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Abstract: In this work, the thermal behavior of rice husk, sewage sludge, and their blends during
combustion processes was investigated by means of thermogravimetric analysis (TGA), and the
slagging characteristics were studied through X-ray fluorescence (XRF) and melting temperature.
The effects of the proportion of rice husk and sewage sludge blends on the combustion process,
ignition and burnout characteristics were also studied. The blends had rice husk percentages of 30,
50, 70 and 100%. The results indicate that there are four main stages of the material burning processes:
dehydration, volatile oxidation, and decomposition/oxidation. The reactivity of the blends improved
with increasing amounts of rice husk and the results suggest synergistic interactions between rice
husk and sewage sludge during the co-combustion process. All co-combustion ashes showed a
lower slagging potential owing to their high amorphous SiO2 content. On the basis of combustion
properties and slagging characteristics of ash, the ratio of sewage sludge in the blends should not
exceed 30%.
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1. Introduction

Biomass has been used in industrial production activities as a source of renewable energy and a
substitute for fossil fuels. The use of this kind of renewable fuel for power production is governed by
legal and international regulations, and its utilization as bio-fuel is a critical component of sustainable
growth for most countries [1]. Direct combustion is the simplest, most common and successful
thermo-chemical process for converting biomass into energy and is considered an effective method
for biomass energy recovery in the short term [2]. Among different types of biomass, rice husk is
commonly used as bio-fuel for power plants owing to its low average heating value [3].

Sewage treatment plants generate solid wastes known as sewage sludge, which may contain toxic
substances, including inorganic and organic compounds as well as pathogenic microorganisms [4].
With higher expected standards for the amount and quality of water, the amount of sludge is
increasing rapidly, and therefore, waste management and reutilization of sludge are required. The main
problems in treatment of sludge for thermal utilization arise from the large volume and high moisture
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content. These problems will eventually lead to environmental risks, inefficient land use, and wasting
of resources.

It is believed that thermal processes, such as mono-combustion and co-combustion of sludge
with other fuels, can be implemented for converting large quantities of sludge into useful energy [5]
and construction materials. Co-combustion is an efficient and direct method to combust mixtures of
different fossil fuels, bio-fuels, and other flammable materials [6]. Through this method, not only can
the amount of sewage sludge be decreased, but energy can also be generated. Unlike mono-combustion,
co-combustion facilitates reductions in the emission of hazardous substances to the atmosphere. Sludge
is difficult to burn directly because of its low heating value (LHV). Co-combustion of sludge with
biomass fuels can make burning easier. However, the chemical and physical properties of the fuel used
affect the characteristics of the combustion process [7]. Consequently, the residue from co-combustion
using different fuels also varies, and these properties are discussed herein.

Thermogravimetric analysis (TGA) has been commonly used to describe and characterize thermal
processes and combustion of sewage sludge, biomass, coal and other materials [8,9]. It facilitates not
only preliminary evaluation of fuel values in investigating initial and final temperatures in the process
of combustion, but also other relevant experimental data such as ignition or burnout temperature,
and combustion time at different stages. TGA provides important information for the prediction of
combustion efficiency and helps in determining the optimal operating conditions for combustion in
power plants. Once the optimum mix proportion and combustion parameters of different biomass
fuel are determined, further investigation on the residue from the process of co-combustion can be
conducted. Using TGA data, the characteristics of residue from the combustion of rice husk, which is
defined by combustion conditions, can be analyzed [10]. Previous researchers have focused on TGA of
sewage sludge and found that the production of sludge–straw pellets is not suitable in its current state
because of the high ash slagging potential [11]. According to derivative thermogravimetric analysis
(DTG) profiles of the fuels, coal can be beneficially burned with sewage sludge and biomass [12].

