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Abstract: How to reduce the energy consumption of metro trains by optimizing both the timetable
and control strategy is a major focus. Due to the complexity and difficulty of the combinatorial
operation problem, the commonly-used method to optimize the train operation problem is based on
an unchanged dwelling time for all trains at a specific station. Here, we develop a simulation-based
method to design an energy-efficient train control strategy under the optimized timetable constraints,
which assign the dwelling time margin to the running time. This time margin is caused by dynamically
uncertain passenger demands in off-peak hours. Firstly, we formulate a dwelling time calculation
model to minimize the passenger boarding and alighting time. Secondly, we design an optimal
train control strategy with fixed time and develop a time-based model to describe mass-belt train
movement. Finally, based on this simulation module, we present numerical examples based on the
real-world operation data from the Beijing metro Line 2, in which the energy consumption of one
train can be reduced by 21.9%. These results support the usefulness of the proposed approach.

Keywords: metro; energy-saving; timetable; fixed running time; dwelling time

1. Introduction

Metro systems play an important role to relieve urban traffic congestion in public transportation.
A major current focus in metro systems is how to reduce the energy consumption. There are two
main levels of train energy-efficient operation approaches. A recent emerging research interest is in
the field of regenerative energy utilization [1–6], which focuses on developing a timetable including
the dwelling time at stations and running time at sections (between two adjacent stations) in order
to improve the utilization of regenerative energy by synchronizing the operations of accelerating
and braking trains [7]. Compared with the upper level of timetable optimization, the lower level of
energy-efficient control strategy design at sections has long attracted widespread attention [8–21]
to calculate the speed profile with minimum tractive energy consumption under the timetable
constraints [22]. The simulation-based method is commonly used to calculate the train traction
energy consumption under complex track alignments [23–27] by energy-efficient driving [28–31].
The energy-efficient timetable and control strategy are closely related, and both of them play a key role
in tractive energy consumption. The previous studies typically consider these two levels separately
mainly because of the complexity of the combinatorial problem and the difficulty of applying the
theory in practice. This has provided an incomplete view of metro system operation.
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Currently, there are few studies that have addressed the problem of energy saving considering
both the timetable optimization and energy-efficient train control strategy. Ding et al. [32] formulated
the train energy-efficient operation as a two-level optimization problem and designed a genetic
algorithm to search for the optimal solution, in which the first level is designed to decide the
appropriate coasting points for trains at sections, and the second level arranges the train running times
at sections for minimizing the tractive energy consumption. Cucala et al. [33] designed a model for
energy-efficient driving and timetables, in which the railway operator and administrator requirements
are also included. Li and Lo [34] proposed an integrated energy-efficient operation model to jointly
optimize the timetable and speed profile with minimum net energy consumption. Huang et al. [21]
proposes an energy-efficient approach to reduce the traction energy by optimizing the train operation
for multiple sections, considering both the trip time and driving strategy. Although a set of work has
been done with a comprehensive view, more realistic work is needed to apply the optimal approach
into practice.

A timetable determines the dwelling time at stations and the running time at inter-stations for
trains [35]. The dwelling time consists of three parts [36]: the time before the doors open, the period of
time during passenger exchange and the time prior to departure after the doors have closed. For the
doors, the open and close times are fixed; studies estimated the dwelling time by modelling passengers’
boarding and alighting process [37–42]. However, the number of passengers boarding and alighting
trains in the off-peak hours is far less than that of the peak. Accordingly, the dwelling time actually for
passenger exchange is much shorter than the planned one. The margin time between planned and
integrant dwelling time can be assigned to the running time in order to get a more energy-efficient
travel pattern.

The current paper extends the previous research in the following aspects:

â A more realistic model for the dynamic mathematical model of the metro train is formulated in
this paper based on the assumption that a train is considered as a belt with uniformly-distributed
mass instead of a mass point model [43].

â The timetable optimization model formulated in this paper allows trains to drive as the optimal
control strategy with a fixed running time of the section contributed by the reduction of dwelling
time at the station, which has a significant reduction in energy consumption (more than 20%).

â Compared with [5], when we construct the train movement model, both the track gradients and
the curves are taken into account in order to describe train energy consumption more accurately.

The rest of the paper is structured as follows. Section 2 formulates both the timetable optimization
module considering passenger boarding and alighting phase and the train operation simulation
module in order to calculate the energy consumption of train runs with fixed time. Section 3 describes
the optimal function and the constraints of the real-time train energy-saving scheduling problem,
meanwhile proposing a simulation-based solution approach for this problem. Section 4 analyzes the
sensitivity of the simulation. In Section 5, the performance of the proposed model is evaluated via
three case studies. Finally, conclusions and recommendations are provided in Section 6.

