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Abstract: This paper describes a four-leg interleaved DC-DC boost converter built on the basis
of Silicon Carbide (SiC) devices (Metal-Oxide Semiconductor Field-Effect Transistors—MOSFETs
and Schottky diodes) and improved, low-capacitive magnetic components. A combination of
wide-bandgap semiconductors capable of operating at elevated switching frequencies and an
interleaving technique brings substantial benefits, such as a cancellation of the input/output current
ripples, a reduction of weight, dimensions and increase of power density. The 4 × 125 kHz DC-DC
boost converter characterized by a volume of 0.75 dm3 reaches an efficiency above 98.7% at nominal
power of 6 kW. A special effort has been made to develop and test inductors with low parasitic
capacitance. It is clearly proven that an improved design has an impact on the converter performance,
especially on power losses. Reduction of the power losses is higher than 25% in reference to a standard
design of the inductors and the efficiency is in excess of 99%.

Keywords: Silicon Carbide (SiC) devices; DC-DC power converter; parasitic capacitance

1. Introduction

New technologies of power devices based on wide-bandgap materials, Silicon Carbide (SiC) and
Gallium Nitride have significantly extended available spaces in a design process of power electronic
converter design [1–6]. Lower on-state resistances and an ability to switch faster are key features of
the new devices that definitely outperform Silicon transistors. Thus, the performance of the systems
designed with new power devices, may be pushed outside Silicon limits in terms of efficiency [7],
switching frequency [8] and power density [9]. Selection of a DC-DC (Direct Current-to-Direct Current)
converter topology from a variety of solutions presented in current literature is it not an easy task.
A very interesting proposition to obtain a high step-up ratio DC-DC converter is by using topology
of modular converter [10,11], which can be an alternative solution to typical boost converters in the
future. Authors decided to verify properties of SiC (Silicon Carbide) devices and interleaving technique
commonly used in the industry application of boost converters. In the area of DC-DC converters, a
possibility to increase switching frequency is an especially interesting option [3,5]. Short switching
times of wide-bandgap elements lead to low switching energy losses and, therefore, frequency may
be elevated in order to decrease size and weight of the passive elements—inductors and capacitors.
This approach is very beneficial, as passive elements greatly contribute to volume and weight of the
system and, in consequence, the power density may be noticeably increased [6,12,13]. On the other
hand, a hard-switching operation at hundreds of kHz, even with newest SiC or GaN (Gallium Nitride)
transistors, reduces an efficiency of the DC-DC converter. However, some additional measures may
be taken; for instance, a parallel connection of the devices (in other words—increased chip size),
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which results in lower on-state power losses. Further increase of the system performance, when the
DC-DC converter is taken into consideration, may be achieved by an interleaving of the converter legs
(or phases) [14–25]. Instead of a direct parallel connection, the devices operate with suitable delays.
As a consequence, an additional reduction of the size of the passive elements due to a well-known
cancellation/reduction of the high-frequency ripples of voltages and currents is obtained. All in all,
the power devices applied in parallel interleaved legs cause an increase of the power density by
means of semiconductor power losses reduction and a decrease of size and volume of the passive
elements [14,16,21]. This approach has been initially discussed by the authors on the base of a 6 kW
interleaved DC-DC boost converter in [25]. Similar issues have been also discussed in [17,18,24]
where wide-bandgap devices are applied as components of multiphase converters to operate at high
switching frequency.

This paper is focused on further improvement of the 6 kW DC-DC converter performance by
means of reduction of parasitic capacitance of the magnetic elements. Fast slopes of the currents and
voltages through and across SiC power devices, a fundamental condition to obtain low switching
losses, also has negative effects when combined with self-capacitance of the inductors. As has been
shown for a standard boost converter, it greatly contributes to the switching performance of the SiC
transistors [26,27] and may also cause high-frequency oscillations in the circuit.

