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Abstract: The higher thermodynamic efficiency inherent in a detonation combustion based engine has
already led to considerable interest in the development of wave rotor, pulse detonation, and rotating
detonation engine configurations as alternative technologies offering improved performance for
the next generation of aerospace propulsion systems, but it is now important to consider their
emissions also. To assess both performance and emissions, this paper focuses on the feasibility of
using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene,
Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel,
and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical
model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von
Neumann–Doering model, and taking into account single step chemistry and thermophysical
properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration.
The computed pressure rise and detonation velocity are shown to be in good agreement with
published literature. Additional computations examine the effects of initial pressure, temperature,
and mass flux on the physical properties of the flow. The results indicate that alternative fuels
require higher initial mass flux and temperature to detonate. The benefits of alternative fuels
appear significant.
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1. Introduction

In the very early development of jet-propulsion engines, it was known from the thermodynamic
analysis cycle that an engine based on a constant-volume combustion process achieves higher
thermodynamic efficiency than a constant pressure engine. The earliest non-piston-engine-type
prime mover employing constant volume combustion with a deflagrative and not a detonative reaction
was the Holzwarth gas turbine manufactured by Brown-Boveri (now ABB) in Switzerland during the
early part of the last century, but its success was limited [1]. Eidelman, Grossmann, and Lottati [2]
and Ma, Choi, and Yang [3] have summarized that the first reported work on intermittent detonation
is attributed to Hoffman in 1940, using acetylene and benzene as fuels with oxygen. After the work
was terminated during World War II, Nicholls and co-workers reinitiated the effort in the 1950s
by experimenting with a series of single- and multiple-cycle detonation experiments with different
mixtures of hydrogen, oxygen, acetylene, and air in a six-foot tube. The Naval Postgraduate School
(NPS) reexamined the pulse detonation engines (PDE) concept in the late 1980s and successfully
demonstrated the self-aspirating feature of air breathing PDE using ethylene/oxygen and ethylene/air
mixtures. Since then, there has been a growing interest in PDEs as a propulsion technology for both air
breathing and rocket systems.

In the context of repetitive mode detonative burning to develop thrust [4–6], PDEs represent
one of the pressure-rise unsteady propulsion systems, which differ from conventional propulsion
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frameworks [3,7]. This potential alternative combustor technology introduces a rapid detonation
wave as a more thermodynamically efficient means for converting chemical to mechanical energy
and thus generating far higher kinetic energy [8–11] compared to the normal deflagration combustion
process [12]. PDE offers numerous potential advantages; however, it also suffers from several
drawbacks too. A list of advantages and disadvantages are summarized in Table 1. The theory,
operational considerations, and research done for PDE will be described in the next section.

Table 1. PDE Advantages and Disadvantages.

Advantages References

High energy heat release rate and propulsive thrust. [13–15]

High specific impulse compared with ramjet under similar operating conditions. [13]

Simple in manufacture and operation, less moving parts, low cost, high range flight
Mach numbers, weight reduction, and more compact. [14,16–22]

High thermodynamic cycle efficiency, operation stability, and reliability. [3,11,14,19,20]

Improved fuel efficiencies in high speed and longer ranges. [4,14,23]

Can be used in conjunction with other developing technologies (flexible). [4,14,22]

Disadvantages

Noisy. [14]

Liquid fuelled PDEs are bulkier. [24]

Possessed a noticeable total pressure loss during both the filling (valve) and
detonation portion of the cycle. [4,25]

Introduced an additional loss mechanism with obstacles, which required cooling
for increased longevity. [25]

Thrust density, or thrust-per-unit cross-sectional area, is lower than that of a
turbo-ramjet engine. [4]

Very low thrust and Specific Fuel Consumption (SFC) at low speeds. [4]

Requires a long runway for takeoff. [4]

Needs to carry an additional mixture or have an on board oxygen generator. [26]

Awareness of environmental and energy crises has prompted tremendous efforts such as the
Clean Sky JTI Projects by the European countries, The Environmentally Responsible Aviation Project
(ERA) by National Aeronautics and Space Administration (NASA), and several more. The aviation
industries have shifted their strategy to use alternative fuels based on biofuels. The use of drop-in
fuels and blended fuels in aircraft engines has significantly attracted the attention and interest of
engineers and researchers throughout the world. Drop-in fuels need minor or no modifications at all
in the aircraft engine in service. It offers a future ‘greener’ aircraft and less dependency on crude oil.
Following the successful flights of many commercial aircraft running with different biofuels, these
have become a viable choice to sustain the environment as well as conserve energy. However, there
are shortcomings associated with the use of biofuels alone in aircraft engines, such as in terms of
thermodynamic efficiency and performance. Running an engine using biofuels with pressure-rise
combustors would certainly be a good choice and strategy to satisfy greener technology with better
performance. Indeed, it is believed that such alternative combustor technologies fueled by alternative
fuels could meet the 2050 emissions targets plan for aviation.