2. Mathematical Formulations

In this part, first, we construct an energy-saving optimal timetable module. We define the arrival
and departure time of train j at station i as ai,j and di,j, respectively, and the corresponding arrival
and departure time in the timetable as a0

i,j and d0
i,j. The running time and the dwelling time of

section i (from station i to station i + 1) are expressed as TR,i,j and TD,i,j, and according to the timetable,
the running time and the dwelling time are T0

R,i,j and T0
D,i,j. The definitions are shown in Figure 1.

Then, we develop a time-based train operation simulation module based on a control strategy with
fixed running time.
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Figure 1. Schematic diagram of running time calculation.

As shown in Figure 1, the actual running time can be obtained by adding the margin time (ai,j–a0
i,j)

to the initial running time, in which the margin time can be calculated by estimating the passengers’
boarding and alighting at the next station i + 1.

For simplistic, we list the assumptions as follows:

(1) In this manuscript, steady demand within only two periods is considered: peak and off-peak.
(2) In the off-peak hours, there is no congestion effect, indicating that all passengers who are waiting

on a specific station platform can board the train.
(3) In the off-peak hours we studied, the train departure interval is a constant.
(4) The train’s departure times at each station are equal to the ones of the initial timetable.
(5) In this model, the motor efficiency is simplified.

2.1. Timetable Optimization Module

2.1.1. Passenger Characteristics

The passenger arriving and alighting at the metro station for a given period
[
t0, t f inal

]
can be

modelled by a time-dependent origin-destination table [44–46].

OD(t) =

 κ1,1(t) · · · κ1,I(t)
...

. . .
...

0 · · · κI,I(t)

 (1)

where κi,j(t) is the passenger arriving amount at station i at time t with destination station i’.
Additionally, the sum of the amount of arriving passengers at destination i’ for i′ ∈ {i + 1, . . . , I}
represents the passenger arriving rate λi(t) at station i and time t. For a short time period, the passenger
arriving rate can be treated as a uniform distribution [47].

When a train j dwells at a given station i according to the timetable at time a0
i,j, the passengers

waiting on the platform Pi,j begin to board the train. Additionally, the passengers Qi,j with trip
destination i alight the train during the dwelling time, as well. The timetable dwelling time T0

D,i,j and
actual dwelling time TD,i,j can be described as time window [a0

i,j, d0
i,j] and [ai,j, di,j], respectively. This

train will depart station i at time d0
ij and drive to the station i + 1 at time a0

i+1,j with the in-vehicle
passengers Oi,j. Note that our study is considering the off-peak hours, thus there are no passengers
that cannot board trains. In other words, the scenario in which the passengers have to wait for the next
train [48] will not happen. The number of in-vehicle passengers is an important influence factor of
train energy consumption.

Pi,j =

⌈∫ a0
i,j+TD,i,j

d0
i,j−1

λ(t)dt

⌉
, ∀i, j (2)
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Qi,j =
i−1

∑
i=1

Pi,j · γi,i′ (3)

Oi,j =

{
Pi,j −Qi,j, j = 1, 2, · · ·, J; i = 1

Oi−1,j + Pi,j −Qi,j, j = 1, 2, · · ·, J; i = 2, · · ·, I
(4)

where γi,i’ is the ratio describing the passengers boarding the train j at station i who alights at station i’.
Thus, γi,i’ can be formulated by OD(t):

γi,i′ =
κi,i′(t)

I
∑

i′=i+1
κi,i′(t)

(5)

2.1.2. Dwelling Time Calculation

Generally speaking, the dwelling time has two components [49]: (i) a fixed time for opening and
closing doors; and (ii) door utilization time for boarding and alighting passengers. Thus, the dwelling
time is deeply influenced by the passenger flow.

According to the expression that Kim et al. [42] proposed, we propose a polynomial equation to
estimate the minimum dwelling time Tmin

D,i,j for train j at station i as Equation (6).

Tmin
D,i,j = 0.7021Qi,j − 0.0068Q2

i,j + 0.8417Pi,j − 0.0083P2
i,j + 3.7953 · DOC

−2.4495 · DOC2 + 1.0871 · DOC3 − 1.1385
(6)

where DOC is the degree of crowdedness [50].
Thus, the dwelling time TD,i,j shall satisfy the constraint as Equation (7).

TD,i,j ∈
[

Tmin
D,i,j, T

◦
D,i,j

]
(7)

2.2. Train Operation Simulation Module

The train traction energy consumption is mainly affected by the running time in each segment [43,51].
When a train departs from station i before the departure time of the timetable, there will be more
running time for the train to drive in the segment, which will lead to less traction energy consumption.
In this section, we aim to analyze the energy consumption for trains reducing dwelling time and adding
the time margins to the running time. Firstly, in order to calculate the traction energy consumption with
time margin addition, we offer a means of optimizing train driving control strategies with a fixed time
based on a time-saving pattern. Then, for the sake of accuracy, we describe the train operation model
in a single rail segment with a belt with uniformly distributed mass instead of a mass point model.

2.2.1. Optimal Train Control Strategies with Fixed Time

In our manuscript, there are six steps to obtain an energy-efficient strategy of one section.