In addition to combustion characteristics, slagging is another crucial factor affecting the
widespread application of co-combustion technology. Fouling and slagging, which are phenomena
related to the boiler gas, are somehow correlated although they are not exactly the same. Fouling, also
called ash deposition, is the deposition of non-melting ash on the heating surface [13]. The non-melting
ash indicates that the temperature is below its melting point. Deposition often occurs on convection
heating surfaces. Slagging is the deposition of melting ash or semi-melting ash on the heating surface
and it often occurs on radiant heating surfaces. Fouling and slagging on the heating surface of
boilers are relatively common problems in power plants in China. They negatively affect boilers,
not only reducing slag removal and thermal efficiency, but also shortening the operating life. With
the increasing unit capacity and frequent changes in coal quality, the problem becomes more serious.
The implementation of massive projects showed that biomass involves more serious slagging and
fouling problems than coal, because biomass has higher alkali metal and chlorine content [14]. Thus,
the chemical characteristics of biomass have greatly limited its application.

In general, information about the co-combustion behavior of sewage sludge and rice husk
is lacking, thereby leading to a lack of scientific evidence for evaluating engineering application
feasibility and conducting cost comparison analyses. The main objective of this work is to study
the combustion characteristics and slagging of rice husk, sewage sludge, and their blends with
different weight ratios of sludge. Ignition and burnout properties of different samples, as well as
their slagging characteristics and ash characteristics are obtained. The results obtained may be useful
in understanding the characteristics of rice husk/sewage sludge co-combustion residues and offer
important thoughts for further evaluation and application of rice husk/sewage sludge co-combustion
residues in environmental impact assessments and studies on reutilization processes.
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2. Materials and Methods

2.1. Materials

Rice husks were collected from a local rice mill plant located at Jiangxia (Wuhan, China). Sewage
sludge was obtained from the Sha Lake waste water treatment unit in Wuhan. These two materials
were selected owing to their high annual production rates in China. The experiments were initiated
within the shortest possible time after obtaining the samples from the wastewater treatment units in
order to avoid chemical transformations of sludge. Sewage sludge samples were first air-dried for 8 h
and then dried in an oven at 105 ◦C for two days. Pre-treatment sludge was mixed with rice husk at
25 ◦C before thermal treatment. Five types of rice husk-sewage sludge blends were prepared with
increasing sewage sludge weight percentages of 0, 30, 50, 70 and 100%. In this study, samples were
named according to their rice husk content and sewage sludge content. For example, 7R3S describes a
mixture with a rice husk content of 70% and a sewage sludge content of 30%.

2.2. Ultimate and Proximate Analysis

The prepared samples were analyzed to determine the major parameters affecting the thermal
conversion process. Proximate analysis was carried out according to the Standard Practice for the
Proximate Analysis of Coal and Coke (GB/T212-1991), while the hydrogen, carbon, sulfur and nitrogen
contents were determined through the ultimate analysis, which was performed using VARIO EL cube
instrument (Elementar, Langenselbold, Germany). The high heating value (HHV) of the blends was
measured by Oxy-II oxygen bomb calorimeter (Yisheng, Wuhan, China).

2.3. Methods and Apparatus

The combustion characteristics of sewage sludge, rice husk, and their blends were determined
using an STA-449c/3/G thermogravimetric analyzer (NETZSCH-Gerätebau GmbH, Selb, Germany).
All combustion experiments were conducted under atmospheric pressure at temperatures varying
from room temperature to 1000 ◦C with a heating rate of 25 ◦C/min and an air flux of 50 mL/min.
To minimize the effects of mass and heat transfer limitations, about 10 mg of samples were loaded
into an alumina crucible. Three replicates of each thermogravimetric experiment were conducted. The
differential thermal gravity (DTG), thermal gravity (TG), and differential scanning calorimetry (DSC)
were calculated and described as a function of time and temperature during the thermal process.

2.4. Characterizations of Ignition and Burnout

Ignition temperature Ti is not a physical characteristic of any kind of fuel [15,16]. Ti is applied to
the evaluation of different specimens for the same combustion procedure or operational conditions in
order to compare their reaction activity. Ti and burnout temperature Tf, from the DTG and TG curves,
can be determined according to Figure 1 [17,18].

