.63% and with a VOC of 0.75 V, a JSC of 15.39 mA/cm2

and a FF of 65.91%. And the device with pure PEIE CBL achieves a PCE of 7.28% with a VOC of 0.75 V,
a JSC of 14.74 mA/cm2 and a FF of 65.32%. Both of them have a comparable performance with the
reported OSCs with pure ZnO or PEIE CBL [27–29]. And the lowest device performance is obtained
when the PEIE/ZnO CBL is introduced. It only shows a PCE of 6.31% with a VOC of 0.75 V, a JSC of
13.48 mA/cm2, and a FF of 62.14%. When we use ZnO/PEIE CBL, the highest device performance is
obtained and a PCE as high as 8.12% is obtained with a VOC of 0.75 V, a higher JSC of 16.48 mA/cm2,
and a higher FF of 66.01%, as shown Figure 3b,c. These results demonstrate that the ZnO/PEIE bilayer
could effectively enhance the performance of PTB-7:PC71BM inverted OSCs and confirm its feasibility
in different material systems.
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Figure 4. Performance statistical results of OSCs with different CBLs based on (a) P3HT:PC61BM and 
(b) PTB-7:PC71BM. 

Figure 3. (a) J-V characteristics; (b) statistical chart of FF and VOC, and (c) statistical chart of PCE and
JSC of the OSCs based on PTB-7:PC71BM with different CBLs.

Figure 4 shows the statistical PCE of OSCs with different CBLs based on P3HT:PC61BM and
PTB-7:PC71BM systems and the results show that the devices based on the ZnO/PEIE bilayer
achieve a better performance, which confirms the validity of our above discussion. The incident
photon-to-electron conversion efficiency (IPCE) spectra (SCS 100 IPCE system, Zolix instrument
Co. Ltd., Beijing, China) of the OSCs devices with ZnO/PEIE CBL based on P3HT:PC61BM and
PTB7:PC71BM are shown in Figure 5. The IPCE value approaches 68% around 550 nm for the device
based on P3HT:PC61BM. The JSC calculated from integration of the IPCE spectrum from 300 nm to
800 nm is 9.64 mA/cm2. For the device based on PTB-7:PC71BM, the IPCE value approaches 77%
around 600 nm. The JSC calculated from integration of the IPCE spectrum from 300 nm to 800 nm is
16.14 mA/cm2. The calculated JSC is near the values obtained from the I-V measurements.
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Figure 5. Incident photon-to-electron conversion efficiency (IPCE) spectra of the OSCs devices with
ZnO/PEIE CBL based on P3HT:PC61BM and PTB-7:PC71BM.

It can be seen from Figures 2 and 3, the lowest device performance is obtained for the OSC with the
PEIE/ZnO CBL. The combination of ZnO and PEIE in this configuration leads to the negative effects on
the JSC and FF. In fact, the obvious transmittance difference between the PEIE/ZnO sample and other
samples can be distinguished by eyes in the experiments. To investigate the optical property differences
of the four different CBL films, the ultra violet visible (UV-Vis) wavelength optical transmittance
spectra (LAMBDA-950, PERKIN-ELMER, Waltham, MA, USA) of the films with pure ZnO, pure PEIE,
ZnO/PEIE, and PEIE/ZnO CBLs were measured and shown in Figure 6. As can be seen, all the
samples with the configurations of pure ZnO, pure PEIE, and ZnO/PEIE have good transmittances
in the visible wavelength range. These results indicate that the ZnO interlayer, PEIE interlayer and
ZnO/PEIE interlayer have minimal effect on the light absorption of active layer. However, there is
obviously lower light transmittance for the sample with the configuration of PEIE/ZnO at wavelength
from 400 nm to 700 nm. The lower light transmittance of PEIE/ZnO film in the visible wavelength
range would result in a lower JSC in the corresponding OSC. This must be one important reason
for the inferior performance of device with PEIE/ZnO CBL. One possible explanation is that PEIE
could be dissolved in water and the used ZnO is deposited by an aqueous solution method. During
the deposition of the ZnO precursor, the aqueous solution of ammine-zinc complex may destroy
the underlined PEIE film and then results in the lower light transmittance. In order to verify our
hypothesis, we take optical microscopy images of the four CBLs. The optical microscopy images of
ITO/ZnO, ITO/ZnO/PEIE, ITO/PEIE/ZnO, and ITO/ZnO are presented in Figure 7. It can be seen in
the optical microscopy image of ITO/PEIE/ZnO that there are many winkles or cracks in this sample,
which is obviously different from other samples where the surface is rather smooth. This confirms our
hypothesis that the deposition of ZnO destroys the underlying PEIE film.
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energy of CBLs on the active layer formation. To study the influence of different CBLs on the active 
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Figure 7. The optical microscopy images of (a) PET/ITO/ZnO; (b) PET/ITO/PEIE; (c) PET/ITO/ZnO/PEIE;
and (d) PET/ITO/PEIE/ZnO. The particles in (a–c) are used for focus to make the optical microscopy
images clear.