Four biofuels, namely Jatropha Bio-synthetic Paraffinic Kerosene (JSPK), Camelina Bio-synthetic
Paraffinic Kerosene (CSPK), Microalgae Biofuel, and Algal Biofuel have been evaluated as pure fuels
and are compared here with conventionally used kerosene and acetylene fuels. These particular
biofuels were chosen because of previously reported successful use in conventional engine test flight
programs and because their fuel properties are available in the published literature, as listed in the
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Appendix A. The 3rd and 4th Generation’ biofuels derived from “algae-to-biofuels” and microalgae
biofuel technologies are based on algae biomass processing for biofuel production and metabolic
engineering from oxygenic photosynthetic microorganisms [27]. These are considered to provide
a technically viable alternative energy resource, overcoming the major drawbacks associated with
first and second generation biofuels [28]. The other main feature of such algae and microalgae-based
biofuels is they have the highest oil yield compared to other types of feedstocks because of their unique
fast growing capabilities. Microalgae, in particular, have been suggested as potential candidates for
fuel production, capable of meeting the global and sustainable demand for transport fuels [29] because
of a number of key advantages, including higher energy yields per hectare, higher photosynthetic
efficiency, higher biomass production, higher growth rates, and a non-requirement of agricultural land
compared to other energy crops [30,31]. (Some microalgae have also been reported as good producers
of hydrogen which offers higher energy potential and almost no pollution [32]). Microalgae biofuel
has properties similar to those of petro-diesel in terms of density, viscosity, flash point, cold flow,
and heating value. None of the other potential sources of biodiesel present as realistic an option for
replacing petro diesel sustainablyas microalgae do [33].

However, to date, almost no efforts have been made to study the use of such alternative fuels
under detonation combustion conditions. Although studies have been made of heavy-hydrocarbon
fuel such as Jet Propellant (JP10), none have been made of other commercialized alternative fuels.
Since alternative fuels are targeted to be used in the near future, it is certainly worth exploring the
wider capability of these fuels as well. The uniqueness of this paper is to assess the behavior of
such alternative fuels in terms of physical and chemical properties for changes in the different initial
conditions. This study only uses one-step chemistry reactions for a start in order to make a straight
comparison between different fuels and to assess whether these might be sufficiently accurate to be
useful. Thus, remaining differences within the experiment are most probably due to not using full
multi-step chemistry and leave open this extension for further investigations and improvements.

2. Theory, Process and Previous Works on PDE

PDE detonation is modeled as a normal shock wave or Zel’dovich–von Neumann–Doering (ZND)
detonation wave, advancing into the undisturbed fuel-air mixture of a uniform cross-sectional area
tube, which is almost at rest for combustor entry conditions [34]. This is then followed by Rayleigh
type combustion [35]. The whole process satisfies the Chapman-Jouguet (CJ) condition, which requires
that the local Mach number at the termination of the heat expansion region be choked [34]. CJ theory
requires chemical reactions to be represented by heat discharge in an infinitesimally thin shock front
that brings the material from a starting state on the inert Hugoniot line to a subsequent CJ point
state [20]. The CJ point also forms a tangent from the initial to final state on a Pressure-Volume
diagram (p–v diagram) equivalent to the Rayleigh heating process. It is difficult to evaluate the relative
performance of air-breathing PDEs with respect to conventional steady-flow propulsion systems
without performing a full unsteady computational analysis because of the intrinsically unsteady nature
of the flow field due to the detonation process [16,36,37].