The burnout index Df and the ignition index Di are calculated by the following equations [19]:

Di =
DTGmax

tpti
(1)

D f =
DTGmax

∆t1/2tpt f
(2)

where DTGmax is the maximum combustion rate, tp is the corresponding time of the maximum
combustion rate, ∆t1/2 is the time zone of DTG/DTGmax = 1/2, and tf and ti are the burnout time and
ignition time, respectively.
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Figure 1. Determination of temperature of ignition (Ti), temperature of burnout (Tf) and temperature
at the maximum weight loss rate (Tm).

2.5. Ash Elemental Analysis

The chemical composition of residue from the combustion of rice husk, sewage sludge, and their
blends was analyzed using an Axios advanced X-ray fluorescence (XRF) spectrometer (PANalytical,
Almelo, The Netherlands). In order to obtain the ash sample, a muffle furnace with ventilation was
used to co-combust the rice husk and sludge blends at 815 ± 15 ◦C for the preparation of ash samples
according to the GB/T 212-2008 method [20]. We named the ash sample according to its mixing
ratio of sludge and rice husk, for example, 7R3S-A represents the residue of 7R3S after combustion.
Oxide compositions of the residue, as well as the bed agglomeration index and base/acid ratio, were
investigated in this study.

2.6. Characteristics of Ash Melting

Ash melting characteristics including deformation temperature (DT), softening temperature (ST),
hemispherical temperature (HT), and fluidization temperature (FT) were determined using an ash
melting point tester (SDAF2000d, Sande, Changsha, China). During the experiment, the carbon
reduction method was used to control the weak reducing atmosphere.

2.7. X-ray Diffraction (XRD) Quantitative Phase Analysis

X-ray Diffraction (XRD) (Bruker, Billerica, MA, USA) was used to study the mineralogical
composition of the co-combustion ash samples. The ashes were mixed with CaF2 (internal standard)
on a 70:30 weight basis and subjected to XRD. CaF2 was used to determine the amorphous content of
the samples [21,22]. The XRD tests were conducted using a Bruker (Billerica, MA, USA) D8 Advance
diffractometer with Cu Ka1,2 radiation (1.5418 Å). The data for each sample were collected for the range
of 10◦–70◦ (2θ) for 2 h. Qualitative and quantitative measurements of the samples were conducted
using the JADE (Jade 6.0, Telecom Italia, Milan, Italy) and MAUD (Maud 2.55, University of Trento,
Trento, Italy) software.
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3. Results and Discussion

3.1. Proximate and Ultimate Analysis of Rice Husk and Sewage Sludge

The ultimate and proximate analysis results of sewage sludge and rice husk are described in
Table 1. Sewage sludge has higher ash and lower volatile matter compared with rice husk. The content
of fixed carbon was nearly the same in both materials. Further, the LHV of sewage sludge materials
was lower than that of rice husk. The high volatility of rice husk was advantageous for combustion.
The LHV is calculated by Equation (3) [23].

Figure 2 shows the LHV and HHV of different mixtures. Without the addition of fuel, the
blends required an LHV of >3 MJ/kg for incineration; an LHV of >4 MJ/kg was required for
waste-heat utilization. In order to ensure auto-thermal combustion, an LHV of higher than 4 MJ/kg
is recommended [24]. The LHV of rice husk and sewage sludge blends indicates that waste sludge
is suitable for co-combustion with other fuels, such as rice husk, to minimize its high ash content
risk and potential environmental problems. The element analysis showed that rice husk has higher
hydrogen content than sewage sludge. The combustibility of a fuel increases with higher hydrogen
content. Therefore, it is expected that the blending of higher hydrogen and volatile content rice husk
with sewage sludge will result in the enhancement of ignition.

Table 1. Properties of raw rice husk and sewage sludge.

Analysis
Ultimate Analysis (wt %) Proximate Analysis (wt %)

C H O S N Mad Vad FCad Aad

Rice husk 42.72 6.60 40.71 0.11 0.26 4.7 80.1 10.3 4.9
Sewage sludge 12.89 1.53 13.67 0.67 2.24 4.5 25 6 64.5

Notes: Aad, ash (air-dried basis); Vad, volatile matter (air-dried basis); FCad, fixed-carbon (air-dried basis); Mad,
moisture content (air-dried basis).

