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Abstract: This paper presents linear programming (LP) formulations for short-term energy time-shift
operational scheduling with energy storage systems (ESSs) in power grids. In particular, it is shown
that the conventional nonlinear formulations for electric bill minimization, peak shaving, and
load leveling can be formulated in the LP framework. New variables for the peak and off-peak
values are introduced in peak shaving and load leveling model, and the historical peak value for
demand charge are considered in the electric bill minimization model. The LP formulations simplify
computation while maintaining the accuracy for including linear technical constraints of ESSs,
such as the state-of-charge, charging/discharging efficiency, output power range, and energy limit
considering the life cycle of ESS. Proposed LP formulations have been implemented and verified in
practical power systems and a large-scale industrial customer using historical data.

Keywords: electric bill minimization; energy arbitrage; energy storage systems (ESSs); linear
programming (LP); load-leveling; peak-shaving; short-term optimal operational scheduling

1. Introduction

Energy storage systems (ESSs), both mechanical types, such as pumped-hydro energy storage
(PHES), compressed-air energy storage (CAES) and flywheels, and battery types, such as Li-ion,
NaS and lead-acid, are given opportunities to enter into power systems to supplement conventional
generators as they show technological advances and price competitiveness. The ESSs can be applied
for frequency regulation, energy arbitrage, peak-shaving, renewable resource integration, transmission
congestion relief, demand response, and the energy management of end-user or micro grid [1,2].
This paper is focused on developing optimal operational scheduling models of an ESS for short-term
(minutes or hour basis) energy time-shift applications based on various objectives in a power grid as
described in Table 1.

Strategies of ESS for energy arbitrage are determined in response to energy market prices, either
in an investor or owner perspective [3]. Moreover, in [4–8], the energy arbitrage of ESS is also tested
for power systems with renewable resources. These linear formulated energy arbitrage models of
ESSs can be flexibly applied in a transaction model with renewables considering uncertainty [4],
operation problems of microgrid with other DERs [5–7], and the optimal size determination models of
ESS considering the installed renewable resources [8]. The production cost minimization model of
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ESS can be expressed in a form that the energy arbitrage model is included in the unit commitment
problem by a system (or market) operator, and it can be effectively formulated as mixed integer linear
programming (MILP) [9,10]. Other applications of ESSs, except the energy arbitrage, are often solved
by heuristic algorithms. Peak-shaving and load-leveling problems of ESSs are also tested in power
grids from the interest of a system operator using dynamic programming in [11–13]. The electric bill
minimization problem in the customer side is formulated with nonlinear model considering both
demand charge and energy charge, where dynamic programming, Markov decision processes, and
particle swarm optimization are used in [14–17], respectively.

Table 1. Short-term energy time-shifting applications of ESSs in power systems.

Entities Objectives

System Operator
Peak-shaving
Load-leveling

Production Cost Minimization

Owner or Investor of ESS Energy Arbitrage
Energy Arbitrage with Renewable Resources

End-user
Demand Charge Saving (Peak-shaving)

Energy Charge Saving (Energy Arbitrage)
Total Electric Bill Minimization

Assuming that demand or renewable resource production is perfectly forecasted, the objective
functions are defined with respect to the applications of an ESS, while technical constrains of ESS are
commonly contained in the optimization model. The solution technique for an optimization problem
is determined according to the type of the formulated problem. Often optimization problems of ESS
have been formulated as non-linear problems and solved with heuristic and evolutionary algorithms,
except the energy arbitrage for short-term optimal operation scheduling model of an ESS. The main
disadvantage of these algorithms is to end up with suboptimal solutions. In contrast, if the same
problem can be formulated with linear model without approximation, we can find the optimum
solution efficiently and accurately using linear programming (LP) [18].

The objective of this paper is to develop linear expressions of optimal operational scheduling
models of an ESS for all time-shifting applications in power grids. It was demonstrated that the energy
arbitrage model from the investor or owner perspective as a price-taker in electricity market can be
simply expressed in a linear formulation, as mentioned in the above literatures. Therefore, in this
paper, we will first develop linear optimization models, which will ensure simplification as well as
accuracy for peak-shaving and load-leveling in the system operator perspective. Moreover, we will
develop a novel linear model for the electric bill minimization of end-users. Thus, we can find all
optimum solutions for the time-shifting applications of ESSs listed in Table 1 using LP.

