# Supplementary Materials: Greenhouse Gas Mitigation of Rural Household Biogas System in China: A Life Cycle Assessment

## Jun Hou, Weifeng Zhang, Pei Wang, Zhengxia Dou, Liwei Gao and David Styles

#### 1. Method to Calculate GHG Mitigation

We established a LCA model to calculate GHG (greenhouse gas) mitigation of Chinese RHB systems, comparing RHB households with non-biogas households, and studying the single household level (Figure 2 in main manuscript).

#### 1.1. Net GHG Balance

GHG mitigation from RHB, *R*<sup>*h*</sup> can be summarized as follows:

$$R_{h} = (E_{t} + E_{m} + E_{r}) - (E_{f} + E_{l})$$

where,  $R_h$  is GHG emission mitigation by RHB, in kg CO<sub>2</sub>-eq.  $E_t$  is GHG emission mitigation of biogas by replacing traditional energy, in kg CO<sub>2</sub>-eq.  $E_m$  is GHG emission mitigation of manure storage by RHB vs. counterfactual manure storage, in kg CO<sub>2</sub>-eq.  $E_r$  is the GHG mitigation from nutrients replaced by biogas residue, in kg CO<sub>2</sub>-eq.  $E_f$  is GHG emission from its construction, in kg CO<sub>2</sub>-eq.  $E_l$ is GHG emission for the gas leakage, in kg CO<sub>2</sub>-eq.

#### 1.2. GHG Emissions from Construction

Cement and solid bricks are the two main raw materials used for biogas facility construction. Two published studies have estimated the GHG emissions associated with cement and clay brick production and transportation in China, using life cycle assessment [1,2]. We cited their results and calculated the GHG emission from RHB tank construction in two villages by Equation (S1).

$$E_f = 1026.2 \times C + 0.72 \times Br \tag{S1}$$

where,  $E_f$  is GHG emission from RHB tank construction, in kg CO<sub>2</sub>-eq. 1026.2 is GHG emission from cement production, in kg CO<sub>2</sub>-eq·t<sup>-1</sup> (data from Gong [1]). And 0.72 is GHG emission from solid brick production, in kg CO<sub>2</sub>-eq per standard brick (data from Luo [2]). *C* is cement amount used for biogas construction, in t. And *Br* is the number of bricks used for biogas construction, in standard brick (240 × 115 × 53 mm).

#### 1.3. GHG Emissions from Manure Storage

CH<sub>4</sub> emissions from manure storage in biogas digesters or lagoons were calculated using a modified Tier 2 method from IPCC (2006).

$$CH_{4E} = (M \times dm) \times [B_o \times 0.67 \times \sum \frac{MCF}{100}]$$

where, *CH*<sup>4</sup>*E* is CH<sup>4</sup> emission of manure storage, in kg. *M* is fresh manure quantity injected into RHB, in kg (survey data). *dm* is dry matter content of manure, in % (Table S6). *B*<sup>0</sup> is CH<sup>4</sup> yield potential of dry matter of manure, m<sup>3</sup>·kg<sup>-1</sup> dry matter, and 0.67 is conversion factor of *B*<sup>0</sup>, in kg·m<sup>-3</sup> (data from IPCC 2006). *MCF* is transform factor of CH<sup>4</sup> under the different management style, in % (i.e., stack and lagoon) (Table S2).

Nitrogen emitted to air in the forms of N<sub>2</sub>O and NH<sub>3</sub>, or losses to water bodies as NO<sub>3</sub><sup>-</sup> during manure storage, are other important direct and indirect contributors to GHG emissions. The latter two can finally convert to N<sub>2</sub>O through series of process (i.e., leaching, ammonia volatilization and N deposition)—so called indirect N<sub>2</sub>O.

Direct N<sub>2</sub>O emission ( $N_2O_D$ ) and indirect N<sub>2</sub>O ( $N_2O_G$ ) from NH<sub>3</sub> and NO<sub>3</sub><sup>-</sup> were calculated as follows.

$$N_2 O_D = M \times f_{MN} \times EF_s \times \frac{44}{28}$$

where,  $N_2O_D$  is direct N<sub>2</sub>O emission, in kg. *M* is manure quantity injected into biogas digester, in kg (measurement data from this research). *f*<sub>MN</sub> is N content in manure (test data from this research, in %, Table S6). *EF*<sub>s</sub> is direct emission factor in manure management system S, in kg N<sub>2</sub>O-N kg<sup>-1</sup> dry matter (Table S2). 44/28 is N<sub>2</sub>O emission from N<sub>2</sub>O-N (IPCC, 2006).

$$N_2 O_G = \left( M \times f_{MN} \times \left( \frac{Frac_{GasMs}}{100} \right) \times EF_4 \right) \times \frac{44}{28}$$

where,  $N_2O_G$  is indirect N<sub>2</sub>O emission in manure management, in kg CO<sub>2</sub>-eq. *M* is manure quantity injected into biogas digester, in kg (measurement data from this research). *f*<sub>MN</sub> is N content in manure (test data from this research, in %, Table S6). *Frac*<sub>GaSMs</sub> is the ratio of NH<sub>3</sub> and NO<sub>x</sub> as emission form in manure management S, in % (Table S2). *EF*<sub>4</sub> is emission factor of N<sub>2</sub>O in soil and N deposition, in kg N<sub>2</sub>O-N kg<sup>-1</sup> (NH<sub>3</sub>-N + NO<sub>x</sub>-N volatilization) (Table S2).