The discussed boost interleaved converter is briefly characterized in Section 2 and, afterwards,
Section 3 is focused on self-capacitance and improved design of the boost inductor. Section 4 shows
description of the laboratory model, and, in Section 5, a number of experiments with the standard
and the low-capacitive inductors, operating as parts of a high-frequency DC-DC converter, have been
presented. Finally, the paper is concluded in Section 6.

2. Description of the System

This section delivers a set of basic information, relationships and parameters regarding the
discussed interleaved DC-DC boost converter (Figure 1). The authors assume that the 6 kW-rated
converter is expected to operate as an interface between a DC source (set of the PV panels), where
voltage V1 is changing from 290 to 485 V and a DC-input of the Voltage Source Inverter (voltage range
V2 = 650–700 V). These values determined operation of the converter with duty cycle from D = 0.25 to
D = 0.55.
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Then, in the case of the multi-leg topology, ripples of the input current depend on output voltage
V2, inductances of inductors L, switching frequency fs = 1/Ts, duty cycle D and, finally, number of legs
m. Peak-to-peak value of the ripples in the input current is described by [14]:

i1(p−p) =
V2 · (mON − m · D) · d

fs · L · m
(1)
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where d is the rising coefficient of the current defined as d = tr/τ (tr and τ are the rise time and the
period of the input current, respectively), and mON is the number of ON switches during τ.

Taking into account the expected high efficiency and necessary reduction of the size and weight
of the inductors, a converter with four legs (m = 4) has been chosen. This number of legs offers a
significant cancellation of the current ripples—as can be seen in Figure 2. Calculations which are
carried out show superior performance of the four-leg boost converter. In the expected operation range,
two points with no ripples can be observed (D = 0.25 and D = 0.5), which refers to 100% reduction
in Figure 2b. On the other hand, a single local peak at D = 0.37, which can be observed in Figure 2a,
results in reduction by 73% in reference to single-leg boost converter. This means that the inductance
of each inductor may be reduced by a factor of 4. An inductance of each of the input inductors has
been selected to be equal to 220 µH, taking into account the switching frequency, the duty ratio and
the input voltage range. This value is a trade-off between a wide area of the continuous conduction
mode operation and small size and weight of the four inductors (4 × 220 µH). On the basis of initial
experiences, four separate inductors without coupling were selected as the best trade-offs between
low losses and small dimensions, but using coupled inductors will be analyzed in future work. In the
first version of the converter, non-optimized inductors were applied. Then, a new set of inductors
was designed to improve a system performance. Special attention was paid to an issue of parasitic
capacitance, which is recognized as a serious problem. This issue is discussed in the next section.
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Figure 2. (a) Percentage of the input current ripples for the single-, two- and four-leg(s) configuration of
converter and (b) percentage reduction of current ripples due to interleaving of converter legs relative
to one-leg converter.



Energies 2017, 10, 363 4 of 15

An increased number of legs and power devices is, on the other hand, accompanied by an
increase in the system cost. Therefore, relatively inexpensive SiC power devices have been selected
to operate in the designed converter: 1200 V/80 mΩ SiC Metal-Oxide Semiconductor Field-Effect
Transistors (MOSFETs) (C2M0080120D) [28] and 1200 V/10 A SiC Schottky diodes (IDH10S120) [29].
Initial calculations prepared on the base of datasheet values suggested that the power losses in
semiconductors should not be higher than 1% of the nominal power in the switching frequency range
of up to 130 kHz. Obviously, this result is due to an increased chip size of the four 80 mΩ SiC MOSFETs,
which seriously reduces the on-state power losses and decreases current stress in these devices.