In a conventional Brayton cycle, the heat injection process has the maximum exergy, which is
fixed by the compressor’s delivered pressure and the maximum temperature allowed by the cycle.
Therefore, the exergy can be increased if the heat injection process follows a different thermodynamic
cycle path [38]. The thermodynamic cycle of ideal PDE is similar to the ideal Brayton cycle, while the
Humphrey cycle is considered a modification to the Brayton cycle in which the constant-pressure heat
addition process is replaced by a constant-volume heat addition process [34]. The Humphrey cycle
is much more efficient than the Brayton cycle, in which a very rapid burning takes place. Due to the
rapidity of the process, there is not enough time for pressure equilibration, and the overall process is
thermodynamically closer to a constant volume process than to the constant pressure process typical of
conventional propulsion systems [39]. The thermodynamic efficiency of Chapmen–Jouget detonation
has minimum entropy generation along the Hugoniot curve as compared to other combustion modes,
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which appear to have a potential thermodynamic advantage [13,40]. In general, the Humphrey cycle
consists of four processes. The first is an isentropic compression. This compression occurs ahead of
the detonation wave in PDEs. Compression is followed by constant volume combustion. Another
isentropic process expands the combustion products back to atmospheric pressure. In the PDE, the
rarefaction waves cause this expansion process. Finally, an isobaric process brings the cycle back the
start of the cycle. Figure 1 illustrates the detonation process in order.
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Figure 1. Detonation process adapted from Blanco [38], with permission from Cranfield
University, 2014.

Researchers throughout the world have clearly already done quite extensive work on PDE.
In addition Ma, Choi, and Yang [41] have summarized the findings of both numerical and experimental
work on air breathing PDE using hydrogen fuel in a review article. Figure 2 attempts to summarise
by key words all the topics covered across their identified themes and illustrates the wide breadth
of PDE research. Roy et al. [42] and Kailasanath [39,43,44] have also presented detailed review
discussions of PDE work, so we will not repeat these here. The present work can be categorized
as a first examination of the applicability and feasibility of the selected alternative fuels for
detonation combustion. It should be noted, however, that two previous numerical studies have
been conducted investigating the detonation characteristics of biofuel and the feasibility of biogas;
by Shimada et al. [45], using bio-ethanol, and Dairobi et al. [46], using biogas. Shimada at al. utilized
STANJAN for 2D bio-ethanol chemical reactions to study the two-phase detonation of bio-ethanol/air,
which showed that the biofuel resulted in a smaller cell size. Meanwhile, the biogas studies suggested
that this requires supplementary additives for higher detonation pressure. Our own numerical work
utilises ZND Theory and CJ Theory in a zero dimensional analysis under a few basic assumptions,
which will be discussed in the theoretical model framework. As a first attempt, the approach was
to employ single tube, single phase, and single cycle processes. The theoretical formulation and
numerical framework will be discussed in the following section.
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Figure 2. Overview of pulse detonation engines (PDE).

3. Methodology: Theoretical Formulation and Numerical Framework

The model adopted here uses an open-ended constant-area tube geometry in a single cycle
operation. It incorporates appropriate expressions, including the Rankine-Hugoniot Equation, Rayleigh
Line Equation, species mole and mass fraction of the reactants, enthalpies-of-formation, and ideal-gas
normal shock equations. The computational results from our analyses have been verified using the
available limited published data from the literature to ensure the consistency of our model across an
acceptable range of cases. Five key simplifying assumptions have been made in our work: upstream
and downstream boundaries are included in the control volume, with no temperature or species
concentration gradients; there is uniform one-dimensional flow under adiabatic conditions; body
forces, dissociation of products, and atomization of fuel are neglected; and only the normal shock
relation is considered. In addition, although there are many variations in the molecular structures
of these alternative fuels, consideration of such variability in the characteristics of the fuels is also
neglected, and the analysis is based solely on the information given in the Appendix A. Figure 3
illustrates the different stages for the calculations below.
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One-dimensional analysis with the variation of mass flux, initial temperature, and pressure
is calculated from the conservation of mass and momentum. Thus the Rayleigh line yields the
following relationship:

P2 − P1
1
ρ2
− 1

ρ1

=
P2 − P1

v2 − v1
= − .

m′′ 2 (1)

Combining conservation of mass, momentum, and energy with heat addition yields:

γ

γ− 1
(P2v2 − P1v1)−

1
2
(P2 − P1)(v1 + v2)− q = 0 (2)

From the Rayleigh Line, P2 is:

P2 = P1 +
.

m′′ 2(v1 − v2) (3)

Substituting into the Rankine-Hugonoit Curve yields:

γ

γ− 1
[(P1 +

.
m′′ 2(v1 − v2))v2 − P1v1)]−

1
2
((P1 +

.
m′′ 2(v1 − v2))− P1)(v1 + v2)− q = 0 (4)

Expanding and converting to the quadratic equation:

av2
2 + bv2 + c = 0 (5)

where
a =

1 + γ

2(1− γ)

.
m′′ 2 (6)

b =
γ

γ− 1

(
P1v1 +

.
m′′ 2v1

)
(7)

c =
γ

1− γ
P1v1 − 1/2

.
m′′ 2v2

1 − q (8)

v1 =
R1T1

P1
(9)

And solving for v2:

v2 =
−b±

√
b2 − 4ac

2a
(10)

P2, Vx,2, T2, c2, and M2 for every v2 are calculated accordingly. Next, detonation velocity in
stoichiometric conditions and the gas-mixture properties at the shock front (state 2’) are estimated by
applying a stoichiometric relation.