To sum up above three formulas, GHG emission ( $E_m$ ) of manure storage in biogas and other alternative ways was calculated as below Equation (S2). The GHG equivalent for methane and  $N_2O$  are 25 and 298 respectively (from IPCC, 2006).

$$E_m = CH_{4E} \times 25 + (N_2 O_D + N_2 O_G) \times 298$$
(S2)

## 1.4. GHG Emission from Energy Usage

Each type of fuel has different heating values and efficiencies of heat generation in their respective types of stove, leading to varying GHG emissions per MJ of useful heat. Effective heat delivered by different fuels are shown in Table S3 (NB: biogas stoves in Chinese rural households are the same as LPG and natural gas stoves, with a thermal conversion efficiency of 60% and heat value of 20,908 kJ·m<sup>-3</sup>).

$$E_i = (f_{iCO2} \times 10^{-3} + f_{iCH4} \times 25 \times 10^{-3} + f_{iN20} \times CVAE_i \times 10^{-9} \times 298) \times ES_i$$

where, *Ei* is GHG emission during combustion for energy *i*, in kg CO<sub>2</sub>-eq. *fi*<sub>*i*</sub>co<sub>2</sub> is CO<sub>2</sub> emission factor for energy i. *fi*<sub>*i*</sub>CH<sub>4</sub> is CH<sub>4</sub> emission factor for energy *i*. *f*<sub>*i*</sup>N<sub>2</sub>O is N<sub>2</sub>O emission factor for energy *i*, *CVAE*<sub>*i*</sub> is average net calorific power of replaced energy *i*. *ES*<sub>*i*</sub> is the amount of energy *i*, and, specific emission factor listed in Table S4.</sub>

Fossil fuels such as coal and LPG give rise to GHG emissions during extraction and transportation, as well as during combustion (biofuels such as straw, firewood and biogas are usually collected locally by manpower, so emissions from extraction and transportation are negligible). GHG emissions from energy extraction and transportation were calculated using energy consumption activity data and respective emission factors taken from Zhang et al. [4] who adopted an LCA approach (Table S5).

$$IE_i = (E_{mi} + E_{ti}) \times ES_i$$

where, *IEi* is GHG emission during energy extraction and transportation for energy *i*, kg CO<sub>2</sub>-eq; *Emi* is GHG emission for energy extraction for *i*. *Eti* is GHG emission for energy transportation for *i*, and, related emission factor listed in Table S5.

GHG emission mitigation from RHB can be calculated as Equation (S3).

$$E_t = E_i + IE_i - E_b \tag{S3}$$

where, *E*<sup>*i*</sup> is GHG mitigation from RHB. *E*<sup>*i*</sup> is GHG emission during combustion of traditional energy *i*. *IE*<sup>*i*</sup> is GHG emission during energy extraction and transportation for energy *i*, kg CO<sub>2</sub>-eq. *E*<sup>*b*</sup> is GHG emission during combustion of biogas (Table S4).

### 1.5. GHG Mitigation from Nutrient Substitution

Chemical fertilizer is a significant source of GHG emissions from its production and application [3]. Digestate is a nutrient-rich organic fertilizer which can substitute chemical fertilizers. We estimated the nutrient input and output for the biogas system using farmer survey data, and monitored the final usage of nutrients in digestate based on laboratory analysis of nutrient concentrations. If digestate was all used as a fertilizer, then the reduced chemical fertilizer substitution effect of RHB systems could be estimated. The nutrient input and output of biogas facility was calculated by below formula.

$$I_{(i)} = (M_{(i)} \times d_m + H_{(i)} \times d_h) \times 10^{-3}$$

where,  $I_{(i)}$  is the nutrient input, in kg, and, *i* means N, P<sub>2</sub>O<sub>5</sub> or K<sub>2</sub>O.  $M_{(i)}$  is *i* content in livestock manure, in g·kg<sup>-1</sup> (measured by this research, Table S6).  $H_{(i)}$  is *i* content in human waste (i.e., feces and urine), in g·kg<sup>-1</sup> (measured by this research, Table S6).  $d_m$  and  $d_h$  refer to the amount of livestock manure and human waste put into digester, in kg (measured by this research, Table S7):

$$O_{(i)} = (L_{(i)} \times d_l + S_{(i)} \times d_s) \times 10^{-1}$$

where,  $O_{(i)}$  is output of *i* from RHB, in kg.  $L_{(i)}$  is *i* content in biogas slurry, in g·L<sup>-1</sup> (measured by this research, Table S6).  $S_{(i)}$  is *i* content in biogas residue, in g·kg<sup>-1</sup> (measured by this research, Table S6).  $d_i$  is amount of biogas slurry output from RHB, in L, and  $d_s$  is amount of biogas residue output from RHB, in kg (Table S7).

Nutrient retention:

$$E_{(i)} = O_{(i)}/I_{(i)}$$

where, *E*<sub>(*i*)</sub> is nutrient retention efficiency, and the data are from sample measurements (Table S7).

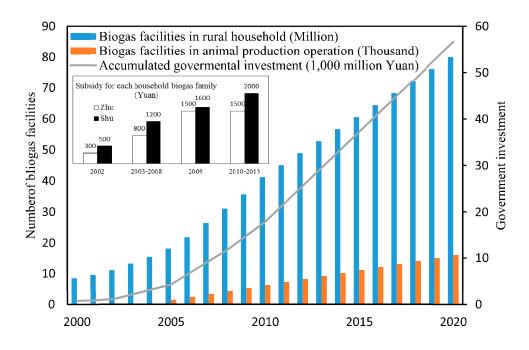
$$E_r = E_{(i)} \times (M_{(i)} \times dm) \times f_q \tag{S4}$$

where,  $E_r$  is the GHG emission of nutrient supplied by biogas residue, in kg CO<sub>2</sub>-eq.  $M_{(i)}$  is *i* content in livestock manure and human waste, in kg.  $d_m$  is the amount of livestock manure and human waste put into digester, in kg. Emission factors ( $f_8$ ) were directly cited from Zhang et al. [4] who adopted a LCA approach (Table S8).

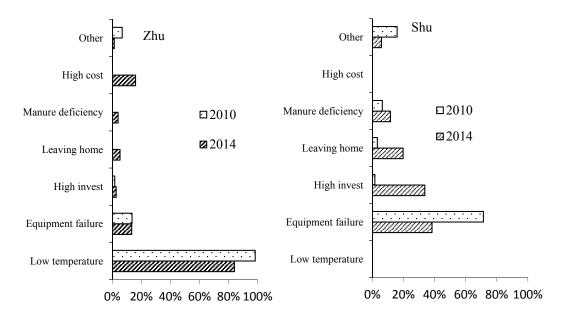
## 1.6. GHG Emission from Biogas Leakage and Loss

Biogas leakage from RHB systems was estimated as the gap between gas production and gas usage. We estimated biogas production by ABEPE model [4]. The concept of this model is to estimate energy production by biomass input and energy conversion coefficients for each type of biomass under different climate conditions.