(1) Generate a driving strategy of a time-saving pattern and the minimized running time of
this section.

(2) Calculate the margin time of the total section as the difference between the running time of the
time-saving pattern and the one of the fixed time pattern.

(3) Divide the section into several subsections by the changes of lines’ speed limits. Previous
studies [5,18] have demonstrated that acceleration and coasting are both components of the
energy-efficient strategy. Accordingly, the margin time should be allocated to deceleration
subsections as much as possible.

(4) Initialize the speed limit of each subsection, indicating that the speed limit shall reduce to a lower
level from the original high one.
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(5) With the limit of the given running time and initial speed of this subsection, calculate a driving
strategy and output the actual running time. If the actual running time satisfies the error request,
turn to the next subsection.

(6) Output the results, and end the simulation when all sections have been simulated.

The detailed illustration of Step (5) can be concluded as how to assign the dwelling time TD,i,j
margin of station i to the running time TR,i,j of section i. Generally speaking, when the train control
strategies in each section are given, both the maximum traction and coasting phases are energy
efficient already. Thus, the margin time shall be assigned to the braking phase in order to obtain
more of an energy-saving effect. The illustration and flowchart of dwelling time margin are shown in
Figures 2 and 3, respectively. It is important to note that this method also can be used to the situation
in which the speed limit changes from high to low.

As shown in Figure 2, the AO and CO are the braking and coasting curves, respectively, and BXO
is the coasting and braking curve where the cut-off point is X.
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We define the time margin as Tm; the times of AO, CO, CA and BXO are respectively Tb, Tc, Tu

and Tc-b; moreover, the error of calculation is Terror. The main steps are as in Figure 3.
Based on this train control strategy with fixed time, we can calculate the train energy consumption

with the approach in the next section.

2.2.2. Train Movement Simulation Models

In this paper, the train model is considered as a mass belt instead of a mass point. Thus, the force
analysis has to be reformulated. There are two major approaches to simulate train movement,
time-based and event-based models [52]. The time-based model requires a highly computational
demand as a significant amount of information has to be produced during every update, in which
train movement is evaluated at each interval. The full details of train movement are needed when
we want to calculate the energy consumption accurately. Thus, we establish a time-based model to
describe train movement.

Firstly, we deal with the force analysis based on the mass belt assumption. There are three kinds
of force acting on a train driving between successive stations: the traction force Tf, the resistance force
Rf and the braking force Bf.

The traction force Tf can be represented as a function of train speed v, which can be simply
calculated if the locomotive traction curve is obtained. The specific (per mass unit) traction force t(v)
can be represented as a function f (v) related to the speed v.

t(v) = f (v) (8)
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The resistance force Rf consists of the basic running resistance and the additional resistance.
The specific (per mass unit) basic running resistance r(v) is generally calculated as a quadratic equation
of train speed v:

r(v) = r0 + r1 · v + r2 · v2 (9)

where the coefficients r1 and r2 are related to the train mass and the interaction between tracks and
train wheels; nevertheless, the coefficient r0 is related to the aerodynamics of the trains.
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Figure 3. Flowchart of dwelling time margin assignment.

The specific (per mass unit) additional resistance w(x) is caused by the track condition consisting
of unit gradient resistance wg, unit curvature resistance wr and unit tunnel resistance wt, which can be
shown as a function of the position of the train x:

w(x) = wg + wr + wt (10)
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In this paper, we take the train as a belt with length S. Thus, when the train runs on a track with
a continuously varying gradient, the specific (per mass unit) gradient resistance can be calculated
as follows:

wg(x) =
1
M

S∫
0

ρ · g(x− s)ds (11)

where M is the train traction weight (containing the mass of both the train Mt and the loading
passengers Mp) (kg); ρ is the mass per unit length (kg/m); g(x − s) is the gradient of position (x − s)
(h); S is the train length (m).

Take Figure 4 for example: when the train runs to the position x where the front part (length
is s2) runs to the second slope with gradient g2 and the tail of the train (length is s1) still exists on the
first slope with gradient g1, the specific (per mass unit) gradient resistance wg(x) can be calculated
as follows:

wg(x) = 1
M

s1+s2∫
0

ρ · g(x− s)ds

= ρ·g1·s1+ρ·g2·s2
ρ(s1+s2)

= g1·s1+g2·s2
s1+s2

(12)

Additionally, the specific (per mass unit) gradient resistance wg(x’) can be calculated in a
similar way.

wg(x′) = 1
M

s′1+s′2∫
0

ρ · g(x− s)ds

=
ρ·g2·s′1+ρ·g3·s′2

ρ(s′1+s′2)

=
g2·s′1+g3·s′2

s′1+s′2

(13)
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When the train runs to position x, which is a part of a curve, the specific (per mass unit) curvature
resistance wr can be expressed as Equation (14) considering the train length.