This paper is composed as follows: Section 2 presents the linear expression of general technical
constraints of ESS. Section 3 presents linearly expressed objective functions and additional necessary
conditions with respect to the energy-shifting applications of ESS. Proposed linear models are tested in
Section 4 and conclusions are drawn in Section 5.

2. Linear Expression of ESS Technical Constraints

This section presents linear expression for constraints in the optimization problem by considering
general technical characteristics of an ESS. The major constraints of an ESS are charging/discharging
efficiency, limits of power output and the state-of-charge (SOC). Additionally technical constraints on
the cumulated energy used during the operation period are included to consider the aging effect of
an ESS.
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2.1. Charging/Discharging Efficiency

ηc
j · epc

j,t = EPc
j,t, ∀t, ∀j (1)

epd
j,t = ηd

j · EPd
j,t, ∀t, ∀j (2)

where ηj, epj,t and EPj,t respectively are efficiency, AC power and DC power in MW; t and j represent
the t-th time interval and the j-th EES unit; and superscripts c and d respectively represent charging
and discharging.

Energy loss occurs when an ESS are under charging or discharging. Constraints (1) and (2)
ensure charging and discharging power of ESS-j considering AC/DC and DC/AC conversion
efficiencies, respectively.

2.2. Output Power Limits

0 ≤ EPc
j,t ≤ EPc

j , ∀t, ∀j (3)

0 ≤ EPd
j,t ≤ EPd

j , ∀t, ∀j (4)

where EPc
j and EPd

j respectively are the maximum charging and discharging power outputs of ESS-j.
Constraints (3) and (4) respectively represent the bounds on charging and discharging ranges of

ESS-j at time interval-t. If an ESS has the minimum power outputs EPc
j and EPd

j , constraints (3) and (4)

have to be changed as mixed integer linear expressions by introducing binary variables as follows:

uc
j,t · EPc

j ≤ EPc
j,t ≤ uc

j,t · EPc
j , ∀t, ∀j (5)

ud
j,t · EPd

j ≤ EPd
j,t ≤ ud

j,t · EPd
j , ∀t, ∀j (6)

uc
j,t + ud

j,t ≤ 1, ∀t, ∀j (7)

where uc
j,t and ud

j,t respectively represent the binary charging and discharging status of ESS-j at the t-th
time interval. Constraint (7) ensures that the status of ESS-j is either under charge, discharge, or idle.

2.3. State-of-Charge

SOCj,t = SOCj,t−1 +
(

EPc
j,t − EPd

j,t

)
· ∆t= SOCo

j +
t

∑
k=1

(
EPc

j,k − EPd
j,k

)
· ∆t, ∀t, ∀j (8)

SOCmin
j ≤ SOCj,t ≤ SOCmax

j , ∀j, t = 1, ..., T − 1 (9)

SOClower
j,T ≤ SOCj,T ≤ SOCupper

j,T , ∀j (10)

where ∆t is the time interval in hours, T is the number of time intervals over a decision horizon,
SOCj,t is the SOC of ESS-j in MWh at the t-th time interval, SOCmax

j and SOCmin
j respectively are

the maximum and minimum SOC limits of ESS-j, SOCo
j is the initial SOC of ESS-j, and SOClower

j,T and

SOCupper
j,T respectively are ESS-j’s lower and upper bounds of SOC at the final time interval.
Constraint (8) determines the SOC of ESS-j at each time interval-t. Constraint (9) bounds ESS-j’s

SOC at each time interval-t. It is possible to adjust the range of the final SOC by constraint (10).

2.4. Total Energy Limits

One of the expressions for the lifetime of a battery ESS (BESS) is the cycle-life, which is the
expected number of cycles for charging and discharging depending on the depth of discharge (DOD)
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of a BESS [19], which can be represented by the limited SOC range. When the possible SOC ranges of
ESSs are fixed, the excessive number of round-trip operating cycles can be prevented by limiting total
charged and discharged energies over an operational period with the following constraints:

T

∑
t=1

EPc
t · ∆t ≤ αc

j ·
(

SOCmax
j − SOCmin

j

)
, ∀j (11)

T

∑
t=1

EPd
t · ∆t ≤ αd

j ·
(

SOCmax
j − SOCmin

j

)
, ∀j (12)

where αc
j and αd

j respectively are positive constants to limit the number of charging and discharging
cycles of ESS-j over a decision horizon.