For most fermentation in RHB systems in China without additional heating, the inner digester temperature should be close to the average temperature at 1.6 m underground [5], leading to a revised biogas production formula:


$$B_{u} = \sum_{i}^{n} (R_{(i)} \times P_{i} \times DM_{if} \times Fac_{i}) \times T_{In} \times L$$

where,  $B_{ii}$  is gas production, m<sup>3</sup>·year<sup>-1</sup>.  $R_i$  is the biogas produced by *i material*, in kg.  $P_i$  is the ratio of *i* added by all materials.  $DM_{if}$  is the conversion factor of dry material of *i*, non-dimensional. *Faci* is gas factor of *i* for dry material (at 35 °C), in m<sup>3</sup>·kg<sup>-1</sup>.  $T_{in}$  is relative gas rate factor at T °C for 1.6 m underground, non-dimensional [6]. *L* is production time, in 0–1 year, the relevant parameter to Table S9.


$$E_l = (B_u - B_s) \times 1.221 \times 60\% \times 25 + (B_u - B_s) \times 1.221 \times 40\%$$
(S5)

where, *Ei* is GHG emission for the gas loss, in kg·CO<sub>2</sub>-eq. *B<sub>s</sub>* is gas consumed by household (recorded by our meter), in m<sup>3</sup>. 1.221 is gas density at 25 °C and 101 kpa, in kg·m<sup>-3</sup>. 60% is methane proportion of biogas (data from Zhou [7]). 25 is calescence potential for methane (IPCC2007). 40% is CO<sub>2</sub> proportion of biogas (data from Zhou [7]).

## 2. Supplementary Results



**Figure S1.** Increases in biogas digester units (cumulative) and government support provided as subsidies (cumulative). The latter is equivalent to nearly U.S. \$9000 million by 2020. Source: the authors, and data is from reference [8–10].



**Figure S2.** Reasons for abandoning RHB, including abandoning construction or an operation RHB. Percentage of reasons exceeded 100% because some farmers gave more than one reason for stopping a RHB.

Table S1. The numbers of biogas and non-biogas farms and main categories in the survey.

|      |                                             | August–October 2010                          | August-O                                    | ctober 2014                                        |
|------|---------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------------|
| Site | Biogas Farms<br>(Interview<br>Number/Total) | Non-Biogas Farms (Interview<br>Number/Total) | Biogas Farms<br>(Interview<br>Number/Total) | Non-Biogas<br>Farms<br>(Interview<br>Number/Total) |

| Zhu                                                                                 | 78/93                                                                            | 153/200                            | 15/25                       | 150/260     |  |  |  |  |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|-----------------------------|-------------|--|--|--|--|--|
| Shu                                                                                 | 95/154                                                                           | 150/300                            | 97/160                      | 86/270      |  |  |  |  |  |
| Category                                                                            | Questions                                                                        |                                    |                             |             |  |  |  |  |  |
| Hausahald                                                                           | Name, education                                                                  | of head of a household, occupation | n besides farmer, number o  | of members, |  |  |  |  |  |
| Household                                                                           | total land area                                                                  |                                    |                             |             |  |  |  |  |  |
|                                                                                     | d field                                                                          |                                    |                             |             |  |  |  |  |  |
| Livestock production Animal category, weights of animals, diets and feeding methods |                                                                                  |                                    |                             |             |  |  |  |  |  |
| Crop production                                                                     | Crop category, fertilizer usage, yield                                           |                                    |                             |             |  |  |  |  |  |
| Residue management                                                                  |                                                                                  | Straw usage and an                 | nount                       |             |  |  |  |  |  |
| Manure management                                                                   | Technology for                                                                   | manure collection, end use of ma   | anure (crop, biogas, discha | arge, sell) |  |  |  |  |  |
| Biogas                                                                              |                                                                                  | Ratio for installing               | RHB                         |             |  |  |  |  |  |
|                                                                                     | Construction cost and materials of RHB                                           |                                    |                             |             |  |  |  |  |  |
|                                                                                     | RMB support, how often were sediment removed and manure added, end use of biogas |                                    |                             |             |  |  |  |  |  |
| Energy                                                                              |                                                                                  | Energy category, cost of all k     | kinds of energy             |             |  |  |  |  |  |
|                                                                                     | ٦                                                                                | Note: Source: the authors          |                             |             |  |  |  |  |  |

Table S2. GHG emission factors for manure management.

| Village | Village Manure MCF<br>Treatment (%) |    | EFs (kg N2O-N kg <sup>-1</sup><br>Excreted N) | FracGasMs (%) | EF₄ (kg N2O-N kg <sup>-1</sup> (NH3-N<br>+ NOx-N Emission)) |
|---------|-------------------------------------|----|-----------------------------------------------|---------------|-------------------------------------------------------------|
| Zhu     | Stack                               | 2  | 0.005                                         | 30            | 0.01                                                        |
| Shu     | Anaerobic lagoon                    | 77 | 0.002                                         | 25            | 0.01                                                        |

Note: Source: IPCC2006. MCF indicates methane conversion factors;  $EF_s$  is direct emission factor in manure management system;  $Frac_{GasMs}$  is the ratio of NH<sub>3</sub> and NOx as emission form in manure management;  $EF_4$  is emission factor of N<sub>2</sub>O in soil and N deposition.

| Energy      | <sup>a</sup> Coefficient of Converting to CE | <sup>b</sup> Thermal Conversion | <sup>a</sup> Heat Value   |
|-------------|----------------------------------------------|---------------------------------|---------------------------|
| Types       | (kg·ce·kg⁻¹)                                 | Efficiency (%)                  | (kJ·kg <sup>-1</sup> )    |
| LPG         | 1.7143                                       | 55%                             | 50,179                    |
| Coal        | 0.714                                        | 35%                             | 20,908                    |
| Firewood    | 0.571                                        | 25%                             | 16,726                    |
| Straw       | 0.429                                        | 25%                             | 14,636                    |
| Biogas      | 0.714                                        | 60%                             | 20,908 kJ⋅m <sup>-3</sup> |
| Electricity | 0.1229 kWh <sup>-1</sup>                     | 80%                             | 3569 kJ·kWh <sup>-1</sup> |

Table S3. Calculation parameters of energy consumption.