wr(x) =


10.5·α
Lr(x) , Lr(x) ≥ S

600
R ·

Lr(x)
S , Lr(x) < S

(14)

where α is the angle of the curve (◦); Lr(x) is the length of the curve (m); R is the radius of the curve (m).
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The specific (per mass unit) tunnel resistance wt can be simply calculated by Equation (15).

wt = 0.00013 · Lt(x) (15)

where Lt(x) is the length of the tunnel (m).
The braking force Bf can be calculated by a function of train speed v; moreover, the specific (per

mass unit) braking force b(v) can be shown as a function h(v) related to the speed v.

b(v) = h(v) (16)

Thus, the specific force c can be calculated by Equation (17).

c = t(v)− r(v)− w(x)− b(v) (17)

2.2.3. Energy Consumption Calculation

A large amount of previous studies [5,15,18,21,53–55] have demonstrated that the energy-efficient
driving strategies of each section will be maximum traction (MT), coasting (CO) and maximum braking
(MB). Additionally, in each phase, train movement is as in Equation (18).

vk+1 = vk + ak · σ
vk ≤ Vmax

lk+1 = lk + (vk · σ + 1
2 ak · σ2)/3.6

Ek+1 = Ek + ek+1

ek = tk(v) · (lk − lk−1)

(18)

where vk and vk+1 are the initial speeds of the k-th and (k + 1)-th time step, respectively (km/h); Vmax

is the limit speed (km/h); ak is the accelerated speed at the k-th time step (km/(h·s)); σ is one time step
(s); lk and lk+1 are the positions of the k-th and (k + 1)-th time step, respectively (m); Ek and Ek+1 are the
accumulative energy consumptions of the k-th and (k + 1)-th time step, respectively (kWh); ek is the
energy consumption of the k-th time step (kWh); tk(v) is the traction force of the k-th time step (N).

Thus, the total energy consumption Etotal can be expressed as follows:

Etotal =
J

∑
j=1

I

∑
i=1

K

∑
k=1

ek (19)

3. Optimal Model and Solution Method

3.1. Optimal Model

The real running time and dwelling time can be expressed as follows:

TD,i,j = di,j − ai,j (20)

TR,i,j = ai+1,j − di,j (21)

We assume that the trains arriving time at each station are equal to the ones of the initial timetable,
in order to ensure safe and reliable operation. Thus, the real arrive time of each train j shall satisfy
Equation (22).

ai+1,j − ai,j = a
◦
i+1,j − a

◦
i,j (22)
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For the train timetable optimal problem in a metro line, the objective model can be expressed as
Equation (23) by applying a weighted sum strategy within a given period

[
t0, t f inal

]
:

Fobj = minEtotal (23)

The constraints mainly include the running time constraints, dwelling time constraints, passenger
demand constraints and train operation constraints, shown as (2)–(4), (7), (18) and (20)–(22).

3.2. Solution Method

The timetable optimization model with the objective function (23) and Constraints (2)–(4), (7),
(18), (20)–(22) is a nonlinear non-convex problem. The complexity of this problem is due to three
points: (1) describing the multivariable optimal control strategy of a mass-belt train model with fixed
time; (2) solving the optimal objectives with stochastic characters; and (3) dealing with the nonlinear
constraints. A simulation-based solution approach is developed to solve this timetable optimization
model, and the framework is shown in Figure 5.
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As shown in Figure 5, the main steps are as follows.

(1) Calculate the real-time dwelling time margin Tm for station i, ∀ i = 1, 2, . . . , I.
(2) A simulation model is then run in section i for a train j with the fixed time margin calculated in (7),

where the train control strategies can be obtained with the algorithm presented in Section 2.1.2.
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(3) Calculate the minimize energy consumption Ei,j by using the mass-belt train motion model and
the force models according to the condition of section i.

(4) The simulation process will be executed repeatedly until train j arrives at terminal station I.

4. Sensitivity Analysis of the Simulation

In this section, three numerical examples are established to analyze the sensitivity of the radius
curve, gradient, length of grade and speed limit, in order to identify the efficiency and effort of the
proposed simulation. Then, we perform a systemic analysis of the accuracy between simulation and
measurement values.

4.1. Sensitivity Analysis

We study the metro train energy-saving strategy with the same simulator as our study; some
sensitivity analysis can be shown as follows with the parameters: the train traction weight is 150.0 t;
the length of the train is 110 m.

4.1.1. The Curve Sensitivity Analysis

Parameter values used in the simulation have been listed: the curve length is 500 m; the curve
radius is increasing from 100 m to 600 m; and the condition of no curve is defined as “∞”. In addition,
there are three speed limits: 40 km/h, 50 km/h and 60 km/h. The calculation result is shown in
Figure 6.
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Figure 6. Traction energy consumption curve on different radius curves.

As shown in Figure 6, the curves of energy consumption indicate similar trends.

(i) When the radius curve is larger than 500 m, the energy consumption is close to the same one of
no radius curve.

(ii) When the radius curve is smaller than 300 m, the energy consumption is larger.