Cx Hy + a(O2 + 3.76N2)→ xCO2 + (y/2)H2O + 3.76aN2

Every species mole and mass fraction are calculated, and thermochemical properties such as
specific heat, gas constant, and specific heat ratio are obtained using these relations:

cp,1 =
∑state 1 χicp,i

MW1
and cp,2 =

∑state 2 χicp,i

MW2
(11)

R2 =
Ru

MW2
and γ2 =

cp,2

cp,2 − R2
(12)

Heat formation, q, is calculated using enthalpies-of-formation in the tabulated table, which is
converted to a mass basis.

q ≡ ∑
state 1

Yih0
f ,i − ∑

state 2
Yih0

f ,i (13)
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Detonation velocity and temperature at State 2 are determined using:

vD =

[
2γ2R2(γ2 + 1)

(
cp,1

cp,2
T1 +

q
cp,2

)]1/2
(14)

T2 =
2γ2

2
γ2 + 1

(
cp,1

cp,2
T1 +

q
cp,2

)
(15)

Using ideal-gas normal-shock and knowing the mixture specific-heat ratio and Mach number at
the initial state, these relations are used to find State 2’:

P2′
P1

=
1

γ + 1

[
2γM2

1 − (γ− 1)
]

(16)

T2′
T1

=
[
2 + M2

1(γ− 1)
]2γM2

1 − (γ− 1)

(γ + 1)2M2
1

(17)

ρ2′
ρ1

=
(γ + 1)M2

1
(γ− 1)M2

1 + 2
(18)

Vx,2′ is calculated using the conservation of mass. The State 2 Mach number should be equal to
one (upper CJ point).

4. Results and Discussion

4.1. Validation of the Model

Prior to further analysis, the above model has been validated, first against a case study of Turns [47]
for acetylene fuel. The same procedures have then been used to evaluate other fuels by respecting the
chemical relations established by the molecular formula of these fuels under stoichiometric combustion
conditions. Experimental data for liquid hydrocarbon detonation suitable for comparison with our
results are quite scarce. Only limited data exist with which just a few comparisons can be made, and
no data are available for alternative bio-fuels. Most experiments have been carried out using either
hydrogen-oxygen or hydrogen-air reactions because of the ease with which detonation can be initiated.
Nevertheless, a parametric validation was attempted in terms of the detonation velocity and pressure
gain in the burned state. Only the results for acetylene and kerosene fuels could be validated in this
way. Model results for acetylene fuel were compared with the experimental data of Turns [47] and
an analytical study by Wintenberger [48], while comparisons for kerosene fuel were made with the
analytical study of Wintenberger [48] and the time-dependent Computational Fluid Dynamics (CFD)
of Yungster [49], as well as experimental work conducted by Cheatham [50] for a range of fuel droplet
sizes. The detonation velocity is taken at the von Neumann spike, while pressure rise is taken as
time-averaged. The literature findings were found to be generally comparable to the results obtained
from our model calculations for both the detonation velocity and the pressure gained, especially for
the acetylene experiments and kerosene computations, as shown in Table 2.