3. Low-Capacitive Inductors

3.1. Parasitic Capacitance of Windings

An equivalent parasitic capacitance (EPC) of an inductor’s windings may be presented as a
lumped capacitance Cp marked as the equivalent circuit in Figure 3a. This capacitance is connected in
parallel with two branches: resistor Rp, which represents a resistance of the core, and an inductance L in
series with resistance of windings Rs. Parasitic capacitance of inductor is basically distributed among
wires, layers and the core. It consists of the following capacitances: layer-to-core (Cl-c), turn-to-turn
(Ct-t), layer-to-layer (Cl-l) and, in the case of shielded inductors, layer-to-shield (Cl-s) capacitance also
appears. The values of Cl-c and Cl-s depend on the distance, permittivity, and, possibly, the grounding
of the core and the shield (if applied). A bobbin usually provides a significant distance between the
winding and the core, which reduces Cl-c. On the other hand, all components of the Cl-c appear in
the parallel leg and the total layer-to-core capacitance may be an important contributor to the EPC.
The same can be said about layer-to-layer capacitance Cl-l.
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Both capacitances Cl-c and Cl-l can be obtained with the use of the dimensions of the standard
inductor winding (Figure 3b):

Cl−c = ε0εr
A

ll−c
(2)

Cl−l = ε0εr
A

ll−l
(3)
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where ε0 = 8.85 × 10−12 F/m is the vacuum permittivity; εr is the permittivity of material between
layer and core or between layers; A is area of capacitor plate (A = lw lN); ll-c, ll-l are the substitute
thickness values of dielectric areas, which can be estimated with the of use simplified equations [30]:

ll−c = ∆l−c +
1.26d0 − 1.15(d0 − 2s)

2
(4)

ll−l = ∆l−l + 1.26d0 − 1.15(d0 − 2s) (5)

where ∆l-c, ∆l-l are distances between the first layer and the core and between the layers (Figure 3b); d0,
s—diameter and insulation thickness of the applied wire, respectively.

The resultant capacitance for double-layer inductor can be estimated according to [31]:

Cp =
Cl−c + 4Cl−l

12
(6)

Based on Equations (2)–(6), the main components (Cl-c and Cl-l) of the resultant winding
capacitance (Cp) are plotted in Figure 4 versus permittivity of material εr and versus, respectively,
distance between first layer and core ∆l-c (Figure 4a) and between layers ∆l-l (Figure 4b). As can
be seen, reduction of the interlayer capacitance has a significant impact on decrease of the total
winding capacitance.
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3.2. Low-Capacitive Design

In order to reduce the interlayer capacitance, the authors propose a new method of the winding
implementation. The aim is to increase the distance between the layers (∆l-l) and decrease the
permittivity value of the dielectric distance between layers, which creates the capacitor between
surfaces (see Figure 5a). The authors propose an execution of the windings, which introduces an air
gap between layers and provides the smallest possible value of electric permittivity εr (close to unity).
The capacitance between layers of winding is formed in a such way that the end of the second layer is
at the top of the first one, and a new equation may be introduced:

Cl−l =
1

ll−l
ε0 · (εair · Aair + εc · Ac) (7)
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where εair—permittivity of the air distance, εc—permittivity of corners distance, and Aair and Ac are
surface areas between air distance and corners distances, respectively (see Figure 5b), which can be
calculated as follows:

Aair = lair(av) · lw (8)

Ac = lc(av) · lw (9)

where lw is the window length, lair(av) and lc(av) are average values of plates of air and the corners
distance, respectively.
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Finally, two groups of 220 µH inductors have been designed to operate in the 6 kW DC–DC boost
converter. The first group (L1a–L4a) was constructed in a classic way, and the second one (L1b–L4b) was
prepared with the use of 1.5 mm distance between layers (Figure 5c), based on the proposed method.
To make a comparison fair, all inductors use the same core type (planar E32/6/20) and material (ferrite
3F3). As the aim is to have four inductors with the same inductance (L = 220 µH) and current rating
(IL,p = 9 A), a number of turns were calculated from:

N =
L · IL,p

Bp · Ae
(10)

where Bp = 0.25 T is the peak flux density, and Ae = 260 mm2, the effective cross sectional area of
the core. The result from (10) is rounded up to N = 30, which is the number of turns of all four
inductors. Consideration of high switching frequencies of SiC transistors in a DC-DC converter (up to
130 kHz) skin and proximity effects in the wires must be taken into account. The skin depth δ was
calculated from:

δ =

√
2ρc

µω
(11)

where ρc = 23 × 10−9 Ωm is the resistivity of copper at 100 ◦C, µ ≈ µ0 is its permeability, and ω is the
angular frequency. From Equation (11), the skin depth of a copper wire at 125 kHz is 0.21 mm, and,
therefore, a Litz wire with 0.1 mm strands offers a good current distribution in this case.

The parasitic capacitance of all inductors was measured an LCR-8105G impedance analyzer
manufactured by GW Instek (New Taipei City, Taiwan). During tests, frequency characteristics were
observed (Figure 6) to find the resonance frequencies. Then, parasitic capacitances were calculated
using the known value of inductance. According to obtained results, an application of the proposed
method offers a reduction of the parasitic capacitance from nearly 80 pF (measured for the classic
method, L1a–L4a) to 15 pF for optimized inductors (L1b–L4b).
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Figure 6. Impedance characteristics of two sets of four inductors.

4. Laboratory Model of the Four-Leg, 6 kW Interleaved DC-DC Boost Converter

Performance of the magnetic components was verified in the four-leg interleaved boost converter
(Figures 1 and 7). It consists of four C2M0080120D SiC MOSFETs (T1–T4) and four IDH10S120 SiC
Schottky diodes (D1–D4). Each leg of the converter uses a magnetically independent (without coupling)
inductor connected between the positive input pole and middle point of the phase leg. All electrical
parameters of semiconductors, inductors and other elements are listed in Table 1.

Table 1. Converter parameters.

Symbol Quantity Value

V1 input voltage range 290–485 V
V2 output voltage range 650–700 V
Pn nominal power 6 kW
D duty cycle range 0.25–0.55
fs switching frequency 4 × 125 kHz

L1–L4 inductance of input inductors 220 µH
IL_m inductor maximum current 9 A
C1 input capacitor 220 nF/1 kV
C2 output capacitor 6 µF/700 V + 4 × 47 nF/1 kV

T1–T4 SiC transistors 1.2 kV/80 mΩ (C2M0080120D)
D1–D4 SiC diodes 1.2 kV/10 A (IDH10S120)

4.1. System Layout

Power loss estimation leads to the selection of two separate heatsinks (type LAM4-100-SA, Fischer
Elektronik, Lüdenscheid, Germany) with dimensions 40 mm × 40 mm × 100 mm. Due to special
design of the fins inside, the heatsinks have relatively low thermal resistance value Rth, which is at the
level of 0.75 K/W per piece (air-forced cooling with air speed of 24 m3/min provided by an ebm-papst
414 JHH fan). Shape of the heatsink allows for mounting semiconductors or other heat sources on
each of the four side walls. With this in mind, a visualization and, then, an experimental model of the
DC-DC converter were prepared (Figure 7). All semiconductor elements have been divided into two
groups (diodes and transistors) assigned to separate heatsinks to improve electromagnetic interference
(EMI) performance.
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An additional source of power losses in the system are input inductors (associated with the
windings resistances and the equivalent resistance of magnetic cores). Losses of components depend
mainly on the current and switching frequency values. In order to avoid an additional cooling system,
the inductors were mounted between two heatsinks. Thus, the heat from the inductors is expected to
be removed from the converter in the same way as from the semiconductors. The proposed solution is
also advantageous for minimizing the length of the connections between middle points of each leg of
the converter and the terminals of the magnetic elements. Based on the previously conducted circuit
simulation of the converter, the input and output capacitors were also placed in the circuit, respectively
(C1 = 220 nF/1000 V and C2 = 6 µF/700 V), and DC decoupling capacitors (4 × 47 nF/1000 V) were
connected near the semiconductor terminals. Finally, the size of the converter is 125 mm × 100 mm ×
60 mm (Figure 7b), which results in a volume value of the main circuit below 1 dm3 (power density
8 kW/dm3).