Note: Source: the authors. <sup>a</sup> Data is from National Bureau of Statistics of China [11] and CE = coal equivalent. <sup>b</sup> Data is from Gnansounou et al. [12].

| Table S4. | GHG | emission | factor | of energy | consumption. |
|-----------|-----|----------|--------|-----------|--------------|
|           |     |          |        |           |              |

| Item        | CO <sub>2</sub> (g·kg <sup>-1</sup> ) | CH4 (g·kg <sup>-1</sup> )   | N <sub>2</sub> O (kg·TJ <sup>-1</sup> ) |
|-------------|---------------------------------------|-----------------------------|-----------------------------------------|
| Straw       | 1130                                  | 4.56                        | 4                                       |
| Firewood    | 1450                                  | 2.7                         | 4.83                                    |
| Coal        | 2280                                  | 2.92                        | 1.4                                     |
| Oil         | 3130                                  | 0.0248                      | 4.18                                    |
| Biogas      | 748                                   | 0.023                       | -                                       |
| LPG         | 3075                                  | 0.137                       | 1.88                                    |
| Natural gas | 117,500 (kg·TJ <sup>-1</sup> )        | 1.24 (kg·TJ <sup>-1</sup> ) | 1.84                                    |
| Coal gas    | 92,500 (kg·TJ <sup>-1</sup> )         | -                           | -                                       |
| Electricity | 1.0577 (Mg·MWh-1)                     | -                           | -                                       |

Note: Source: the authors. Data is from Liu et al. [13].

Table S5. GHG emission factors of energy extraction and transportation.

| Enorou Tuno | Per Energy Products [4] | GHG Emission of    |
|-------------|-------------------------|--------------------|
| Energy Type | Ter Energy Floducts [4] | Transportation [4] |

| Coal                                                                                           | 0.24 Mg·CO <sub>2</sub> -eq·Mg <sup>-1</sup>  | 0.019 kg·CO₂-eq·kg <sup>-1</sup> |  |  |  |
|------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------|--|--|--|
| Electricity                                                                                    | 1.12 kg·CO <sub>2</sub> -eq·kWh <sup>-1</sup> | 0                                |  |  |  |
| Natural gas                                                                                    | 0.07 kg·CO₂-eq·m⁻³                            | 0                                |  |  |  |
| LPG 0.27 Mg·CO <sub>2</sub> -eq·Mg <sup>-1</sup> 0.012 kg·CO <sub>2</sub> -eq·kg <sup>-1</sup> |                                               |                                  |  |  |  |
| Note: Source: the authors. Data is from Zhang et al. (2013) [3].                               |                                               |                                  |  |  |  |

| Table S6. Contents of nutrients in manures | , digestate and wastes. |
|--------------------------------------------|-------------------------|
|--------------------------------------------|-------------------------|

|                                           | Unit           | Ν                | P2O5            | K <sub>2</sub> O | Source                       |  |  |  |
|-------------------------------------------|----------------|------------------|-----------------|------------------|------------------------------|--|--|--|
| Cattle manure (dry matter)                | g∙kg-1         | $21.70\pm1.70$   | $6.00\pm0.00$   | $7.35\pm0.35$    | This research                |  |  |  |
| Digestate of cattle manure (dry matter)   | g∙kg⁻¹         | $24.19 \pm 4.19$ | $7.63 \pm 0.64$ | $11.64 \pm 1.64$ | This research                |  |  |  |
| Digestate of cattle manure (fresh matter) | g·L⁻¹          | $1.96 \pm .96$   | $0.03\pm0.03$   | $1.44\pm0.44$    | This research                |  |  |  |
| Pig manure (fresh matter)                 | g∙kg⁻¹         | $6.9 \pm 0.9$    | $9.00\pm0.90$   | $3.80\pm0.80$    | This research                |  |  |  |
| Digestate of pig manure (dry matter)      | g∙kg⁻¹         | $3.46\pm0.46$    | $7.30\pm0.36$   | $3.57\pm0.57$    | This research                |  |  |  |
| Digestate of pig manure (fresh matter)    | g·L⁻¹          | $1.49\pm0.49$    | $0.18\pm0.18$   | $0.10\pm0.18$    | This research                |  |  |  |
| Human faeces and urine                    | g∙kg⁻¹         | 6.40             | 1.10            | 1.90             | China organic nutrients [14] |  |  |  |
|                                           |                | Dry matt         | er content (%   | )                | Source                       |  |  |  |
| Cattle manure (fresh matter)              | $24\% \pm 4\%$ |                  |                 | This research    |                              |  |  |  |
| Digestate of cattle manure (fresh matter) | $28\% \pm 8\%$ |                  |                 | This research    |                              |  |  |  |
| Pig manure (fresh matter)                 | $30\% \pm 2\%$ |                  |                 | This research    |                              |  |  |  |
|                                           |                |                  |                 |                  |                              |  |  |  |

Table S7. Nutrient retention of biogas digesters in the two villages.