Detonation is also certainly sensitive to variations in the initial conditions (temperature, pressure,
mass flux), which are not always sufficiently completely specified for complete comparison. Our
initial sensitivity studies suggested that changes in the initial conditions resulted at most in ~10%
uncertainty in the predicted detonation velocity. Any dissociation effects are likely to have the other
largest effect on the detonation velocity. The detonation velocity is computed from Equation (14),
which is based on the numerical approximation that the pressure of the burned state is much greater
than the pressure of the unburned state. Detonation ratios of pressure calculated in a burned state over
pressure in an unburned state are in the recommended range, see Reference [47], so this approximation
is reasonable for the detonation case. However, when dissociation occurs, minor species will be
formed, and the species mole and mass fractions of the products will be different, with resulting
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different values of heat addition, q, and total specific heat of the burned state (Equations (11) and (13)).
From Equation (14), the detonation velocity is a square root function of these dependent variables,
and, in the case of dissociation, the total specific heat of the burned state will increase while the heat
addition (heat difference of reactant to product) would be less, resulting in lower detonation velocity as
suggested by some published experiments and analytical results. In the worst case, a 35% discrepancy
can be found between the detonation speed predicted for Kerosene and the published analytical
and experimental findings. However, we would point out that the analytical results are based on a
simplified method, while the experimental results are also subject to error bars due to measurement
and other uncertainties, and the predicted detonation speed is supported by published higher fidelity
CFD results [49]. For acetylene, also, our predicted detonation velocity matches exactly a separate
published experimental measurement [47] and agrees within 6% with the same analytical analysis [48],
such that our model predictions fall within the bounds of these few other available published findings.
We believe this suggests that our adopted methodology is an appropriate one, at least for such an
initial investigation of biofuel alternatives, which are all predicted to have a very closely similar
(3% variation) higher detonation velocity. Clearly other factors, including dissociation of the products,
will need to be addressed to fully confirm our findings, but the trends observed seem clear.

Table 2. Validation of the model with analytical and experimental studies.

ACN Wintenberger [48] Turns [47] Model

VD (m/s) 1879 1998 1997.95
P2 (atm) 19.20 20.6 25.97

Jet-A Wintenberger [48] Cheatham [50] Yungster [49] Model

VD (m/s) 1784 1786 2300 2398.9
P2 (atm) 18.40 10–33 16–44 28.98

4.2. Conditions for Detonation

Based on the model derived from Section 3, three parameters have been analysed and compared in
terms of the pressure ratios, density ratios, and temperature ratios with respect to the underlying initial
conditions at different phases in the detonation tube. However, a few essential steps need to be taken to
initiate the analysis: first all the fuels considered must achieve detonation velocity, either by raising the
mass flux or the initial temperature, and Table 3 shows the minimum initial temperature and mass flux
before every alternative fuel can be donated. These minimum conditions were established as satisfying
Equation (10) for which the variables of a, b, and c are functions of pressure, mass flux, specific volume,
temperature, heat addition, and specific heat. (It has to be noted that the heavy hydrocarbon fuels,
Jet-A, and the biofuels are hard to detonate and need to be pre-heated or accelerated to a high velocity.
Microalgae fuel (MA), which requires the highest temperature and mass flux, is seen to be the most
difficult to detonate and Acetylene (ACN) the least. Secondly the flow must be choked at Stage 2, and,
thirdly, stoichiometric combustion has to be assured.

The thermodynamic parameters are used to faithfully predict the detonation speed and other
properties within the range of minimum temperature and mass flux. Generally, for a given reactant
pressure and temperature, the thermochemical products and detonation velocity could be estimated
from NASA Chemical Equilibrium with Applications (CEA) analysis. However, our analysis uses a
different analytical approach by allowing for mole, mass fraction, and enthalpy-of-formation of the
reactants using simple chemical relations in combustion. To estimate the detonation velocity requires
the estimation of heat addition, q, burned properties, and unreacted mixture specific heat. To obtain
these, the compositions of the unreacted and reacted mixtures are first determined. Since the chemical
relations of these fuels in stoichiometric combustion are well balanced, the species mole and mass
fractions can be determined, and the thermochemical properties during reaction are tabulated in
Table 4. These properties are calculated based on the summation of each species, formed to find its
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detonation velocity at arbitrary 2’ state using a ZND model. It is shown that all biofuels exhibit high
heat addition, which is believed to be due to the complex molecular structure of biofuels. Heavy
hydrocarbon requires much higher heat addition to break the bonds in the molecule for combustion.
Further analysis shows that higher flame temperatures are obtained for these fuels.

Table 3. Minimum initial temperature and mass flux for detonation.

Properties CAN
C2H2

JET-A
C12H24

MA
C12H20O5N2

JSPK
C12H26

CSPK
C12H25.4

AL
C12H19O3N

T1 (K) 300 1467 2000 1700 1700 2000
G (kg/s·m2) 2612 3000 5800 4400 4400 4800

γ1 1.379 1.267 1.209 1.226 1.225 1.214
Q1 (kJ/kg) 3399.6 3648.4 12,996.9 12,744.9 12,7728.0 12,622.4
VD (m/s) 1997.95 2398.9 3334.7 3244.2 3241.5 3289.5

Table 4. Thermochemical properties during the reaction.