4.2. Gate Driver and Protection

A special design of the gate drivers with protection circuits was developed in order to control and
protect semiconductor devices used in the considered converter (Figure 8a). The same control pulse
with an identical duty ratio should be provided to all four SiC MOSFETs with suitable phase shift
and, therefore, dedicated logic circuits are applied. The gate driver, which is presented in Figure 8,
consists of a Complex Programmable Logic Device (CPLD) EPM3064ATC44-10N from MAX 3000A
series made by ALTERA (San Jose, CA, USA) as a main control unit with a 100 MHz oscillator as a
global clock (CLK) (Figure 8b). To generate four output signals (s1–s4) at frequencies of up to 130 kHz,
10-bit up counter was used. Additionally, a reset (RST) signal was also implemented as an input signal
of ALTERA to manually reset the errors when, for example, short circuit or overvoltage protection
system would be activated. The CPLD output signals are connected to the gate driver units controlling
four SiC MOSFETs.
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Figure 8. The gate driver for the interleaved DC-DC converter: (a) scheme and (b) photo of the prototype. 
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Figure 8. The gate driver for the interleaved DC-DC converter: (a) scheme and (b) photo of the prototype.

According to manufacturer recommendations, the positive supply voltage of the gate drivers is
set to 22 V, while negative bias equals −8 V. In order to ensure asymmetric division of the 30 V supply
voltage, a special circuit with a Low-Dropout (LDO) regulator was designed. Outputs of the DC-DC
converters (two SPU03N-15 (MEAN WELL, New Taipei City, Taiwan) from Mean Well connected in
series) are connected to the voltage regulator (LM78M08) (STMicroelectronics, Switzerland, Geneva),
which provides VNEG = 8 V in reference to the negative pole of the converter. Due to the use of
capacitors C2 and C3 (4.7 µF/50 V), it is possible to obtain the voltage of the upper capacitor (C3),
which is a difference between the output voltage of the DC-DC converter (VIN) and the regulated
voltage at C2. This voltage is close to 22 V and is applied as a positive supply voltage for a fast
totem-pole driver IXDN609PI (IXYS Corporation, Milpitas, CA, USA).

The gate driver was tested before the application in the DC-DC converter. Firstly, the gate-source
voltage vGS and gate current iG were observed for different values of gate resistance RG. Obtained
records (see Figure 9a) show a proper operation of the gate driver and indicate an impact of the
gate resistance value on dynamic properties of the driving process (dvGS/dt and diG/dt). Protection
circuits (over-current and over-voltage), included in the gate driver, were also tested. Selected results
from those tests have been presented in Figure 9b. During the steady-state operation of the converter,
inductor from one of the legs (L1) was shorted (time t0), which led to an increase of the current iL1

value and, finally, to an activation of the protection system (an assumed threshold current was equal to
ITH at time t1). Presented waveforms are a little unbalanced, which may be related to the short-circuit
state and an additional switch, which was necessary to trigger the short-circuit condition. The lack of
balance is not visible under steady-state operation of converter.
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5. Experiments