4.1.2. The Gradient Sensitivity Analysis

Parameter values used in the simulation have been listed: the slope length is 300 m; the speed
limit is 50 km/h. The energy consumption of the ascending and falling gradient are respectively
shown as Figure 7a,b.
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(b) falling gradient.

As shown in Figure 7, the energy consumption changes linearly with the slope changes with the
same grade length and speed limit.

4.1.3. The Length of Grade and Speed Limit Sensitivity Analysis

There are three kinds of grade section lengths, 600, 400 and 200 m, respectively with the same
gradient of 30h. The traction energy consumption of the train from the base to the top of the slope is
shown in Figure 8.
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Figure 8. Traction energy consumption of different lengths of grades and speed limits.

As shown in Figure 8, the curves of energy consumption indicate similar trends.

(1) All curves of energy consumption can be divided into three sections: low speed section, middle
speed section and high speed section.

(2) Based on the 30h gradient, the middle sections are respectively 40–90 km/h, 40–80 km/h and
40–70 km/h for the lengths of 600, 400 and 200 m.

(3) In each speed section, with the increase of speed, the energy consumption increases linearly.

4.2. Accuracy Analysis

There are three kinds of measurement data, AW0 (194.00 t), AW2 (279.68 t) and AW3 (303.20 t),
indicating the energy consumption with different load factors. In each kind of measurement data,
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according to whether regenerative braking energy is used, these still can be divided into two types:
the absolute error ε and the percent error δ can be calculated as Equations (24) and (25), respectively.

ε = |x− a| (24)

δ = 100%× ε

|a| = 100%×
∣∣∣∣ x− a

a

∣∣∣∣ (25)

where x is the simulation value (kWh) and a is the measurement value (kWh).
Both the measurement and simulation values are shown in Table 1. Accordingly, we calculate the

absolute error and the percent error.

Table 1. Traction energy consumption measurement values (kWh).

The Kinds of Energy Consumption Measurement Simulation ε δ

AW0
Traction energy consumption 375 361.64 13.36 3.56%

100% regenerative braking energy 206 215.50 9.50 4.61%

AW2
Traction energy consumption 514 530.35 16.35 3.18%

100% regenerative braking energy 305 308.04 3.04 0.99%

AW3
Traction energy consumption 549 566.10 17.10 3.11%

100% regenerative braking energy 335 331.08 3.92 1.17%

As shown in Table 1, the values of the percent error are all smaller than 5%, indicating that the
accuracy of the simulation model proposed is good, and can be applied to the actual operation of the
subway system energy-saving strategy analysis.

5. Numerical Examples

In this section, three numerical examples are established to identify the efficiency and effort of
the proposed approach for the metro timetable optimization problem. Firstly, we assess the different
train energy-efficient performance with different running times within a specified section, aiming to
demonstrate the effectiveness of the train control strategy with fixed time. Secondly, we utilize the
proposed train movement model considering both the track gradients and the curves to calculate the
total energy consumption of Line 2 (inner ring) of the Beijing metro system. For this case, a comparison
among the results by different running and dwelling times is given to verify the performance of the
energy saving. Last, but not least, we demonstrate how to use the proposed approaches to reduce
energy consumption by optimizing the train timetable problem on the real-world Beijing Line 2 (inner
ring) with uncertain and dynamic parameters (i.e., passengers’ time-dependent origin-destination
demands), which are all taken from historical detected operation data. Note that the timetable, train
and track conditions are all collected from the Beijing Mass Transit Railway Operation Corporation
(BMTROC, Beijing, China) and not open to public. The train mass is 194.00 t, and the gross load hauled
is 279.68 t (assume the passenger’s weight is 60 kg). The train structure is shown in Figure 9.
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5.1. A Case of One Single Section’s Energy Consumption

This example considers one specified section of Line 2 (inner ring) named Fuchengmen
Station–Fuxingmen Station, the length of which is 1832 m, and the gradients are described in Table 2.
In this case study, the initial running time is 137 s, and the fixed running time changes from 139 s to



Energies 2017, 10, 436 13 of 20

153 s, increasing by 2 s. For the sake of simplicity, we assume that the train mass is 194.00 t. The results
of energy consumption and train speed profiles are calculated with each running time, which is shown
in Table 3 and Figure 10.

As shown in Table 3, the energy consumption descends with the increase of the fixed running
time, with a sharp decrease at the beginning (5.9% optimal rate when the running time is 139 s) and a
gradual decline (the optimal rates are no more than 1.0%) when the fixed running time is much larger
than that of the initial timetable. From Figure 10, we can see that the coasting speed profiles have a
smoothly changing trend when the gradient condition changes, indicating that the utilization of a
uniformly-distributed mass-belt model to describe train operation progress is reasonable and practical.
Moreover, the speed profile with a longer fixed running time is much lower than that with a shorter
time. These results indicate the usefulness of the train control strategy with fixed time.