Qnet,ad = Qgr,ad − 206Had − 203Mad (3)

where Qnet,ad is the LHV of air-dried basis, Qgr,ad is HHV of air-dried basis, and Had is the hydrogen
content of air-dried basis.
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3.2. Mono-Combustion Behavior of Rice Husk and Sewage Sludge

TG, DTG and DSC profiles of rice husk and sewage sludge blends with different sludge to rice
husk ratios are shown in Figures 3–5, respectively. The characteristic temperatures, reaction time, and
peak points in the curve of the combustion process are listed in Table 2.
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The ignition temperature is estimated from the DTG and TG curves in previous reports [25].
The final combustion temperature is the temperature at which more than 99% of flammable materials
have been burnt out [26]. For rice husk, the TG and DTG curves in Figures 3 and 4 show that there are
three main peaks during the combustion process and each has a clear burnout temperature. The first
peak at the temperature of 100 ◦C is attributed to the evaporation of moisture and volatilization of
small organic molecules deposited onto the surface of the rice husk. The second peak with a maximum
weight loss rate of 12.56%/min at a temperature of 296 ◦C is attributed to continuous evaporation
of moisture and loss of volatiles contained in the rice husk. The third peak occurs between 420 ◦C
and 590 ◦C, with a maximum weight loss rate at 505 ◦C. The results indicate the occurrence of char
gasification, loss of volatiles and fixed carbon, and combustion of hydrocarbons. These peaks likely
occurred because rice husk is made of various hydrocarbon species with a wide range of boiling points.
There are large differences in the TG and DTG curves of sewage sludge and rice husk. The peaks in the
DTG profiles of sewage sludge are not sharp because weight loss of sewage sludge is a slow process.
The first peak near 100 ◦C is due to the evaporation of moisture. The second peak with a maximum
weight loss rate of 2.24%/min at a temperature of 281 ◦C develops from the continuous evaporation of
moisture and loss of volatiles in sewage sludge. The third peak occurs between 400 ◦C and 520 ◦C,
with a maximum weight loss rate at 490 ◦C. In the last stage of sewage sludge combustion, inorganic
materials are decomposed and then burnt quickly at around 700 ◦C, with a continuous weight loss
beyond 720 ◦C. As shown in Table 2, sewage sludge has the highest burnout temperature (721 ◦C)
and the lowest total burnout (33.76%). The DSC curves of rice husk and sewage sludge are shown in
Figure 5. The exothermic range and heat release of rice husk are higher than those of sewage sludge.

Consequently, the combustion of rice husk is easier than that of sewage sludge. This is mainly
due to the combustion and emission of volatile matter in rice husk. Sewage sludge has higher moisture
and ash, and lower volatile matter content; therefore, it is recommended that sewage sludge is
recommended be burnt with materials having higher volatile matter.
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Table 2. Properties of raw rice husk and sewage sludge.

Sample 10R 7R3S 5R5S 3R7S 10S

DTGmax (%/min) 12.56 10.05 10.90 9.75 2.24
ti (min) 14.8 16.1 15.2 16.1 12.7
tp (min) 16.9 20.3 17.6 20.2 16.7
tf (min) 26.2 25.9 26.5 25.2 34.7

∆t1/2 (min) 9.6 10.7 10.1 10.6 7.5
Di 5.02 × 10−2 3.08 × 10−2 4.07 × 10−2 3.00 × 10−2 1.06 × 10−2

Df 2.95 × 10−3 1.78 × 10−3 2.31 × 10−3 1.80× 10−3 5.13× 10−4

Ti (◦C) 263.6 264.8 269.1 272.1 291.3
Tf (◦C) 553.5 547.5 559.6 532.5 721

Tmax (◦C) 295.9 338.5 295.1 333.8 281.1
Rm (%/min ◦C) 0.042 0.03 0.037 0.029 0.008