To further investigate the surface characteristic of CBLs, an atomic force microscope (AFM)
(Agilent 5500, Agilent Technologies, Palo Alto, CA, USA) was adopted to measure the surface
morphology of ITO/ZnO, ITO/ZnO/PEIE, ITO/PEIE/ZnO, and ITO/ZnO. The measurement results
are illustrated in Figure 8. The root mean square (RMS) roughness was 1.3 nm, 1.5 nm, 2.1 nm,
and 10.5 nm for the samples with the configuration of PEIE, ZnO/PEIE, ZnO, and PEIE/ZnO,
respectively. The RMS value (10.5 nm) of PEIE/ZnO is far larger than other three RMS values
of ZnO (2.1 nm), ZnO/PEIE (1.5 nm), and PEIE (1.3 nm). The rough surface of PEIE/ZnO suggests that
the PEIE film is destroyed by the following ZnO deposition, which is consistent with the transmittance
and optical microscopy measurements. On the other hand, by capping PEIE on ZnO, a smaller RMS
value (1.5 nm) of ZnO/PEIE is achieved compared with that of ZnO (2.1 nm). This means that there
is a smoother surface for the sample of ZnO/PEIE compared to the pure ZnO and the smoother
morphology supplies excellent contact between the active layer and CBL, which is consistent with the
better device performance.
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Another possible reason for the different JSC values is that the effects of the different surface
energy of CBLs on the active layer formation. To study the influence of different CBLs on the active
layer, we carried out a contact angle measurement of the CBL films. The consequence of water contact
angle measurement is displayed in Figure 9. As illustrated in Figure 9, due to application of UV
ozone treatment, all of the four different CBLs show good hydrophilicity. The contact angles of 16.8◦

(ZnO), 18.1◦ (PEIE), 17.7◦ (ZnO/PEIE), and 21.2◦ (PEIE/ZnO) were very close. The delicate difference
would not cause much impact on film formation of active layer. This indicated the influence caused by
hydrophilicity of CBL on thickness could be neglected.
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Figure 9. The water contact angle of OSC devices with (a) ZnO CBL; (b) PEIE CBL; (c) PEIE/ZnO CBL;
and (d) ZnO/PEIE CBL.

The flexibility property of OSCs with different CBLs (pure ZnO, pure PEIE, ZnO/PEIE,
and PEIE/ZnO) based on PTB-7:PC71BM material system was also studied. The consequence of
bending test is illustrated in Figure 10. It can be seen that all of OSCs with pure ZnO CBL, pure PEIE
CBL, and ZnO/PEIE CBL show similar flexibility property. After 1000 bending cycles with a radius
of 0.8 cm, OSCs with pure ZnO CBL, pure PEIE CBL, and ZnO/PEIE CBL could keep 90.5%, 93.0%,
and 92.9% of their initial performance, respectively. However, the PCE of OSC with PEIE/ZnO CBL,
which is also the device with lowest PCE, decreases quickly in the bending test and only keeps by 80%
of its original value after 1000 bending cycles. The inferior characteristic of PEIE/ZnO film affects not
only the device performance but also the flexibility property of OSCs.
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3. Materials and Methods

3.1. Preparation of Materials

For the ZnO precursor solution, ZnO aqueous solution was prepared by dissolving 10 mg ZnO
powder in 1 mL ammonia to form 0.125 M Zn(NH3)4

2+ solution. Then the solution was ultrasonically
processed for 5–10 min and stored in refrigerator at 0–10 ◦C for more than 12 h before use. For PEIE
solution, PEIE was dissolved in 2-methoxy ethanol to form 0.2 wt% PEIE solutions. The solutions were
then stirred for 12 h at room temperature before use.