Table 2. Gradients of section Fuchengmen Station-Fuxingmen Station.

Segment Grade (h) Length (m)

1 3.0 1207.7
2 3.0 140.3
3 −2.0 218.0
4 −8.0 120.0
5 −3.0 121.0
6 4.8 25.0

Total - 1832.0

Table 3. Energy consumption of section Fuchengmen Station–Fuxingmen Station.

Fixed Running Time (s) 137 139 141 143 145 147 149 151 153

Energy consumption (kWh) 22.99 21.63 21.58 21.45 21.29 21.19 21.15 20.97 20.92

Optimal rate - 5.9% 0.2% 0.6% 0.7% 0.5% 0.2% 0.9% 0.2%
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5.2. The Case of the Whole Line

In the train energy-efficient operation progress, both the train and track condition have been given.
However, the number of on-board passengers will strongly affect the train operation performance by
changing the train traction mass. In this case study, we identify how much the number of passengers
on board will affect the train traction energy consumption by calculating the energy consumption
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for a train running the whole of Beijing metro Line 2. When the train traction mass increases from
194.00 t to 268.88 t, the energy consumption with each section adding a fixed running time (10 s) is
shown in Table 4. Moreover, the energy consumption is shown in Figure 11 when both the traction
mass increases from 194.00 t to 268.88 t and each section running time increases form 2 s to 12 s.

From Table 4, we can conclude that the energy consumption precisely increases with the increase
of traction mass. The results illustrate that the energy consumption shows an even lower increasing
rate (18.5% = (384.18− 324.31)/324.31) than the one of traction mass (38.6% = (268.88− 194.00)/194.00).
It seems probable that the presented train operation performance is all optimized by the fixed time
train control, which contributes to the low energy consumption.

Table 4. Energy consumption with different train traction mass.

Traction Mass (t) 194.00 195.44 196.88 198.32 199.76 201.20 202.64 204.08 205.52
Energy consumption (kWh) 324.31 325.05 325.71 327.15 327.92 329.85 330.76 332.23 333.17

Traction mass (t) 206.96 208.40 209.84 211.28 212.72 214.16 215.60 217.04 218.48
Energy consumption (kWh) 333.79 335.55 336.28 337.73 338.41 339.82 340.76 342.4 343.08

Traction mass (t) 219.92 221.36 222.80 224.24 225.68 227.12 228.56 230.00 231.44
Energy consumption (kWh) 343.99 345.35 346.46 348.15 348.86 350.13 351.07 352.83 353.43

Traction mass (t) 232.88 234.32 235.76 237.20 238.64 240.08 241.52 242.96 244.40
Energy consumption (kWh) 354.24 356.09 356.79 358.51 359.17 360.83 361.54 362.59 363.97

Traction mass (t) 245.84 247.28 248.72 250.16 251.60 253.04 254.48 255.92 257.36
Energy consumption (kWh) 364.88 366.5 367.15 368.85 369.43 371.31 371.98 372.93 374.83

Traction mass (t) 258.80 260.24 261.68 263.12 264.56 266.00 267.44 268.88
Energy consumption (kWh) 375.61 377.71 378.31 380.27 380.96 382.56 383.25 384.18

Energies 2017, 10, 436 14 of 20 

 

Table 4. Energy consumption with different train traction mass. 

Traction Mass (t) 194.00 195.44 196.88 198.32 199.76 201.20 202.64 204.08 205.52 
Energy consumption (kWh) 324.31 325.05 325.71 327.15 327.92 329.85 330.76 332.23 333.17 

Traction mass (t) 206.96 208.40 209.84 211.28 212.72 214.16 215.60 217.04 218.48 
Energy consumption (kWh) 333.79 335.55 336.28 337.73 338.41 339.82 340.76 342.4 343.08 

Traction mass (t) 219.92 221.36 222.80 224.24 225.68 227.12 228.56 230.00 231.44 
Energy consumption (kWh) 343.99 345.35 346.46 348.15 348.86 350.13 351.07 352.83 353.43 

Traction mass (t) 232.88 234.32 235.76 237.20 238.64 240.08 241.52 242.96 244.40 
Energy consumption (kWh) 354.24 356.09 356.79 358.51 359.17 360.83 361.54 362.59 363.97 

Traction mass (t) 245.84 247.28 248.72 250.16 251.60 253.04 254.48 255.92 257.36 
Energy consumption (kWh) 364.88 366.5 367.15 368.85 369.43 371.31 371.98 372.93 374.83 

Traction mass (t) 258.80 260.24 261.68 263.12 264.56 266.00 267.44 268.88  
Energy consumption (kWh) 375.61 377.71 378.31 380.27 380.96 382.56 383.25 384.18  

 

Figure 11. The energy consumption of Beijing metro Line 2 with different traction masses and 
running time margins. 