Total Burnout (%) 88.06 91.45 91.01 86.87 33.76

Notes: DTGmax, maximum combustion rate; tp, corresponding time of maximum combustion rate; ti, ignition time;
tf, burnout time; ∆t1/2 is the time zone of DTG/DTGmax = 1/2; Ti, ignition temperature; Tf, burnout temperature;
Di, ignition index; Df, burnout index; Rm, mean reactivity.
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3.3. Co-Combustion Behavior of Rice Husk and Sewage Sludge Blends

Figures 3–5 also show the TG, DTG, and DSC curves of the thermal processes for rice husk and
sewage sludge co-combustion. For the TG curves, with increasing temperature after combustion of
samples, moisture decreases, accompanied by associated weight losses. The profiles of blend samples
contain several peaks that change mainly depending on the characteristics of the content of rice husk.
Within most of the temperature ranges, the TG curves of the blends locate between those of rice husk
and sewage sludge used to prepare the blends. For all TG curves, clear and rapid weight loss is
observed. This is mainly because of early emission of volatile matter, which distinguishes the burning
behavior of rice husk from that of sewage sludge. With increasing amounts of sewage sludge, the total
weight loss of the blends decreases (from 88.06% to 33.76%). In the meantime, TG curves are upward
and the temperature required increases, with the weight loss stages of the blends transforming from
two to four, and the stages of volatile matter become more obvious. In particular, the total burnout with
30% and 50% of sewage sludge (91.45% and 91.01%) are higher than that for either rice husk (88.06%)
or sewage sludge (33.76%). In this study, the co-combustion burnout is improved and enhanced by
blending. This result may suggest synergistic interactions between rice husk and sewage sludge during
the co-combustion process.

For the DTG curves, two or four peaks were associated with fixed carbon, combustion of volatile
matter, and dehydration, which could dominate the combustion of rice husk, sewage sludge, and
their blends. With decreasing content of sewage sludge in the blends, the combustion performance
became more similar to that of rice husk. The maximum weight loss rate (DTGmax) of the blends was
higher than that of sewage sludge. The peak weight loss rate of the blends decreased initially, and then
increased with increasing amounts of rice husk. However, the changing rules of other combustion
characteristics such as corresponding ignition time (ti), maximum combustion rate (tp), burnout time
(tf) and ∆t1/2 in the blends were not obvious. This might show that the combustion processes of the
blends are more complicated, which could be primarily due to the interaction of combustion between
rice husk and sewage sludge. Therefore, when sewage sludge is used to partially replace rice husk in
the blends, the appropriate content should be optimized according to the integrative characteristics
of both materials. In order to evaluate the reaction activity of rice husk and sewage sludge blends,
mean reactivity (Rm), which is defined as inversely proportional to peak temperature (Tmax) and
directly proportional to the DTGmax, is introduced [27] and applied in this work. As shown in Table 2,
the value of Rm decreased with increasing proportions of sewage sludge. As expected, the ignition
temperature (Ti) of the sample decreased gradually with the increase of rice husk. Generally, the lower
value of the final temperature (Tp) indicated that it was more difficult to burn and required higher
temperature and longer residence time for complete combustion [26]. Consequently, it was verified
that the final temperature and residence time of the blends increased with increasing sewage sludge
ratio. Compared with the ignition index (Di) of all of the samples, Di of the blends decreased from
5.02 × 10−2 to 1.06 × 10−2 with the increase of sewage sludge content, while the burnout index (Df)
decreased from 2.95 × 10−3 to 0.513 × 10−3 with the increase in sewage sludge content. Combined
with the results of the ignition and burnout temperatures, the ignition and burnout characteristics of
sewage sludge were improved by the combined effects of rice husk and sewage sludge. It is clear that
volatile components were released from rice husk at lower temperatures and combusted to release
enough energy for the combustion of sewage sludge. This effect was enhanced when the rice husk
ratio in the blends was increased.