The experimental model discussed above was connected to the DC supply and loaded with a
resistor. Transistors were operating with a phase shift of 90◦ and a switching frequency fs = 125 kHz,
while the rated power of the converter was Pn = 6 kW at the input voltage V1 changing in the range
of from 290 to 485 V. In the first test, the converter contained two standard inductors (L1a, L2a) and
two low-capacitive inductors (L1b, L2b) built with the described method. Oscilloscope records have
been saved in order to verify the presented considerations regarding the impact of the parasitic
capacitance of the magnetic components on the quality of the current waveforms in the DC-DC
converter. Waveforms of the inductor currents presented in Figure 10 show that iL1a and iL2a are
characterized by high-frequency oscillations (in the range of 1 MHz) during each switching process.
This effect is almost invisible in two legs containing the inductors with low parasitic capacitance
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(L1b, L2b), where initial spikes are very small and the oscillations decay very quickly. Thus, a decrease
of EPC and an increase in the SRF (Self-Resonant Frequency) of the applied inductors have a huge
impact on the performance of the boost converter.
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In the next step, an impact of the parasitic capacitance of the inductors was tested by means
of power loss measurement. The precision power analyzer Yokogawa 1800 (Tokyo, Japan) was
applied to determine power losses (∆P) and efficiency (η) of the tested converter. At first, the system
was tested with four inductors made in a classic way—L1a–L4a and with three values of the gate
resistors (RG1–RG4 = 33 Ω, 20 Ω and 10 Ω). The power was varied from 4 to 6 kW (V2 = 650 V). Then,
low-capacitive inductors (L1b–L4b) were applied and the same test was repeated—see Figure 11. It
is clearly visible that the system with new, low-capacitive inductors shows lower power loss values,
from 10.4 to 12.5 W at 6 kW. Obviously, lower gate resistance increases switching speed in both cases,
but an impact of the RG reduction from 33 Ω to 10 Ω is more evident for low-capacitive inductors as
high-frequency resonances are limited. Examples of screens obtained during power loss measurements
for different inductors have been presented in Figure 12.
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Figure 11. Power losses (∆P) of the converter obtained at various output power P2 values and gate
resistance values (RG1–RG4 = 33 Ω; = 20 Ω; = 10 Ω) and different types of input inductors (L1a–L4a;
L1b–L4b); fs = 125 kHz, D = 0.45.
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Figure 12. Power losses (∆P) of the converter obtained at different output power P2 and gate resistance
values (RG1–RG4 = 33 Ω; = 20 Ω; = 10 Ω) and type of input inductors (L1a–L4a; L1b–L4b); fs = 125 kHz,
D = 0.45.

Another set of power loss measurements was performed according to changes in the input voltage
V1, while the duty cycle range has been adjusted. Figure 13 contains the results obtained at the
nominal power Pn = 6 kW and with assumed input voltage range V1 = 290–485 V (D = 0.25–0.55).
The experiment was conducted with gate resistor values RG = 10 Ω and using two types of inductors
again. The obtained results show that the efficiency is rising with the input voltage (lower input
current) and for the standard inductors L1a–L4a, is in the range from 98.6% to 99% (which corresponds
to total power loss values between 84.8 W and 59.6 W). Low capacitive inductors L1b–L4b increase
efficiency to the range 98.8%–99.2%, which corresponds to the power loss values between 71.9 W and
49.4 W. The difference in the power loss values is 12.9 W for V1 = 290 V (D = 0.55) and 10.2 W for
V1 = 485 V (D = 0.25).

Energies 2017, 10, 363 12 of 15 

 

efficiency to the range 98.8%–99.2%, which corresponds to the power loss values between 71.9 W and 
49.4 W. The difference in the power loss values is 12.9 W for V1 = 290 V (D = 0.55) and 10.2 W for V1 = 
485 V (D = 0.25). 

 
Figure 13. Power losses (ΔP) and efficiency (η) versus input voltage (duty cycle) obtained at fs = 125 kHz, 
Pn = 6 kW, with use of different types of input inductors: L1a–L4a (dotted lines) or L1b–L4b (solid lines). 

In order to achieve electro-thermal steady state, the DC-DC converter was also tested under 
nominal conditions for 130 min (Figure 14). The results of the tests show that the converter is also 
characterized by high thermal stability. After approximately 30 min, the power losses remained 
constant. The reason is that, on the one hand, thermal capacitances are rather low (small dimensions 
of the SiC chips, inductors and heatsinks), and, on the other hand, the power losses in SiC devices 
have low temperature dependence. 