| Item                  | Zhu Village (kg·household-1) |                 |                  | Shu Village (kg·household-1) |                   |                  |
|-----------------------|------------------------------|-----------------|------------------|------------------------------|-------------------|------------------|
| Item                  | Ν                            | P2O5            | K <sub>2</sub> O | Ν                            | P2O5              | K <sub>2</sub> O |
| Input                 |                              |                 |                  |                              |                   |                  |
| Human waste           | $10.53\pm2.87$               | $1.81\pm0.49$   | $3.13 \pm 0.85$  | $9.85 \pm 1.94$              | $1.69 \pm 0.33$   | $2.92\pm0.57$    |
| Manure                | $23.14\pm6.06$               | $6.40 \pm 1.68$ | $7.84 \pm 2.05$  | $38.86 \pm 17.09$            | $48.08 \pm 22.29$ | $20.30\pm9.41$   |
| Total                 | $33.67 \pm 6.79$             | $8.21 \pm 1.76$ | $10.96 \pm 2.25$ | $46.71 \pm 17.90$            | $49.77 \pm 22.42$ | $23.22\pm9.64$   |
| Output                |                              |                 |                  |                              |                   |                  |
| Liquid digestate      | $9.49 \pm 0.75$              | $0.14 \pm 0.01$ | $6.96 \pm 0.55$  | $23.15 \pm 6.25$             | $17.09 \pm 4.62$  | $1.55\pm0.42$    |
| Solid digestate       | $8.18\pm0.65$                | $2.58\pm0.20$   | $2.58\pm0.20$    | $10.38 \pm 2.79$             | $21.90\pm5.88$    | $16.92 \pm 4.54$ |
| Total                 | $17.65 \pm 1.39$             | $2.73 \pm 0.22$ | $9.54 \pm 0.75$  | $33.53 \pm 6.58$             | $38.99 \pm 7.10$  | $18.47 \pm 4.52$ |
| Conversion efficiency | 54%                          | 34%             | 89%              | 81%                          | 92%               | 92%              |

Note: Source: the authors.

Table S8. GHG emission during chemical fertilizer production and transportation.

|                                                          | Process                   | N † | P2O5 * | K <sub>2</sub> O * |
|----------------------------------------------------------|---------------------------|-----|--------|--------------------|
| Emission factors (kg CO <sub>2</sub> ·kg <sup>-1</sup> ) | Fertilizer production     | 8.2 | 0.73   | 0.50               |
|                                                          | Fertilizer transportation | 0.1 | 0.06   | 0.05               |
|                                                          | Total                     | 8.3 | 0.79   | 0.55               |

Note: Source: the authors. <sup>+</sup> Data are from a study by Zhang et al. [3], and fertilizer production include energy mining, NH<sub>3</sub> synthesis and production. <sup>\*</sup> Data are from a study by Chen et al. [15].

| Village | Source          | Fac <sub>if</sub> <sup>a</sup><br>(m³·kg <sup>-1</sup> ·<br>DM) | Digester<br>Capacity<br>(m³) | Temperature of<br>1.6 m<br>Underground<br>(°C) | Speed<br>Factor of<br>1.6 m T <sub>In</sub> | Source<br>Amount<br>(t) | Production<br>Time (years) | Theoretical<br>Biogas<br>Yields (m³) | Average<br>Biogas<br>Yields<br>(m <sup>3</sup> ) |
|---------|-----------------|-----------------------------------------------------------------|------------------------------|------------------------------------------------|---------------------------------------------|-------------------------|----------------------------|--------------------------------------|--------------------------------------------------|
| Zhu     | Dairy<br>manure | 0.19                                                            | 8                            | 20                                             | 0.80                                        | 3.6–9.1                 | 0.58 (MarSep.)             | 40.2-136.0                           | 82.5                                             |
| Shu     | Pig<br>manure   | 0.42                                                            | 8–30                         | 25                                             | 0.89                                        | 2.0–17.8                | 0.83 (Mar.–Dec.)           | 65.8–768.0                           | 274.6                                            |

Note: Source: the authors. <sup>a</sup> Data is from Møller et al. [16].

Table S10. Cropland and livestock.

| Item 2009/10 |      |         |  |
|--------------|------|---------|--|
|              | Item | 2009/10 |  |

|                           | Zl                     | nu                     | Shu                               |                                   |  |
|---------------------------|------------------------|------------------------|-----------------------------------|-----------------------------------|--|
|                           | Biogas                 | Non-Biogas             | Biogas                            | Non-Biogas                        |  |
| Cropland (ha)             | $0.85\pm0.51$          | $0.73 \pm 0.35$        | $0.34 \pm 0.17$                   | $0.27 \pm 0.18$                   |  |
| Pig or cattle<br>(capita) | $3.0 \pm 1.9$          | $3.6 \pm 2.2$          | $1.7 \pm 2.0$                     | $1.6 \pm 2.0$                     |  |
| Crop type                 | Wheat/maize-<br>peanut | Wheat/maize-<br>peanut | Wheat/maize (red<br>tomato), rice | Wheat/maize (red<br>tomato), rice |  |

Table S11. Nutrient content of different crop straws.

|                 | Unit | Ν    | P2O5 | K <sub>2</sub> O | Source                      | Ratio of Crop Straw to Grain<br>[17] |
|-----------------|------|------|------|------------------|-----------------------------|--------------------------------------|
| Maize           | %    | 0.92 | 0.35 | 1.42             | China organic nutrient [14] | 1.75                                 |
| Sweet<br>tomato | %    | 2.37 | 0.65 | 3.66             | China organic nutrient [14] | 0.70                                 |
| Wheat           | %    | 0.31 | 0.09 | 0.78             | China organic nutrient [14] | 1.16                                 |
| Rice            | %    | 0.30 | 1.10 | 0.80             | China organic nutrient [14] | 0.90                                 |
| Peanut          | %    | 1.82 | 0.37 | 1.31             | China organic nutrient [14] | 1.94                                 |
| Direct return   | %    | 100  | 100  | 100              | Gao et al. [18]             |                                      |
| Burning         | %    | 0    | 70   | 70               | Gao et al. [18]             |                                      |

Note: Source: the authors.

| Table S12. Manure | treatment in Zhu a | and Shu in | 2009/2010. |
|-------------------|--------------------|------------|------------|
|-------------------|--------------------|------------|------------|