It is found in Figure 11 that when the running time margin of each station is improved from 0 s 
to 6 s, the energy consumption of one train with 268.88 t traction mass decreases much more quickly 
from about 505.93 kWh to approximately 466.85 kWh. Moreover, the effect of the running time 
margin longer than 6 s on the energy consumption slows down smoothly. In contrast, the energy 
consumption is evidently linearly increased with the increasing traction mass. Such an increase is 
accelerated by more traction force or a longer duration of traction applied to achieve the same train 
speed for a heavier train [43]. 

5.3. A Real-World Case Study  

We consider a real-world case study over the Beijing metro Line 2 (inner ring), which is a loop 
line consisting of 18 stations and 18 sections with a total length of 23.6 km. In daily operations, the 
planned cycle time is 2640 s; the minimal headway is hmin = 120 s; and the maximal headway is hmax = 
420 s. More details can be found in Table 5. In this study, we use the real-world passenger demand 
data collected by the smart card dataset from BMTROC on a weekday of April 2014. Due to the page 
limitations, we show the number of arriving and departing passengers at each station of Line 2 in 
Figure 12. It is obvious that the passenger demands are significantly heterogeneous for different 
stations and different hours, which is corroborated by previous studies [56,57]. In the numerical 
experiments, we consider the time window from 10:00 to 12:00 in off-peak hours, during which a 
total of 16 trains are operated. Based on the passenger demand data, we calculate the results of the 
energy consumption of each section as represented in Figure 13. 

190
200

210
220

230
240

250
260

270

0
2

4
6

8
10

12

300

350

400

450

500

550

 

traction mass (t)running time margin (s)
 

en
er

gy
 c

on
su

m
pt

io
n 

(k
W

h)

340

360

380

400

420

440

460

480

500

Figure 11. The energy consumption of Beijing metro Line 2 with different traction masses and running
time margins.

It is found in Figure 11 that when the running time margin of each station is improved from 0 s
to 6 s, the energy consumption of one train with 268.88 t traction mass decreases much more quickly
from about 505.93 kWh to approximately 466.85 kWh. Moreover, the effect of the running time margin
longer than 6 s on the energy consumption slows down smoothly. In contrast, the energy consumption
is evidently linearly increased with the increasing traction mass. Such an increase is accelerated by
more traction force or a longer duration of traction applied to achieve the same train speed for a
heavier train [43].



Energies 2017, 10, 436 15 of 20

5.3. A Real-World Case Study

We consider a real-world case study over the Beijing metro Line 2 (inner ring), which is a loop line
consisting of 18 stations and 18 sections with a total length of 23.6 km. In daily operations, the planned
cycle time is 2640 s; the minimal headway is hmin = 120 s; and the maximal headway is hmax = 420 s.
More details can be found in Table 5. In this study, we use the real-world passenger demand data
collected by the smart card dataset from BMTROC on a weekday of April 2014. Due to the page
limitations, we show the number of arriving and departing passengers at each station of Line 2 in
Figure 12. It is obvious that the passenger demands are significantly heterogeneous for different
stations and different hours, which is corroborated by previous studies [56,57]. In the numerical
experiments, we consider the time window from 10:00 to 12:00 in off-peak hours, during which a total
of 16 trains are operated. Based on the passenger demand data, we calculate the results of the energy
consumption of each section as represented in Figure 13.

Table 5. Basic operation data of Beijing Metro Line 2 (inner ring).

Section Length (m) * Running
Time (s)

Dwelling
Time (s)

Section
Passengers

Jianguomen Station–Chaoyangmen Station 1763 123 45 166,945
Chaoyangmen Station–Dongsishitiao Station 1027 88 30 157,873
Dongsishitiao Station–Dongzhimen Station 824 78 50 148,313
Dongzhimen Station–Lama Temple Station 2228 174 45 114,565
Lama Temple Station–Andingmen Station 794 74 30 143,292

Andingmen Station–Guloudajie Station 1237 98 50 145,613
Guloudajie Station–Jishuitan Station 1766 129 50 160,098
Jishuitan Station–Xizhimen Station 1899 166 60 161,824

Xizhimen Station–Chegongzhuang Station 909 87 45 156,004
Chegongzhuang Station–Fuchengmen Station 960 85 30 159,932

Fuchengmen Station–Fuxingmen Station 1832 137 50 157,867
Fuxingmen Station–Changchunjie Station 1234 115 30 109,896

Changchunjie Station–Xuanwumen Station 929 85 30 110,013
Xuanwumen Station–Hepingmen Station 851 82 30 154,568

Hepingmen Station–Qianmen Station 1171 95 30 155,703
Qianmen Station–Chongwenmen Station 1634 123 45 157,306

Chongwenmen Station–Beijing Railway Station 1023 112 60 136,104
Beijing Railway Station–Jianguomen Station 945 101 60 133,743

* Source from http://www.bjsubway.com/station/zjgls/#.
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Figure 13. Energy consumption of each section before and after the optimization.