These two constraints are helpful not only for the BESS but also for mechanical ESS (MESS)
operational scheduling, because, with them, we can find the least amount of the energy to meet
the objectives, and prevent excessive wear and tear by choosing suitable values of αc

j and αd
j in the

optimization models.

3. Linear Objective Functions for Applications in Power Grid

This section presents linear objective functions for the purpose of short-term ESS applications:
energy arbitrage, peak-shaving, load-leveling and minimization of end-user’s electricity bill. For energy
arbitrage of ESSs from the investor or owner perspective, the existing linear energy arbitrage model
as a price-taker in electricity market is already introduced in many existing literatures such as [3–8].
Therefore, in this paper, we develop novel LP expressions, which will ensure simplification and
accuracy for the electric bill minimization in an end-user perspective as well as the peak-shaving and
load-leveling in the system operator perspective.

3.1. Peak-Shaving

The objective of peak-shaving is focused on reducing maximum load in a decision horizon as
shown below:

Min
T

∑
t=1

max{D′1, D′2, . . . , D′T} (13)

Dt′ = Dt +
N

∑
j=1

[
epc

j,t − epd
j,t

]
, ∀t (14)

Dt′ ≥ 0, ∀t (15)

where N is the number of ESS, T is a decision horizon, Dt is forecasted load demand at the t-th time
interval, D′t is a modified demand by ESSs at the t-th time interval, epc

j,t is a charging power of ESS-j

from the grid at the t-th time interval, and epd
j,t is a discharging power of ESS-j injected to the grid at

the t-th time interval.
The objective function (13) is a nonlinear function. For a linear formulation, we can modify the

objective function (13) as following:

Min
T

∑
t=1

Dmax (16)

Dmax ≥ D′t, ∀t (17)

where Dmax is a new variable which ensures that the peak value among the modified demands by ESSs
is below this level in a decision horizon. Finally we can solve the peak-shaving problem using LP with
the objective function (16) subject to ESS technical constraints (1)–(12) and additional constraints (14),
(15), and (17).
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3.2. Load-Leveling

Strictly speaking, the peak-shaving and load-leveling should be distinguished because the goal of
the load-leveling is to make the fluctuating demand flat by increasing the off-peak as well as decreasing
the on-peak, while peak-shaving is only focused on the reduction of the peaks [20]. Therefore to
formulate as a linear model we can define an objective function of the load-leveling as following:

Min
T

∑
t=1

[
Dmax − Dmin

]
(18)

Dmin ≤ D′t, ∀t (19)

where Dmin is a new variable which ensures that the off-peak value among the modified demands by
ESSs is above this level in a decision horizon. The linear objective function (18) is to minimize the gap
between the on-peak and off-peak demands subject to ESS technical constraints (1)–(12) and additional
constraints (14), (15), (17), and (19).

3.3. End-User Electricity Bill Minimization

The customer electric bill is composed of demand charge and energy charge. The demand charge
is paid to the utility which operates and plans transmission and distribution network, and is based on
the highest average load for 15 min during the billing period. To determine the demand charge, some
electricity retail markets consider the historical peak loads within a specified period. For example,
non-residential customers are served at the regulated time-of-use (TOU) rate by Korea Electric Power
Corporation (KEPCO) in Korea, i.e., they are required to pay the demand charge for the highest
load between the peak load during current billing month and the peak load of July-September and
December-February during the prior 11 months [21]. Energy charge is calculated for the amount of
electricity consumption. Generally a customer have a right to choose an appropriate time-varying
pricing among TOU, critical peak price (CPP), real-time-pricing (RTP), etc.

Therefore we can formulate the optimization model for electric bill minimization with ESSs in the
end-user perspective as follows:

Min

{
RD · Dmax +

T

∑
t=1

RE
t · D′t · ∆t

}
(20)

where RD is the demand charge rate imposed on peak Dmax of the end-user, and RE
t is the energy

charge rate at the t-th time interval. The linear objective function (20) is subject to constraints (14), (15),
(17), and ESS technical constraints (1)–(12). We can solve this model by LP because all of objective
functions and constraints are expressed in linear forms.