|                      |            | Manure           | Treatments of Manure |                                          |                             |                          |                |  |  |  |
|----------------------|------------|------------------|----------------------|------------------------------------------|-----------------------------|--------------------------|----------------|--|--|--|
| Site                 | Farmer     | (Mg)             | Biogas Digester (Mg) | Stack<br>(Mg)                            | No Treatment<br>(Sell) (Mg) | Anaerobic<br>Lagoon (Mg) | Other (Mg)     |  |  |  |
| Zhu                  | Biogas     | $69.3\pm43.6$    | $3.0 \pm 0.8$        | $30.1 \pm 20.3$                          | $32.4 \pm 36.3$             | -                        | $3.8 \pm 16.5$ |  |  |  |
| Zn11                 |            | $38.8 \pm 37.4$  | -                    | $18.8 \pm 18.9$                          | $19.3 \pm 26.7$             | -                        | $0.8 \pm 5.4$  |  |  |  |
| Shu                  | Biogas     | $5.6 \pm 5.0$    | $5.2 \pm 4.1$        | 0                                        | 0                           | $0.4 \pm 1.8$            | 0              |  |  |  |
| Non-biogas 4.9 ± 5.5 |            | -                | $0.1 \pm 0.8$        | $0.1 \pm 0.8$                            | $4.7 \pm 5.2$               | $0.03 \pm 0.2$           |                |  |  |  |
|                      |            | Commute          | The                  | The Number of Farmer's Manure Treatments |                             |                          |                |  |  |  |
| Туре                 |            | Sample<br>Number | RHB                  | Stack                                    | No Treatment<br>(Sell)      | Anaerobic<br>Lagoon      | Discard        |  |  |  |
| 71                   | Biogas     | 78               | 4                    | 73                                       | 78                          | -                        | 61             |  |  |  |
| Zhu                  | Non-biogas | 153              | -                    | 114                                      | 153                         | -                        | 112            |  |  |  |
| Shu                  | Biogas     | 95               | 91                   | 0                                        | 0                           |                          | 0              |  |  |  |
| Snu                  | Non-biogas | 87               | -                    | 0                                        | 1                           |                          | 3              |  |  |  |

Note: Source: the authors. n: number of households. Manure management method: No treatment means fresh manure. Stack is the solid fraction from separation of manure that have been stored in heaps for random time without turning and additive, similar but different to compost. RHB means that has been in biogas digester.

| Table S13. Household income and average years of education completed by the head of |
|-------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------|

| Site | Treatment  | Annual Income (Yuan,<br>RMB) | Agricultural Income<br>(Yuan, RMB) | Ratio<br>(%) | Education<br>(years) |
|------|------------|------------------------------|------------------------------------|--------------|----------------------|
| Zhu  | Biogas     | $23,612 \pm 21,109$          | 14,817 ± 15,014 *                  | 63           | $7.9 \pm 2.9$        |
| Zhu  | Non-biogas | $16,062 \pm 14,826$          | $9328 \pm 7395$                    | 58           | $6.9 \pm 3.1$        |
| Chu  | Biogas     | $24,556 \pm 19,750$          | $2396 \pm 3218$                    | 10           | $6.9 \pm 3.0$        |
| Shu  | Non-biogas | $24,003 \pm 25,189$          | $1793 \pm 3162$                    | 7            | $4.9 \pm 3.1$        |

Note: Source: the authors. \* means p < 0.05 between biogas and non-biogas farmers with independent samples t test.

**Table S14.** Energy consumption by source in biogas and non-biogas households in the two villages in 2009/10.

| Energy | TI:-   | Primary Energ | y Consumption | Primary Energy Effe | ective Thermal |
|--------|--------|---------------|---------------|---------------------|----------------|
| Type   | Unit – | Zhu           | Shu           | Zhu                 | Shu            |

|             |       | Biogas<br>( <i>n</i> = 71) | Non-<br>Biogas<br>(n = 153) | Biogas<br>(n = 71) | Non-Biogas<br>( <i>n</i> = 153) | Energy<br>Type | Biogas<br>(n = 95) | Non-<br>Biogas<br>( <i>n</i> =<br>150) | Biogas<br>(n = 95) | Non-<br>Biogas<br>( <i>n</i> =<br>150) |
|-------------|-------|----------------------------|-----------------------------|--------------------|---------------------------------|----------------|--------------------|----------------------------------------|--------------------|----------------------------------------|
| Electricity | kWh   | $995 \pm 470$              | 816 ± 382                   | 795 ±<br>389       | 611 ± 396                       | Electricity    | $20 \pm 9$         | $16 \pm 8$                             | 27 ± 13            | $21 \pm 14$                            |
| LPG         | kg    | $30 \pm 5$                 | $31 \pm 19$                 | -                  | -                               | LPG            | $28 \pm 9$         | $29 \pm 18$                            | -                  | -                                      |
| Straw       | kg    | -                          | -                           | 758 ±<br>703       | $933 \pm 440$                   | Straw          | -                  | -                                      | 96 ± 91            | 120 ±<br>57                            |
| Firewood    | kg    | -                          | -                           | 341 ±<br>321       | $544 \pm 291$                   | Firewood       | -                  | -                                      | 49 ± 46<br>**      | $78 \pm 42$                            |
| Coal        | kg    | 2113 ± 682                 | $2059 \pm 720$              | -                  | -                               | Coal           | 149 ±<br>91        | 150 ±<br>94                            | -                  | -                                      |
| Biogas *    | $m^3$ | $47 \pm 21$                | -                           | $173 \pm 73$       | -                               | Biogas *       | $12 \pm 5$         | -                                      | $45 \pm 19$        | -                                      |
| Total       |       |                            |                             |                    |                                 | Total          | 209                | 195                                    | 217                | 219                                    |

**Table S15.** Estimated energy consumption of all households including biogas and non-biogas farmersin 2009/10.

| Energy Use   | Electricity | Petrol Gas                              | Coal | Straw | Firewood | Biogas |  |  |  |  |
|--------------|-------------|-----------------------------------------|------|-------|----------|--------|--|--|--|--|
|              |             | Distribution of energy types in Zhu (%) |      |       |          |        |  |  |  |  |
| Cooking      | 20          | 100                                     | 30   | -     | -        | 100    |  |  |  |  |
| Illumination | 25          | 0                                       | 0    | -     | -        | 0      |  |  |  |  |
| Heating      | 10          | 0                                       | 70   | -     | -        | 0      |  |  |  |  |
| Others       | 45          | 0                                       | 0    | -     | -        | 0      |  |  |  |  |
|              |             | Distribution of energy types in Shu (%) |      |       |          |        |  |  |  |  |
| Cooking      | 35          | -                                       | -    | 100   | 100      | 100    |  |  |  |  |
| Illumination | 15          | -                                       | -    | 0     | 0        | 0      |  |  |  |  |
| Heating      | 15          | -                                       | -    | 0     | 0        | 0      |  |  |  |  |
| Others       | 35          | -                                       | -    | 0     | 0        | 0      |  |  |  |  |