State 1 (Reactant)

Properties ACN JET-A MA JSPK CSPK AL

cp1 1.057 1.294 1.037 1.156 1.158 1.099
q1 613.87 608.75 3412.21 2140.06 2147.67 2910.72
γ1 1.379 1.267 1.209 1.226 1.225 1.214

State 2 (Product)

cp2 1.443 1.531 1.797 1.923 1.915 1.79
q2 −2785.73 −3039.65 −9584.74 −10,604.9 −10,580.4 −9711.72
R2 0.279 0.289 0.261 0.273 0.271 0.258
γ2 1.24 1.232 1.17 1.165 1.165 1.168

4.3. Comparative Detonation Analysis of Alternative Biofuels Using ZND Model

The trend for the pressure ratio achieved by various alternative fuels at the minimum conditions
of pressure, temperature, and mass flux is demonstrated in Figure 4a. It is clearly seen that two separate
regions exist. One region is occupied by Microalgae Biofuel, CSPK, JSPK, and Algae Biofuel, while a
lower region consists of Jet-A and acetylene. CSPK and JSPK Biofuels are hardly distinguishable and
take almost identical values. All the fuels exhibit an initial increase in pressure ratio approaching the
shock, and then this begins to diminish in the later phase. The strength of the pressure gained will
weaken as the wave propagating back upstream and multiple cycles are taken into account. However
these effects are not considered here. The graphs additionally show that biofuels are quite sensitive to
detonation where there are vast changes in pressure ratio.

As presented in Figure 4b, the variation of the temperature ratio takes a different trend. All fuels
exhibit a temperature increase along the detonation tube. The temperature ratio rises rapidly before
the shock and then relaxes downstream. It is clear that a similar two regions exist in the temperature
ratio variations field. After the shock takes place, CSPK and JSPK Biofuels achieve the highest change
in temperature, followed by Microalgae Biofuel, Algae Biofuel, Jet-A, and Acetylene. Thus, in addition
to the pressure-rise in detonation combustion, a temperature rise can also be accomplished.

The density ratio patterns demonstrate a similar trend to the pressure ratio, as shown in Figure 4c.
All the biofuels (Microalgae Biofuel, Algae Biofuel, CSPK, and JSPK) exhibit a significant change in
density compared to the other types of fuels, while acetylene shows the least variation in Stage 2.
Compared to the previously discussed pressure and temperature ratio variations, the changes seen in
the final stage are not very significant. The molecular structure of the fuel, enthalpy-formation of the
reaction, and the initial conditions all affect these changes. The one-dimensional physical parameters
obtained are consistent with the structure of a detonation wave as highlighted in Kuo [51].
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4.4. Influence of Various Initial Conditions

Initial conditions are the crucial driving factors for the physical properties of burned gas at
downstream locations. The impact of different upstream underlying conditions such as temperature,
the mass flux and pressure on the pressure, temperature, specific volume, and Mach number ratios
are discussed in this section to give a wider insight into how the initial conditions affect downstream
physical properties. The ratios presented are for burned gas to unburned gas. Based on the quadratic
functions considered above, there are two distinct physical phenomena, which occur in the form of
weak and strong detonations. These are also derived from the upper Chapman-Jouget point. Turns [47]
has characterized strong detonation as occurring when the burned gas velocity has a subsonic speed
(above the upper CJ point), while weak detonation occurs when the burned gas velocity reaches
supersonic speed (below the upper CJ point).

4.4.1. Effects of Initial Mass Flux

Further fuel comparisons have been made to investigate changes in physical properties as the
mass flux increases. However, only strong shock influences are specifically presented and discussed
here. Due to its high sensitivity, Acetylene fuel analysis is excluded from the discussion. The initial
conditions for the pressure and temperature are specified as 1 atm and 2000 K, respectively. These
parameters are chosen to correspond to when each of the fuels has accomplished its detonation velocity.
Both the temperature and pressure ratios illustrate a linear increment for all fuels as the mass flux
increases, as indicated by Figure 5a,b. JSPK and CSPK fuels appear to have the highest temperature
ratio, while Jet-A fuel shows the highest pressure ratio. Due to their similar molecular formulae, JSPK
and CSPK are again barely differentiated. The corresponding changes in specific volume and Mach
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number ratios are illustrated in Figure 5c,d. All the alternative fuels have a specific volume reduction
after the shock wave for the strong detonation condition. Relatively little variation of these two ratios
is observed for Jet-A fuel. In contrast MA fuel shows significant changes in specific volume and Mach
number ratios at low mass flux before these start to settle.Energies 2017, 10, 369 11 of 19 
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Figure 5. Comparison of (a) pressure ratios; (b) temperature ratios; (c) specific volume ratios; (d) and
Mach number ratios at different initial mass flux under influence of strong detonation (P = 1 atm,
T = 2000 K).