If historical peak load Dmax,o is necessarily considered to calculate the demand charge, Dmax in
the first term of the objective function (20) can be replaced with max(Dmax,o, Dmax), then the objective
function can be changed as following:

Min

{
RD ·max(Dmax,o, Dmax) +

T

∑
t=1

RE
t · D′t · ∆t

}
(21)

By defining Dmax,g = max(Dmax,o, Dmax), the optimization model for end-user’s electric bill
minimization with ESS can be generalized as the following linear formulation:

Min

{
RD · Dmax,g +

T

∑
t=1

RE
t · D′t · ∆t

}
(22)

Dmax,g ≥ D′t, ∀t (23)
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Dmax,g ≥ Dmax,o (24)

where the linear objective function (22) is subject to constraints (14), (15), (17), (23), (24), and ESS
technical constraints (1)–(12).

As mentioned above, the constant Dmax,o is the historical peak load during a billing period. In this
generalized model, we can consider peak-load reduction or the energy-cost reduction, as priority, by
setting Dmax,o = 0 or Dmax,o = ∞ (a large positive constant), respectively. In the peak-load reduction
priority mode, the ESS charges when energy prices are low and discharges first when the loads are
on-peak, then discharges extra charged energy at the other times when energy prices are high. On the
other hand, ESS charges when energy prices are low and discharges when the prices are high in the
energy-cost reduction priority mode.

4. Case Studies

Assuming that all estimation data are perfectly known, the proposed linear short-term optimal
scheduling problems for the use of an ESS have been tested in this section. Peak-shaving and
load-leveling in a system operator perspective are tested on a 500 MW/4000 MWh PHES. Since
the round-trip efficiency of PHES is 0.75 in [2], we assume that the each of pumping and generating
efficiencies is set to

√
0.75. The electric-bill minimization is implemented in a large industrial customer

with a 4 MW/8 MWh Li-ion BESS, for which conversion efficiencies on charging and discharging are
equally set to 0.95 [2]. The proposed linear models are implemented in IBM CPLEX 12.6, which gives
robust solutions for optimization problems [22].

4.1. Case-I: Peak-Shaving and Load-Leveling with PHES

Figure 1 is the demand for a week provided from the Korea Power Exchange (KPX) during
2–8 August 2010 [23], which is described in Table A1 and it has 3707 MW of off-peak and 6273 MW of
on-peak demand. The leveled demand pattern corresponding to the time of energy prices shown in
Figure 2 is obtained from the historical data from Korea, forecasted and posted by KPX [23]. The energy
prices are described in Table A2.
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When the ESS is scheduled for peak-shaving and/or load-leveling, the adjusted on-peak Dmax

and off-peak Dmim need to be determined, which would result from the allowed maximum charging
and discharging energy over a given planning horizon as defined in (11) and (12). Figure 3 shows an
experimental result of on-peak Dmax, off-peak Dmim, and the differences between them (Dmax − Dmim)
according to αc

j and αd
j for the weekly operation mode, where both αc

j and αd
j in (11) and (12) are set to

the same value α in this case study. The optimization models are solved by weekly operation mode
where each of the initial and final state of reservoir is set to 12.5% of the PHES capacity. In the figure,
the adjusted on-peak Dmax and the difference (Dmax − Dmin) are becoming constant when the values
of α are 1.02 and 2.62, respectively, and these values are used for the peak-shaving and load-leveling
models because full peak-shaving and load-leveling with the PHES can be most efficiently solved by
weekly operation mode when the values of α are 1.02 and 2.62, respectively.
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Dashed line and solid line shown in Figure 4a are the results of peak-shaving and load-leveling
with the PHES, where the values of α are set to 1.02 and 2.62, respectively, in the optimization
models for peak-shaving and load-leveling solved by weekly operation mode. Both peak-shaving
and load-leveling have reduced the on-peak to 5840 MW. Moreover the load-leveling has raised the
off-peak to 4284 MW while peak-shaving still remains at 3707 MW. Therefore, the load-leveling can
reduce the demand range more than the peak-shaving. On the other hand, the advantage of the
peak-shaving model is that the energy required to reduce the peak is smaller than the load-leveling
energy, even though it cannot control the off-peak. As the a result, cumulated charged (pumping)
energies including energy losses from the grid for a week are 4108 MWh and 10589 MWh for
peak-shaving and load-leveling, respectively, and cumulated discharged (generated) energies delivered
to the grid are 3081 MWh and 7942 MWh, respectively. Each value is 0.75 of cumulated charged energy
which is the round-trip efficiency of PHES as assumed above.