 
Figure 14. Power losses (ΔP) and efficiency (η) versus time of steady-state operating, obtained at  
fs = 125 kHz, Pn = 6 kW, D = 0.45 with use of different types of input inductors: L1a–L4a (dotted lines) or 
L1b–L4b (solid lines). 

Finally, selected results for fs = 125 kHz, Pn = 6 kW, V2 = 650 V and D = 0.45 have been compared 
with analytical calculations and presented in Figure 15. The calculations of power losses in 
semiconductor devices were based on the datasheet values and assumed electrical parameters 
(frequency, transistor and diode currents and voltages). Estimation of core losses (P_Fe) in the 
inductors have been prepared with the use of well-known Steinmetz equations (iGSE—improved 
Generalized Steinmetz Equation) for ferrite type material 3F3 [32,33]. The winding power losses 
(P_Cu) were calculated on the basis of effective value of the inductor current and winding resistance 
obtained for individual harmonics determined for non-sinusoidal winding current [34]. 

98.2

98.4

98.6

98.8

99

99.2

99.4

30

45

60

75

90

105

120

280 300 320 340 360 380 400 420 440 460 480 500

η [%]

U1 [V]

∆P [W]

∆P(L1a÷L4a)

η(L1b÷L4b)

∆P(L1b÷L4b)

η(L1a÷L4a)

98.6

98.7

98.8

98.9

99

99.1

99.2

50

60

70

80

90

100

110

0 10 20 30 40 50 60 70 80 90 100 110 120

η [%]

t [min]

∆P [W]

∆P(L1a÷L4a)

η(L1b÷L4b)

∆P(L1b÷L4b)

η(L1a÷L4a)

Figure 13. Power losses (∆P) and efficiency (η) versus input voltage (duty cycle) obtained at
fs = 125 kHz, Pn = 6 kW, with use of different types of input inductors: L1a–L4a (dotted lines) or
L1b–L4b (solid lines).

In order to achieve electro-thermal steady state, the DC-DC converter was also tested under
nominal conditions for 130 min (Figure 14). The results of the tests show that the converter is also
characterized by high thermal stability. After approximately 30 min, the power losses remained
constant. The reason is that, on the one hand, thermal capacitances are rather low (small dimensions of
the SiC chips, inductors and heatsinks), and, on the other hand, the power losses in SiC devices have
low temperature dependence.
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Finally, selected results for fs = 125 kHz, Pn = 6 kW, V2 = 650 V and D = 0.45 have been
compared with analytical calculations and presented in Figure 15. The calculations of power losses
in semiconductor devices were based on the datasheet values and assumed electrical parameters
(frequency, transistor and diode currents and voltages). Estimation of core losses (P_Fe) in the inductors
have been prepared with the use of well-known Steinmetz equations (iGSE—improved Generalized
Steinmetz Equation) for ferrite type material 3F3 [32,33]. The winding power losses (P_Cu) were
calculated on the basis of effective value of the inductor current and winding resistance obtained for
individual harmonics determined for non-sinusoidal winding current [34].Energies 2017, 10, 363 13 of 15 
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The highly-efficient and compact interleaved boost converter with SiC power devices rated at
6 kW is presented and investigated in this paper. In particular, two types of the input inductors with
the same number of turns and the same type of cores in co-operation with fast switching semiconductor
devices were compared. The converter with conventionally wound, non-optimized inductors suffered
from oscillations of the current during each switching process. In the same conditions, low-capacitive
inductors showed very limited amplitude of oscillations during switching processes and the power
losses of the converters dropped by up to 25%. Aside from high efficiency recorded (above 99%),
the developed system shows high power density of about 8 kW/dm3. It proves that the presented
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combination of wide bandgap semiconductors, the interleaving technique and the optimized parasitic
capacitance of inductors bring noticeable performance improvement to the DC-DC boost converters.
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