For P3HT:PC61BM, a mixture of P3HT and PC61BM at a weight ratio of 1:0.8 was dissolved
in 1,2-dichlorobenzene(1,2-DCB) and then put on the heating stage stirred for more than 12 h.
For PTB-7:PC71BM, a mixture of PTB-7:PC71BM at a weight ratio of 1:1.5 was dissolved in
dichlorobenzene (CB). Then, 1,8-diiodooctane (DIO) was added to the solution at a concentration of
3 vol%. Finally, just like the preparation process of P3HT:PC61BM, the solution was also stirred for
more than 12 h.

The ITO-coated PET substrates were supplied by Zhuhai Kaivo (Zhuhai, China). PCBM and DIO
were purchased from Nano-C (Westwood, MA, USA) and Alfa (Heysham, UK), respectively. PTB7 and
P3HT were provided by 1-materials (Dorval, QC, Canada) and Rieke Metals (Lincoin, NE, USA,). ZnO,
CB, 1,2-DCB, and MoO3 were supplied by Sigma Aldrich (St. Louis, MO, USA).

3.2. Fabrication and Measurement of Flexible Organic Solar Cells

The devices were fabricated with a structure of ITO/CBLs/active layer/MoO3/Ag as in Figure 1a,
in which CBLs are pure ZnO, pure PEIE, ZnO/PEIE, or PEIE/ZnO, and the active layer are
P3HT:PC61BM or PTB-7:PC71BM films. Figure 1 shows the layer structure of the device. The fabrication
processes were as follows: ITO-coated PET substrates were sequentially cleaned with detergent,
deionized water, and ethanol in an ultrasonic bath for 20 min, and then were blow-dried with a
nitrogen gun. Then, UV ozone was applied to the ITO surface for 30 min. The ZnO aqueous solution
was spin-cast on the cleaned ITO-PET substrate at 3000 rpm for 40 s, and then annealed in the oven at
150 ◦C for 30 min. The PEIE layer was deposited via spin-coating method at 5000 RPM for 60 s and
followed by annealing at 100 ◦C in the oven too. The polymer solution was then spun-casted on the
CBL at 1000 RPM for 60 s for PTB7:PC71BM or at 800 RPM for 120 s for P3HT:PC61BM in glove box,
respectively. After the films were slow dried in glove box for 3 h, the P3HT-based devices should be
extra pre-annealed on a heating stage at 150 ◦C for 10 min. Then 10 nm MoO3 and 80 nm Ag were
thermally evaporated onto the active layer through a metal shadow mask. The devices’ area was
about 8 mm2

The J-V characteristics of the devices were measured by a Xenon lamp (XEC-300M2, SANEI
ELECTRIC, Shizuoka, Japan) with an air mass (AM) 1.5 G filteratan intensity of 100 mW/cm2

and a Keithley 2400 source-measure unit [30]. The Xenon lamp is verified through a standard
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Si solar cell calibrated by the National Renewable Energy Laboratory (NREL). The transmittance
spectra of the PET/ITO/ZnO, PET/ITO/PEIE, PET/ITO/ZnO/PEIE, and PET/ITO/PEIE/ZnO were
measured by a UV/Vis/NIR spectrophotometer (LAMBDA-950, PERKIN-ELMER, Waltham, MA,
USA). The surface optical morphology of PET/ITO/ZnO, PET/ITO/PEIE, PET/ITO/ZnO/PEIE,
and PET/ITO/PEIE/ZnO was investigated by the Leica DM4000M optical microscopy (Wetzlar,
Germany). Tapping mode AFM tests were performed to test the thin films morphology by an Agilent
5500 scanning probe system (Agilent 5500, Agilent Technologies, Palo Alto, CA, USA). The water
contact angle measurement was carried out by a contact angle meter (JC2000DM, Beijing Zhongyikexin
Science and Technology Co. Ltd., Beijing, China).

4. Conclusions

In summary, we have fabricated and investigated high performance flexible inverted OSCs
by employing low temperature aqueous solution processed ZnO and PEIE bilayer film with high
transparency and good electron transporting properties as the CBL. By using the ZnO/PEIE CBL,
the highest PCE of 4.04%, based on P3HT:PC61BM, and 8.12%, based on PTB-7:PC71BM, are achieved,
which are higher than the control device with the pure ZnO CBL or pure PEIE CBL. Meanwhile,
the inverted OSC also shows superior flexibility and it can keep 92.9% of its initial performance
after 1000 bending cycles with a radius of 0.8 cm. This study indicates that the low-temperature
solution-processed ZnO/PEIE bilayer significantly enhanced charge collection efficiency which is
beneficial for high performance inverted OSCs and suitable for flexible devices.
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