Since load forecasting necessarily has error caused by uncertainties, the operator can decide an
alternative strategy of scheduling period to take consideration of the forecasting error. To reduce
forecasting error, operating period should be shorter and scheduling cycle should be more frequent.
If the optimization is solved by daily operation mode, we can get the results as shown in Figure 4b.
In this case, for a week, total charged energies as the results of peak-shaving and load-leveling
respectively are 24,172 MWh and 24,421 MWh including the losses, and total discharged energies to the
grid are 18,129 MWh and 18,316 MWh, where α is set to 6.00 for the peak-shaving and to 6.06 for the
load-leveling. These are minimal cumulated energy requirements which respectively can contribute to
full peak-shaving and full load-leveling with the PHES.
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4.2. Case-II: Electric Bill Minimization of a Customer with Li-ion BESS 

The proposed linear electric bill minimization model was tested for a large industrial customer 
being served with the time-of-use (TOU) rate from KEPCO. The customer is charged with the demand 
rate of 7380 KRW/kW and the energy rate (KRW/kWh) adjusted on seasonal and hourly basis as 
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demand charge by KEPCO is determined as the maximum value during prior 12 months including 
the current month. As described in Figure 6 and Table A4, the customer load data in summer, 
assuming that it is constant for each hour, has different daily pattern, but has a recursive tendency 
on a weekly basis. The minimum and maximum values of the load are 0.66 MW and 15.15 MW, 
respectively. In addition, daily on-peaks in the weekend are larger than those in weekdays. 
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4.2. Case-II: Electric Bill Minimization of a Customer with Li-ion BESS