In Figure 13, we compare the energy consumption of each section of Line 2 before and after
the optimization; it is clearly shows that the energy consumption is obviously decreased after the
utilization of the optimal model. As detailed in Figure 13, there are some sections with appreciable
energy savings, such as Sections 3, 5, 9, 13 and 14, which are the sections with shorter lengths. Take
Section 5 for example: the results illustrate that the energy consumption will show a great decrease
from about 21.9 kWh for before optimal to 11.9 kWh for after optimal. In other words, the energy
consumption is nearly halved when the running time of this section increases nine seconds. However,
this kind of great decrease will not happen in all sections, caused by associated reasons, such as
dwelling time margin, gradient condition of the section, and so on. On the whole, the total energy
consumption of one train decreases from about 407.3 kWh down to 317.9 kWh. This energy savings
rate (21.9%) is much higher than those considering regenerative energy utilization (8.86% in [4], 5.12%
in [5] and 8% in [6]) considering the usage of regenerative energy.

6. Conclusions

Based on a dwelling time calculation approach on the basis of representatively dynamic changes
of the passenger flow in different time intervals of its daily operation, a metro train timetable and
control strategy optimization model is newly developed in this research to reduce the traction energy
consumption during off-peak hours. A mass-belt train movement simulation model provides a way
of calculating the traction energy consumption with fixed running time considering both the basic
running resistance and the additional resistance (such as resistance force caused by track gradients and
curves). It has been confirmed that the proposed train simulation model is able to effectively obtain a
reasonable driving control strategy with satisfactory optimal energy-saving results. The case studies
with the application of the proposed approach show that the newly-developed model is capable of
rationally reducing the train traction energy consumption on the basis of meeting the boarding and
alighting demand of passengers on the platform. This enables the quick capture of the dwelling time
at a station with uncertain and dynamic passenger time-dependent demands, which leads to a longer
running time and a lower energy consumption. Furthermore, this approach can be combined with
a real-time monitoring of the passengers on station platforms in order to contribute to an off-peak
energy-efficient control system.

For the sake of simplicity, we assume that the train arrival time of stations does not change; in
other words, the dwelling time margin of station i only can be added to the running time of section i.
Therefore, many other different kinds of timetable change assumptions need to be studied with much
more optimal scenarios simulated in future research to further validate the results of this research.
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Furthermore, the comparative analyses of the waiting time value of passengers who arrive at the
station during the dwelling time margin and that have to wait for the next train also ought to be made
in the future to enrich this work. The good energy-saving effort of this proposed model is obtained on
the basis of sacrificing the travel time of a part of the passengers.
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Abbreviations

Passenger Flow

λi(t) The passenger arriving rate at station i and time t
κi,i’(t) The passenger arriving amount at station i at time t with destination station i’
Pi,j Number of passengers waiting on the platform who board the train j at station i
Qi,j Number of passengers alight the train j with trip destination i
Oi,j Number of in-vehicle passengers of train j driving from station i to station i + 1
γi,i’ The ratio describing the passengers boarding the train j at station i who alighting at station i’
DOC The degree of crowdedness

Train Timetable

a0
i,j The arrive time for a train j arriving at station i according to the timetable

d0
ij The departure time for a train j leaving station i according to the timetable

ai,j The actual arrive time for a train j arriving at station i
di,j The actual departure time for a train j leaving station i
T0

D,i,j The dwelling time of a train j at station i according to the timetable
TD,i,j The actual dwelling time of a train j at station i
Tmin

D,i,j The minimum dwelling time for train j at station i
TR,i,j The running time of a train j at section i, which is defined as the one between the stations i and i + 1

Train Control Strategies with Fixed-Time

Tm The dwelling time margin
Tb The braking time from point A to point O
Tc The coasting time from point A to point O
Tu The uniform time from point C to point A
Tc-b The coasting-braking time from point B to point O passes point X
Terror The calculation error

Energy Consumption

Tf The traction force
t(v) The specific (per mass unit) traction force
Rf The resistance force
r(v) The specific (per mass unit) basic running resistance
r0, r1, r2 The coefficients of basic running resistance
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w(x) The specific (per mass unit) additional resistance
wg(x) The unit gradient resistance
wr(x) The unit curvature resistance
wt The unit tunnel resistance
M The train traction weight
Mt The mass of the train
Mp The mass of loading passengers
ρ The mass per unit length
g(x − s) The gradient of position (x − s)
S The train length
α The angle of the curve
Lr(x) The length of the curve
R The radius of the curve
Bf The braking force
b(v) The specific (per mass unit) braking force
c The specific force
vk The initial speeds of k-th time step
vk+1 The initial speeds of (k + 1)-th time step
Vmax The limit speed
ak The accelerated speed at k-th time step
σ One time step
lk The positions of k-th time step
lk+1 The positions of (k + 1)-th time step
Ek The accumulative energy consumption of k-th time step
Ek+1 The accumulative energy consumption of (k + 1)-th time step
ek The energy consumption of k-th time step
Etotal The total energy consumption
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