4.4.2. Effects of Initial Temperature

In this section, the impact of the initial temperature on the subsequent temperature, pressure,
specific volume, and Mach number ratios are discussed. While the initial temperature varies, the other
initial conditions for mass flux and pressure are held fixed. The initial temperature varies from 2000 K
as this is the minimum temperature for MA and Algae Biofuel (AL) fuels to detonate. Figure 6a,b
illustrate the resulting changes in pressure and temperature ratios, respectively. These demonstrate
similar patterns to those seen with variations in mass flux but are less significant. This suggests that
mass flux has a bigger impact on the pressure and temperature ratios, as reflected in the gradients
seen on the corresponding graphs. Similarly, as the initial temperature increases, more significant
temperature ratio variations were seen for detonation of Jet-A (Kerosene) compared to other fuels.
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Figure 6. Comparison of (a) pressure ratios; (b) temperature ratios; (c) specific volume ratios; (d) and
Mach number ratios at different initial temperature under influence of strong detonation (P = 1 atm,
G = 6000 kg/s·m2).

The impact of the initial temperature on the specific volume and Mach number ratios is similar, but
the gradients of changes with initial temperature are much higher (Figure 6c,d), and initial temperature
has a more notable effect on the specific volume and Mach number ratios compared to the initial
mass flux. It would require further modeling to explain the distinct changes to specific volume and
Mach number ratios in Jet-A, JSPK, and CSPK fuels, but it appears that these fuels display more
prominent gradient changes in the specific volume and Mach number ratios at the lowest temperature
for detonation.

4.4.3. Effects of Initial Pressure

Initial pressure has a significant effect on the flow speed at the end of the tube significantly, as
well as providing the limiting factor in its variation for detonation to occur. To portray the limitation,
Microalgae fuel is chosen, and the initial temperature set to be 2000 K, while varying the mass fluxes
between 6600 kg/s·m2 and 6200 kg/s·m2. Figure 7 plots the results based on the Mach number of the
burned gas under both strong and weak shock conditions. At higher mass flux, the initial pressure
can be raised across a wider range compared to that with lower mass flux. As the initial pressure
rises, for a given mass flux, the burned gas Mach number increases in the case of a strong shock wave,
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whereas a weak shock tends to reduce the burned gas flow. All the burned gas flows converge on
the choking condition. Due to these restrictions, higher mass flux is preferred in comparison to other
alternative fuels because these could impose severe limitations on the modelling.Energies 2017, 10, 369 13 of 19 
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Figure 7. The influence of initial pressure and mass flux on the Mach number for Algae Biofuel
(T = 2000 K).

In Figure 8, comparisons of other fuel options, based on temperature, pressure, Mach number,
specific volume, and the ratios of Mach number, as affected by strong detonation waves, are presented.
As mentioned previously, an exponential increase in burned gas Mach number and specific volume
ratios results from interaction with such strong detonation. In particular, MA fuel is seen to be more
sensitive to the changes of initial pressure than Jet-A fuel. A high starting pressure will result in a
decrease in the pressure and temperature ratios. For a given mass flux, this could provide a limitation
on the further reduction of the temperature and pressure ratio changes, particularly for MA fuel.
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Figure 8. Comparison of (a) Mach number; (b) pressure ratios; (c) temperature ratios; (d) specific
volume ratios; and (e) Mach number ratios at different initial pressure under influence of strong
detonation (T = 2000 K, G = 6000 kg/s·m2).

5. Conclusions

The focus of this work was on the assessment of pulse detonation using alternative fuels.
In awareness of the energy crisis and environmental concerns, and at the same time to promote
performance and thermodynamic efficiency enhancement to the combustor, one-dimensional
models of alternative fuels in a detonation mode of combustion are thoroughly discussed and
presented. A comprehensive review has been made to highlight work that has been done in this
area, and concerning the PDE process during operations. However, to the authors’ knowledge,
no research has been conducted to accommodate alternative fuels in PDE. Therefore, the present
work has examined the feasibility and effectiveness of various alternative fuels under PDE
conditions. By systematically treating the Rankine-Hugoniot Equation, Rayleigh Line Equation,
and Zel’dovich–von Neumann–Doering model and taking into account single step chemistry and
thermophysical properties for a stoichiometric mixture, the temporal effects of pressure, temperature,
and density have been investigated, as well as the effect of different initial conditions. The main
conclusions of the work are as follows:

1. Comparing each fuel at its detonation condition, the following trends in pressure, temperature,
specific volume, and Mach number with initial mass flux, pressure, and temperature have
been identified in Table 5 where ↑ represents increase while ↓ represents decrease in the
physical properties.