The proposed linear electric bill minimization model was tested for a large industrial customer
being served with the time-of-use (TOU) rate from KEPCO. The customer is charged with the demand
rate of 7380 KRW/kW and the energy rate (KRW/kWh) adjusted on seasonal and hourly basis as
shown in Figure 5 and described in Table A3 [21]. As mentioned above, the peak-load applied to
demand charge by KEPCO is determined as the maximum value during prior 12 months including the
current month. As described in Figure 6 and Table A4, the customer load data in summer, assuming
that it is constant for each hour, has different daily pattern, but has a recursive tendency on a weekly
basis. The minimum and maximum values of the load are 0.66 MW and 15.15 MW, respectively.
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Optimal scheduling results of the Li-ion BESS installed in an industrial customer obtained by
the linear electric bill minimization algorithm for weekly operation mode are shown in Figure 7,
where both initial and final SOCs of the Li-ion BESS have been set to 5% capacity of the rated energy.
To concentrate on saving the bill, α has been set to a large constant. For the weekly operating mode,
adjusted on-peak load is decreased to 11.98 MW with the full discharging power, when the optimization
is solved to satisfy the objective function (22) without consideration of the historical peak value by
setting Dmax,o = 0. Since on-peak loads in the first four days (weekdays) are relatively lower than in
the last three days (weekends), charge and discharge of the ESS are focusing on saving the energy
cost during weekdays while they are focusing on reducing on-peak loads during the weekends. If the
demand charge considers the historical peak-value and it is set to Dmax,o = 13 MW, the customer’s
on-peak decreases only to 13 MW and the ESS is scheduled to save the energy cost elsewhere. If the
demand charge considers the historical peak-value but it is set to Dmax,o = 16 MW, the optimization is
solved only to concentrate on saving the energy cost (arbitrage) since Dmax,o is greater than the peak
load during a week. Hourly operating schedules of the ESS according to Dmax,o are shown in Figure 8.Energies 2017, 10, 207 10 of 17 
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The results for the daily operation mode are shown in Figures 9 and 10. Compared with the
weekly mode, if the demand charge does not consider the historical peak value by setting Dmax,o = 0 on
the first day of billing month, the ESS is scheduled to concentrate on reducing daily peak and Dmax,o is
increasingly updated every day during the first week as shown in Figure 9a. The ESS is scheduled to
reduce daily peak to 11.98 MW and to save the energy cost elsewhere on the day during remaining
three weeks as shown in Figure 9b since the values of Dmax,o are equally set to 11.98 MW until the end
of the billing month. If the demand charge considers the historical peak-value for the daily operation
mode and it is set to Dmax,o = 13 MW and Dmax,o = 16 MW, the schedules of ESS are similar with those
of the weekly operation mode while the used energies of ESS are equal to 74.12 MWh and 81.05 MWh.Energies 2017, 10, 207 11 of 17 
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The operation results and customer’s cost savings for the two operation modes are summarized
in Table 2. In both modes, the modified peak values for demand charge are the same as 11.98 MW,
13 MW, and 16 MW when Dmax,o = 0, Dmax,o = 13 MW, and Dmax,o = 16 MW, respectively. Compared
with the weekly mode, the used energy for the daily operation mode decreases 1.42%, but total cost
savings is 1.38 million KRW smaller due to the lower energy savings when Dmax,o = 0. On the other
hand, the used energies and cost savings for the daily mode are equal to those for the weekly mode
when Dmax,o = 13 MW and Dmax,o = 16 MW. Total cost savings from the ESS can be expected to be
45.27 million KRW, which is the sum of demand charge savings of 15.89 million KRW and energy
charge savings of 29.38 million KRW, and 5.57% reduction from the total electric bill without ESS when
Dmax,o = 13 MW. Only energy savings of 31.12 million KRW can be expected due to no reduction of the
peak value when Dmax,o = 16 MW. As a result from the schedule of weekly operation mode, reduced
cycle-life of ESS is calculated to 38.21 cycles, 40.24 cycles, and 44.00 cycles during four weeks when
each Dmax,o is set to 0 MW, 13 MW, and 16 MW, respectively. Reduced cycle-life from the schedule of
daily operation mode is calculated to 37.67 cycles, 40.24 cycles, and 44.00 cycles when each Dmax,o is
set to 0 MW, 13 MW, and 16 MW, respectively.

Table 2. Customer’s cost savings for the electric bill minimization during four weeks.

Classification Weekly Operation Mode Daily Operation Mode

Consideration of Historical Peak-value No Yes Yes No Yes Yes

Dmax,o (MW) 0 13 16 0 13 16

Used Energy of BESS (MWh) 281.53 296.47 324.21 277.53 296.47 324.21
Applied Peak wihout BESS (MW) 15.15 15.15 16 15.15 15.15 16

Applied Peak wih BESS (MW) 11.98 13 16 11.98 13 16
Reduction of Applied Peak (MW) 3.17 2.15 0 3.17 2.15 0

Demand Charge Savings (million KRW) 23.39 15.89 0 23.39 15.89 0
Energy Charge Savings (million KRW) 25.94 29.38 31.12 24.56 29.38 31.12

Total Savings (million KRW) 49.34 45.27 31.12 47.94 45.27 31.12
Savings Rate 6.07% 5.57% 3.80% 5.90% 5.57% 3.80%

Reduced Cycle-life (cycles) 38.21 40.24 44.00 37.67 40.24 44.00

5. Conclusions

This paper presented linear programming models for short-term optimal operational scheduling
of ESSs as the energy time-shifting application in a power system. As a follow-up to the existing linear
energy arbitrage model in an ESS owner perspective, we developed linear programming framework for
peak-shaving and load-leveling from the aspect of system operator, and for electric bill minimization
model from the perspective of end users. The proposed linear models have been implemented and
verified in a practical power system and a large-scale industrial customer using historical demand and
energy prices. Under the forecast data, they can effectively solve the short-term operational scheduling
problem of ESSs, promising that they can also be applied in other operational problems. The proposed
linear peak-shaving and load-leveling problems can give a system operator an effective tool to secure
the system reliability by making use of the operational scheduling models of grid-scale ESSs while
existing energy arbitrage model can be included in traditional unit commitment problem solved by
ISO. Moreover, the electric bill minimization model can be also applied in the energy management
system for a grid-connected microgrid consisting of ESSs as well as other distributed resources to
minimize production cost for industrial or commercial customers. Developing short-term operational
scheduling models of the ESS considering stochastic linear formulation will be our future works.
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Nomenclature