For the DSC curves, the exothermic regions and peaks both shift to lower temperature regions
with an increase in sewage sludge percentage. The effect of sewage sludge materials on accelerating
rice husk oxidation was verified. In addition, rice husk and sewage sludge blends showed few
responses to DSC tests at the second and third stage with low heat release compared with that of
the test on rice husk alone. Based on the above observations, it should be noted that the different
physical/chemical properties among different raw biomass materials may lead to different handling
and combustion behaviors.
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3.4. Slagging Characteristics and Evaluation

3.4.1. Slagging Index Evaluation of Ash from Co-Combustion

The compositions of ash generated from combustion of rice husk, sewage sludge and their blends
are presented in Table 3. With an increase of sewage sludge, the content of SiO2 dramatically decreased
while the content of Al2O3 increased. CaO, Na2O, P2O5, and Fe2O3 contents were much lower and
showed an increasing trend with an increase in sewage sludge:

B/A = (Fe2O3+CaO + MgO + Na2O + K2O)/(SiO2+Al2O3+TiO2) (4)

BAI = Fe2O3/(K 2O + Na2O) (5)

Slagging predictions such as the bed agglomeration index (BAI) and base/acid ratio (B/A) which
are based on chemical composition analysis of the ashes are provided in Table 3. The test results
characterize the combustion and ash forms when rice husk-sewage sludge was used as fuel in a boiler,
such as a fluidized-bed reactor. The BAI and base/acid ratio (B/A) are calculated by Equations (4)
and (5) [28]. Slagging is possible when base/acid ratio (B/A) values vary from 0.206 to 0.4, while it
certainly occurs when these values are greater than 0.4. Bed agglomeration probably occurs when the
BAI values are lower than 0.15 [29]. According to BAI in Table 3, there is no slagging tendency in the
blended fuel, but according to B/A, slagging potential of the blends increased with increasing sewage
sludge content. Co-combustion of rice husk and sewage sludge is appropriate as an alternative bio-fuel
in the present situation due to their lower slagging potential. Temperature control and addition of
mineral materials could be taken into account during the co-combustion of rice husk and sewage
sludge to further improve the co-combustion and slagging characteristics.

Table 3. Chemical compositions, slagging indices in combustion ash of rice husk-sewage sludge blends
with different ratios.

Sample
Chemical Composition (%)

B/A BAI
SiO2 MgO Fe2O3 Na2O CaO Al2O3 K2O P2O5 Cl TiO2

7R3S-A 66.23 2.00 5.57 0.71 3.96 11.58 4.26 3.74 0.09 0.48 0.21 1.12
5R5S-A 61.80 2.31 6.73 0.78 4.52 13.30 3.99 4.33 0.04 0.84 0.24 1.41
3R7S-A 55.46 2.35 8.28 0.83 5.98 14.33 3.58 4.34 0.06 0.88 0.30 1.88

3.4.2. Melting Characteristics of Ash from Co-Combustion

Among the characteristics of biomass, the relationship between ash melting point and slag is
the most direct. Melting characteristics of biomass are key indexes of thermochemical treatment.
Macroscopically, melting characteristics can be used to determine the hazardous level of ash deposition
and slagging in the process of biomass combustion. Therefore, it is very important to investigate
the melting characteristics of biomass, especially blended biomass. The melting characteristics of the
mixtures of rice husk and sewage sludge are presented in Figure 6.

DT, ST, HT and FT clearly decreased with increasing sewage sludge content. In Table 4,
ash slagging usually occurs when DT and ST are lower than 1289 ◦C and 1390 ◦C, respectively.
Obviously, when the content of sewage sludge is more than 30%, the possibility of slagging is relatively
high due to DT and ST being lower than the temperature limit. This conclusion agrees with the
predicted results from chemical composition in Section 3.4.1. In addition, with increases in sewage
sludge content, the possibility of slagging also increased. Therefore, BAI and B/A are suitable for
predicting the slagging characteristics of rice husk and sewage sludge blends.
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Table 4. Index of slagging level.