Based on the model results obtained, it would appear that the pressure ratio shows the
most significant changes, followed by the temperature ratio, specific volume ratio, and Mach
number ratio.

2. The effects of mass flux variation imposed limitations on the changes in the initial pressure,
with higher mass flux allowing a wider range of initial pressure variations. The initial temperature
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had a significant effect on the specific volume and Mach number ratios, while the initial mass
flux had a greater effect on both the pressure and temperature ratios.

3. As expected, in terms of chemistry, heavier hydrocarbons in the form of the alternative bio-fuels
considered here need much higher heat addition during the reaction to break the bonds of their
more complex molecular structures and thus have greater molar specific heat. This was evidenced
through a thermochemistry evaluation of the combustion flame temperature. When each fuel
detonated, their behaviours exhibited different sensitivities. Since lighter fuels detonated more
easily, further elevating initial conditions resulted in a much higher chemical reaction rate because
more free atoms were then available for reaction.

4. The chemical and physical analysis presented above can be extended to study the thrust chamber
dynamic and propulsive performance of a pulse detonation engine running on alternative
bio-fuels. To sustain detonation, careful geometrical sizing of the tube design will be required.
The other important aspect that requires extensive attention in the future is the need also to
evaluate and characterise pulse detonation engine emissions and thus pollutant formation.

Table 5. Effects of initial conditions to the burned states.

Properties G↑ T↑ P↑
Strong Weak Strong Weak Strong Weak

P2 ↑ ↓ ↑ ↓ ↓ ↑
T2 ↑ ↓ ↑ ↓ ↓ ↑
v2 ↓ ↑ ↓ ↑ ↑ ↓
M2 ↓ ↑ ↓ ↑ ↑ ↓
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Nomenclature

AL algae biofuel
CSPK Camelina Bio-synthetic Paraffinic Kerosene
C2H2 Acetylene
cp Constant Pressure Specific Heat (J/kg·K)
cp Tabulated Constant Pressure Specific Heat (J/kg·K)
ho

f Enthalpy of Formation (J/kg)
G Mass flux (kg/s·m2)
JSPK Jatropha Bio-synthetic Paraffinic Kerosene
M Mach number
MA Microalgae Biofuel
MW Molecular Weight (kg/mol)
.

m′′ Mass Flow Rate Second Order (kg/s)
P Pressure (Pa)
PDE Pulse Detonation Engine
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q Heat Addition (J/kg)
R Specific Gas Constant (J/kg·K)
Ru Universal Gas Constant (J/kmol·K)
T Temperature (K)
V Velocitry (m/s)
VD Detonation Velocity (m/s)
v Specific Volume (m3/kg)
Y Mass Fraction
γ Specific Heat Ratio
ρ Desnsity (kg/m3)
χ Mole Fraction
Subscript
1 State 1
2 State 2
2’ State 2’ (arbitrary)
i Species number
x Axial direction

Appendix

Table A1. Thermochemical properties for alternative fuels used.

MICROALGAE ALGAE JATROPHA CAMELINA

Density (kg/m3) 886 883.6 864–880 -

Cetane Number 48.31 85–92 46–55 50.4

Viscosity (mm2/s @ 40 ) 4.47 4.73 3.7–5.8 3.80

Pour Point () −12 -21–−24 5 −7

Flash Point () 165.5 179 163–238 136

Heating Value (MJ/kg) 40.045 40.72 38.5–42 45.2

CFPP () 18 - −1.2 −3

Acid Value (mg/KOH) 0.13 0.37 0.34 -

Cloud point () −5.2 7 5 3

C (%) 61.52 68.30 76.57 -

H (%) 8.50 8.30 12.21 -

O (%) 20.19 16.40 11.32 -

N (%) 9.79 6.20 - -

Kinematic viscosity
(mm/s2 @ 40 ) 33.06 - 4.75 -

Oxidation stability (h) 8.83 6.76 5.0 -

Iodine Value (g I2/100 g) 119.1 g 97.12 109.5 152.8

Sulfur Content (ppm) - 8.1 12.9 -

Specific Gravity - 1.02 g/mL 0.876 0.882

References [28,29,52–56] [57–60] [61–63] [63]
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