Note: Source: the authors.

| Table S16. Fertilization of biog | as and non-biogas ho | usehold in two village | s in 2009/10. |
|----------------------------------|----------------------|------------------------|---------------|
|                                  |                      |                        |               |

| Village Farmer                                   | Term   | Biogas Residue | Manure                    | g•ha⁻¹)                   | Yield             |                  |                  |               |  |
|--------------------------------------------------|--------|----------------|---------------------------|---------------------------|-------------------|------------------|------------------|---------------|--|
| vinage                                           | rarmer | Term           | (Mg·DM·ha <sup>-1</sup> ) | (Mg·DM·ha <sup>-1</sup> ) | Ν                 | P2O5             | K <sub>2</sub> O | (Mg·ha⁻¹)     |  |
| Biogas<br>family<br>Zhu Non-<br>biogas<br>family | Maize  | 0              | $29.8 \pm 11.1$           | $296.0 \pm 92.9$          | $100.8\pm38.3$    | $109.2 \pm 29.6$ | $8.1 \pm 1.3$    |               |  |
|                                                  | Wheat  | 0              | $28.8 \pm 10.7$           | $294.3 \pm 87.7$          | $112.4 \pm 100.7$ | $107.1 \pm 30.4$ | $4.4 \pm 1.3$    |               |  |
|                                                  | Peanut | 0              | $25.7 \pm 9.2$            | $134.9 \pm 77.0$          | $89.6 \pm 25.1$   | $89.3 \pm 23.8$  | $3.3 \pm 0.5$    |               |  |
|                                                  | Maize  | 0              | $28.6 \pm 10.4$           | $316.0 \pm 94.3$          | $92.2 \pm 24.4$   | $100.1 \pm 29.4$ | $7.8 \pm 4.2$    |               |  |
|                                                  | Wheat  | 0              | $28.9\pm9.9$              | $329.6 \pm 90.6$          | $90.5 \pm 22.9$   | $95.2 \pm 26.9$  | $5.1 \pm 4.4$    |               |  |
|                                                  | Peanut | 0              | $26.1\pm10.0$             | $113.5\pm60.8$            | $88.1 \pm 21.8$   | $88.7 \pm 21.1$  | $3.3 \pm 1.9$    |               |  |
| Biogas<br>family<br>Shu Non-                     | Maize  | $16.6 \pm 7.6$ | 0                         | $300.0 \pm 180.0$         | $104.7\pm83.8$    | $4.7 \pm 21.1$   | $4.5 \pm 1.1$    |               |  |
|                                                  | Wheat  | $16.5 \pm 7.7$ | 0                         | $79.9 \pm 76.0$           | $49.2 \pm 40.3$   | $4.0\pm18.9$     | $3.5 \pm 0.7$    |               |  |
|                                                  | Rice   | $15.6\pm10.0$  | 0                         | $118.9\pm87.4$            | $52.7 \pm 43.0$   | $3.5 \pm 16.4$   | $5.8 \pm 0.7$    |               |  |
|                                                  | Maize  | 0              | $18.0 \pm 7.4$            | $302.8 \pm 147.4$         | 95.9 ± 62.3       | $3.2 \pm 0.0$    | $3.7 \pm 0.8$    |               |  |
|                                                  | biogas | Wheat          | 0                         | $16.1 \pm 7.9$            | $74.5 \pm 34.5$   | $40.0\pm18.0$    | $0.8 \pm 0.0$    | $3.2 \pm 0.3$ |  |
|                                                  | family |                | 0                         | $8.9 \pm 6.0$             | $130.9\pm48.8$    | $47.0 \pm 25.5$  | $1.7 \pm 0.0$    | $5.5 \pm 0.6$ |  |

Note: Source: the authors.

Table S17. Straw use in different ways of the two groups of farmers in 2009/10.

|                      | Zhu (k          | sg, DM)         | Shu (kg, DM)    |                 |  |  |
|----------------------|-----------------|-----------------|-----------------|-----------------|--|--|
| Straw Management     | Biogas          | Non-Biogas      | Biogas          | Non-Biogas      |  |  |
|                      | (n = 78)        | (n = 153)       | (n = 95)        | (n = 150)       |  |  |
| Feed                 | $9029 \pm 7547$ | $7968 \pm 5722$ | $797 \pm 622$   | $702 \pm 1302$  |  |  |
| Energy               | $179 \pm 745$   | $206\pm897$     | $1268 \pm 1109$ | $1351 \pm 1076$ |  |  |
| Direct use           | $68 \pm 545$    | $0 \pm 0$       | $679 \pm 1271$  | $310 \pm 510$   |  |  |
| Discard              | $111 \pm 520$   | $25 \pm 210$    | $42 \pm 187$    | $36 \pm 156$    |  |  |
| Burning in field     | $0 \pm 0$       | $13 \pm 120$    | $1 \pm 11$      | $25 \pm 259$    |  |  |
| Burning beside field | $0 \pm 0$       | $81 \pm 411$    | $415\pm2646$    | $0 \pm 0$       |  |  |
| Sell                 | $0 \pm 0$       | $0 \pm 0$       | $0 \pm 0$       | $0 \pm 0$       |  |  |

| Table S18 | . Straw | nutrient | content | and | use i | in 2009/10. |
|-----------|---------|----------|---------|-----|-------|-------------|
|-----------|---------|----------|---------|-----|-------|-------------|