Index
Slagging Level

Low Medium High

ST (◦C) >1390 1390–1260 <1260
DT (◦C) >1289 1108–1288 <1107

3.5. Influencing Factors of Slagging Characteristics

According to Section 3.4.1, the slagging deposition of these sludge-biomass mixtures during the
process of combustion was very different. The slagging deposition was much more easily influenced
by melting inorganic minerals (CaO, Al2O3, MgO, Fe2O3, SiO2, K2O and Na2O) which could be
liquidation. This liquid phase, slag-melt, might cause serious ash deposition problems. Meanwhile,
alkali earth and alkali metals (K, Mg, Ca and Na) are likely to condense on the cooler zones of the
boiler [30]. The total content of SiO2 and Al2O3 decreased with an increase in sewage sludge content,
indicating that the ash generated from co-combustion would weaken hydration activity when used in
the preparation of cementious materials. However, due to the higher content of SiO2 and Al2O3, the
ash may be used as cementious materials or replacement material for cement. Furthermore, sulfur and
chlorine contents were very different for these ashes and it is known that chlorine, as chloride that
evaporates easily and acts as an intermediate medium for Na and K, usually exists in biomass fuels.
In general, the higher the chlorine content, the more serious ash-related problems are [31].

Slagging characteristics are not only closely related to chemical composition, but are also affected
by the mineral phase of ash. According to quantitative analysis by XRD, the main component of
co-combustion ash was glassy state matter, which is generated from amorphous SiO2 of rice husk
during the low-temperature combustion process. The main crystal mineral phases were quartz and
gismondite. The XRD results are presented in Table 5 and Figure 7.

Table 5. X-ray Diffraction (XRD) results at different ratios of rice husk and sludge sewage.

Mineral Phase
Content of Sludge Sewage

30% 50% 70%

Quartz 18.62 31.27 34.92
Gismondite 1.09 6.54 9.34
Amorphous 80.28 62.19 55.73
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Based on previous research, quartz minerals are typical refractory minerals and the higher content
of quartz results in a higher melting point. In this study, the opposite was observed. This might
be attributed to the higher content of residual amorphous SiO2 in co-combustion ash. According to
Table 5 and Figure 6, during the combustion process amorphous SiO2 was transferred to quartz by
consuming a quantity of energy. As a result, the effect of amorphous content on the melting point was
better than that of quartz. That is to say, with an increase in amorphous content, an obvious decrease
in melting point can be obtained. In addition, gismondite in co-combustion ash is a feldspar mineral.
Alkaline earth metals in these kind of minerals are connected with unsaturated O2−. Further, the
structure of SiO2 was broken. This facilitated the role of SiO2 in melting. The three main phases affect
the melting characteristics of co-combustion ash, in which the amorphous phase mainly determines
the melting characteristics.

4. Conclusions

Co-combustion behaviors were investigated according to TGA experimental data, and slagging
characteristics were studied through XRF and melting temperature. The obtained experimental and
analytical results led to the following conclusions:

(1) The blends of rice husk and sewage sludge had high volatile matter content, low ash content.
In addition, they had high hydrogen content and low contents of sulfur and nitrogen. These
advantages mean that the blended fuel can provide clean and efficient energy.

(2) There are four main stages of the material burning processes: dehydration, volatile oxidation,
and decomposition/oxidation.

(3) Di, Df, Rm of the blends increased with increasing rice husk ratio. The results not only show that
the reactivity of the blends was improved by increasing the amount of rice husk, but also suggest
synergistic interactions between rice husk and sewage sludge during the co-combustion process.

(4) According to BAI, there was no slagging tendency in the blended fuel, but according to B/A, ST,
and DT, the slagging potential of the blends increased with increasing sewage sludge content.
Hence, the ratio of sewage sludge in the blends should not exceed 30%.

(5) Thus far, experimental studies have been conducted at the laboratory scale. Future studies are
aimed at investigating combustion characteristics and slagging during co-combustion of the
blends in a pilot scale fluidized bed incinerator, as well as fly ash proposal and pollutant emission
(SOx and NOx).
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