Indices

t Index of time intervals in a decision horizon T, t ∈ T
j Index of energy storage systems, j ∈ N

Variables

Dt′ Adjusted demand by charging and discharging of ESSs at time interval-t

Dmax The maximum demand with charging/discharging operation of ESSs during operating period
(or the highest load to impose the demand charge in an end-user perspective)

Dmax,o End-user’s historical maximum load
Dmax,g The larger value between Dmax,o and Dmax

Dmin The minimum demand with charging/discharging operation of ESSs
epc

j,t Charging power of ESS-j from the grid at time interval-t
epd

j,t Discharging power of ESS-j injected to the grid at time interval-t
EPc

j,t Charging power in ESS-j at time interval-t
EPd

j,t Discharging power from ESS-j at time interval-t
SOCj,t State-of-charge of ESS-j at time interval-t
uc

j,t Binary variable which is equal to 1 if ESS-j is under charge at time interval-t
ud

j,t Binary variable which is equal to 1 if ESS-j is under discharge at time interval-t

Constants

αc
j A positive constant to limit the number of charging cycles of ESS-j during the operation period

αd
j A positive constant to limit the number of discharging cycles of ESS-j during the operation period

Dt Estimated demand at time interval-t
EPc

j Minimum charging power of ESS-j

EPc
j Maximum charging power of ESS-j

EPd
j Minimum discharging power of ESS-j

EPd
j Maximum discharging power of ESS-j

Pre
t Power production of renewable resource at time interval-t

RE
t Energy price at time interval-t

RD Demand price imposed on Dmax of end-user
SOCo

j Initial state-of-charge of ESS-j
SOCmax

j Maximum state-of-charge limit of ESS-j
SOCmin

j Minimum state-of-charge limit of ESS-j
SOClower

j,T Lower bound of the state-of-charge of ESS-j at final time interval-T
SOCupper

j,T Upper bound of the state-of-charge of ESS-j at final time interval-T
ηc

j Charging efficiency of ESS-j
∆t The time interval unit in hours
ηd

j Discharging efficiency of ESS-j
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Appendix A

Table A1. Forecasted demand for peak-shaving/load-leveling (MW) [23].

Hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 4042 4389 4397 4586 4695 4688 4398
2 3864 4132 4141 4339 4439 4441 4161
3 3756 3984 4003 4152 4281 4273 4004
4 3707 3886 3904 4033 4183 4154 3895
5 3707 3866 3885 4014 4153 4125 3855
6 3787 3915 3934 4063 4193 4125 3845
7 4024 4153 4161 4281 4411 4312 3943
8 4380 4518 4507 4656 4796 4529 4031
9 4956 5054 5001 5201 5391 4966 4198

10 5361 5459 5386 5607 5836 5343 4445
11 5559 5677 5604 5835 6074 5580 4673
12 5638 5766 5703 5924 6173 5649 4793
13 5418 5546 5534 5785 5894 5430 4812
14 5657 5794 5782 6004 6153 5619 4931
15 5777 5884 5872 6065 6273 5680 4951
16 5737 5835 5833 6035 6203 5590 4941
17 5738 5805 5794 5995 6143 5461 4921
18 5608 5666 5664 5875 5954 5251 4900
19 5459 5517 5504 5716 5784 5201 4931
20 5428 5527 5523 5725 5763 5299 5057
21 5427 5545 5541 5773 5772 5397 5177
22 5237 5327 5333 5525 5554 5239 5069
23 5012 5060 5065 5246 5277 5032 4862
24 4845 4863 4879 5050 5070 5684 4585

Table A2. Energy prices for peak shaving and load leveling (KRW/kWh) [23].

Hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 47.61 107.38 108.24 110.12 110.53 113.8 108.25
2 43.89 68.20 68.2 108.71 109.41 109.67 68.21
3 43.39 47.55 47.57 67.91 81.53 80.76 47.58
4 42.97 43.93 43.92 47.45 49.77 66.60 44.24
5 42.97 43.73 43.92 44.74 49.59 49.66 43.89
6 43.42 47.55 44.17 47.45 67.83 68.02 43.74
7 68.30 68.20 68.20 83.30 109.01 108.66 44.53
8 116.47 109.45 109.95 110.68 111.27 111.38 47.58
9 116.31 166.42 114.91 119.27 115.53 115.92 68.21

10 116.31 116.37 115.60 127.04 135.38 118.47 108.62
11 157.06 116.62 116.17 131.60 140.13 117.02 109.94
12 157.06 117.11 116.35 133.27 141.37 116.86 110.34
13 116.53 117.11 116.12 133.96 132.38 116.86 111.05
14 116.53 134.78 132.21 136.75 134.39 116.77 111.22
15 117.32 127.10 136.08 131.89 145.79 117.98 111.65
16 117.32 127.53 127.66 136.10 140.57 118.17 111.65
17 117.32 128.68 121.64 141.06 139.94 118.55 111.65
18 117.32 116.12 130.11 133.22 134.49 115.10 114.21
19 116.37 116.15 121.64 118.97 130.72 118.70 115.15
20 157.06 116.30 133.94 131.64 132.79 118.70 115.20
21 157.06 116.47 124.92 142.26 131.34 130.29 117.78
22 116.99 116.47 116.49 116.04 125.12 119.78 115.20
23 116.99 116.47 115.63 115.41 115.12 116.82 117.77
24 116.99 116.47 113.4 114.68 114.66 164.46 114.84
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Table A3. TOU rate of Industrial (B), high-voltage (B), and Option-II by KEPCO [21].

Demand Charge 7380 (KRW/kW)

Energy Charge
(KRW/kWh)

Time Period Summer Spring/Fall Winter

Off-peak 56.2
(23:00~09:00)

56.2
(23:00~09:00)

63.2
(23:00~09:00)

Mid-peak

108.5
(09:00~10:00,
12:00~13:00,
17:00~23:00)

78.5
(09:00~10:00,
12:00~13:00,
17:00~23:00)

108.5
(09:00~10:00,
12:00~17:00,
20:00~22:00)

On-peak
189.7

(10:00~12:00,
13:00~17:00)

108.8
(10:00~12:00,
13:00~17:00)

164.7
(10:00~12:00,
17:00~20:00,
23:00~23:00)

Effective date: 21 November 2013.

Table A4. Forecasted load of an industrial customer (MW).

Hour Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 4.29 2.54 2.70 2.58 2.64 2.68 2.58
2 2.56 2.27 2.27 2.27 2.31 2.30 2.30
3 0.69 0.69 0.68 0.69 0.68 0.69 0.69
4 0.68 0.66 0.66 0.67 0.66 0.70 0.68
5 1.28 0.90 0.90 0.91 0.88 0.89 0.91
6 8.19 4.67 4.70 4.69 4.69 3.64 3.58
7 5.60 5.54 5.49 5.58 7.27 4.98 4.42
8 8.27 8.35 8.38 8.20 8.28 8.37 8.29
9 8.47 8.53 8.38 8.47 8.48 7.15 7.08

10 10.92 11.26 11.07 10.80 10.83 12.53 12.43
11 12.32 12.40 12.39 12.18 13.31 15.10 15.01
12 11.06 10.69 10.49 10.84 10.52 10.69 10.47
13 9.24 9.33 9.30 9.45 10.66 10.25 10.22
14 10.99 11.01 10.80 10.99 12.72 13.06 12.74
15 12.07 12.23 12.36 12.14 13.41 15.15 14.19
16 10.55 10.82 10.95 10.46 13.54 12.63 12.46
17 9.90 10.23 10.25 10.22 12.11 11.89 9.92
18 11.18 11.34 11.35 11.43 11.31 12.13 12.14
19 10.41 10.48 10.43 10.53 12.63 11.29 11.38
20 10.27 10.37 10.30 10.53 12.66 12.62 12.60
21 10.16 10.22 10.29 10.33 12.93 12.75 12.51
22 9.73 9.77 9.75 9.74 12.21 11.42 11.26
23 8.32 8.41 8.39 8.53 8.81 9.72 10.35
24 5.12 5.26 5.21 5.74 5.13 6.82 7.22
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