| N (kg·household-1)   |               |                |             |                | P2O₅ (kg·household⁻¹) |                |             |                | K₂O (kg·household⁻¹) |                |             |                |
|----------------------|---------------|----------------|-------------|----------------|-----------------------|----------------|-------------|----------------|----------------------|----------------|-------------|----------------|
| 2009/10              | Zhu           |                | Zhu Shu     |                | Zł                    | Chu Shu        |             | nu             | Zhu                  |                | Shu         |                |
|                      | Biogas        | Non-<br>biogas | Biogas      | Non-<br>biogas | Biogas                | Non-<br>biogas | Biogas      | Non-<br>biogas | Biogas               | Non-<br>biogas | Biogas      | Non-<br>biogas |
| Feed                 | $104 \pm 105$ | $86 \pm 60$    | $19 \pm 15$ | $17 \pm 31$    | $32 \pm 27$           | $27 \pm 20$    | $5 \pm 4$   | $5\pm8$        | $124\pm103$          | $106 \pm 80$   | $29 \pm 23$ | $26 \pm 48$    |
| Energy               | $3 \pm 13$    | $3 \pm 11$     | $10 \pm 9$  | $11 \pm 12$    | $1 \pm 3$             | $1 \pm 3$      | $4 \pm 4$   | $5 \pm 4$      | $2 \pm 10$           | $4 \pm 13$     | $17 \pm 15$ | $19 \pm 19$    |
| Direct use           | $3 \pm 10$    | $1 \pm 3$      | $6 \pm 16$  | $3 \pm 7$      | $1 \pm 2$             | $0 \pm 1$      | $5 \pm 7$   | $3 \pm 4$      | $5 \pm 9$            | $3 \pm 6$      | $11 \pm 26$ | $5 \pm 12$     |
| Discard              | 3 ± 9         | $1 \pm 4$      | $0 \pm 1$   | $0 \pm 2$      | $1 \pm 2$             | $0 \pm 1$      | $0 \pm 2$   | $0 \pm 1$      | $4 \pm 10$           | $3 \pm 6$      | $0 \pm 2$   | $1 \pm 3$      |
| Burning in field     | $1 \pm 3$     | $1\pm 6$       | $0 \pm 0$   | $0 \pm 2$      | $0 \pm 1$             | $0 \pm 2$      | $0 \pm 0$   | $0 \pm 1$      | $3\pm8$              | $2 \pm 14$     | $0 \pm 0$   | $0 \pm 4$      |
| Burning beside field | $4 \pm 22$    | $3\pm8$        | $4 \pm 24$  | $0 \pm 0$      | $1 \pm 6$             | $1 \pm 2$      | $1 \pm 9$   | $0 \pm 0$      | $10 \pm 55$          | $5 \pm 8$      | 6 ± 37      | $0 \pm 0$      |
| Total                | $117 \pm 110$ | $96 \pm 60$    | $39 \pm 36$ | $31 \pm 37$    | $35 \pm 29$           | $30 \pm 20$    | $16 \pm 14$ | $12 \pm 12$    | $148 \pm 24$         | $123 \pm 83$   | $62 \pm 57$ | $50 \pm 58$    |

Note: Source: the authors.

## References

- 1. Gong, Z.Q.; Zhang, Z.H. A study on embodied environmental profile during the life cycle of cement. *China Civ. Eng. J.* **2004**, *37*, 86–91. (In Chinese)
- 2. Luo, N. Research on Environmental Impact of Sintered Brick Production in China; Beijing University of Technology: Beijing, China, 2009. (In Chinese)
- 3. Zhang, W.F.; Dou, Z.X.; He, P.; Ju, X.T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.L.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogen fertilizer in China. *Proc. Natl. Acad. Sci. USA* **2013**, *110*, 8375–8380
- 4. Batzias, F.A.; Sidiras, D.K.; Spyrou, E.K. Evaluating livestock manures for biogas production: A GIS based method. *Renew. Energy* **2005**, *30*, 1161–1176.
- 5. Hou, G.L.; Li, J.Y.; Zhang, Y.G. *China's Agricultural Climate Resources*; China Renmin University Press: Beijing, China, 1993. (In Chinese)
- 6. Tang, Y.C.; Zhang, W.F.; Ma, L.; Zhang, F.S. Estimation of biogas production and effect of biogas construction on energy economy. *Trans. CSAE* **2010**, *26*, 281–288. (In Chinese)
- 7. Zhou, M.J.; Zhang, R.L. Practical Technology of Biogas; Chemical Industry Press: Beijing, China, 2004.
- 8. Ministry of Agriculture. "Household biogas project from 2006 to 2010" (issued 21 March 2007, in Chinese), http://ac.agri.gov.cn/ac/upload/door/files/doc/027333feca7f2aa000c916b80dbd5623.doc
- 9. Ministry of Agriculture. "Agricultural biomass energy project from 2007 to 2015" (issued August 2008, in Chinese) http://www.moa.gov.cn/zwllm/ghjh/200808/t20080826\_1168529.htm
- 10. National Development and Reform of China. Commission "Mid-long development plan for renewable energy" (issued in 31 August 2007, in Chinese), http://www.sdpc.gov.cn/zcfb/zcfbghwb/200709/t20070904\_579685.html
- 11. National Bureau of Statistics of China. *China Energy Statistical Yearbook 2010;* China Statistics Press: Beijing, China, 2011.
- 12. Gnansounou, E.; Dauriat, A.; Villegas, J.; Panichelli, L. Life cycle assessment of biofuels: Energy and greenhouse gas balances. *Bioresour. Technol.* **2009**, *100*, 4919–4930.
- 13. Liu, Y.; Kuang, Y.Q.; Huang, N.S. Rural Biogas Development and Greenhouse Gas Emission Mitigation. *China Popul. Resour. Environ.* **2008**, *18*, 48–53. (In Chinese)
- 14. China Organic Nutrient. The Ministry of Agriculture of China; China Agriculture Press: Beijing, China, 1999.
- 15. Chen, X.P.; Cui, Z.L.; Fan, M.S.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. *Nature* **2014**, *514*, 486–489.
- Møller, H.B.; Sommer, S.G.; Ahring, B.K. Methane productivity of manure, straw and solid fractions of manure. *Biomass Bioenergy* 2004, 26, 485–495.
- 17. Cai, Y.Q.; Qiu, H.G.; Xu, Z.G. Evaluation on Potentials of Energy Utilization of Crop Residual Resources in Different Regions of China. *J. Nat. Resour.* **2011**, *26*, 1637–1646. (In Chinese)
- 18. Gao, L.W.; Ma, L.; Zhang, W.F.; Zhang, F.S. Estimation of nutrient resource quantity of crop straw and its utilization situation in China. *Trans. CSAE* **2009**, *25*, 173–179. (In Chinese)



© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).