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Abstract: Due to the low cost, small size, and ease of control, the switched-capacitor (SC)
battery equalizers are promising among active balancing methods. However, it is difficult to
achieve the full cell equalization for the SC equalizers due to the inevitable voltage drops across
Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) switches. Moreover, when the voltage
gap among cells is larger, the balancing efficiency is lower, while the balancing speed becomes slower
as the voltage gap gets smaller. In order to soften these downsides, this paper proposes a cell-to-cell
battery equalization topology with zero-current switching (ZCS) and zero-voltage gap (ZVG) among
cells based on three-resonant-state SC converters. Based on the conventional inductor-capacitor (LC)
converter, an additional resonant path is built to release the charge of the capacitor into the inductor
in each switching cycle, which lays the foundations for obtaining ZVG among cells, improves the
balancing efficiency at a large voltage gap, and increases the balancing speed at a small voltage gap.
A four-lithium-ion-cell prototype is applied to validate the theoretical analysis. Experiment results
demonstrate that the proposed topology has good equalization performances with fast equalization,
ZCS, and ZVG among cells.

Keywords: battery equalizers; battery management systems; switched-capacitor (SC) converters;
zero-voltage gap (ZVG); modularization; electric vehicles (EVs)

1. Introduction

The world is being confronted with unprecedented crises, i.e., the depletion of fossil fuels and the
global warming [1]. Energy conservation is becoming of paramount concern to people. In response
to the crises, electric vehicles (EVs) have been implemented and are considered to be the inevitable
development trend of vehicles for the future [2]. Due to high energy density, long lifetime, and
environmental friendliness, lithium-based batteries have been dominating the high power battery
packs of EVs [3,4]. However, the terminal voltage of a single lithium battery cell is usually low, e.g.,
3.7 V for lithium-ion batteries and 3.2 V for lithium iron phosphate (LiFePO4) batteries [5,6]. In order
to meet the demands of the load voltage and power, lithium batteries are usually connected in series
and parallel [7]. For example, Tesla Model S uses 7616 lithium-ion 18650 cells connected in series and
parallel [8]. Unfortunately, there are slight differences among cells in terms of capacity and internal
resistance, which cause the cell voltage imbalance as the battery string is charged and discharged.
On the one hand, this imbalance reduces the available capacity of battery packs. On the other hand, it
may lead to over-charge or over-discharge for a cell in the battery pack, increasing safety risks. In fact,
the most viable solution for this problem might not originate merely from the improvement in the
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battery chemistry. It also uses suitable power electronics topologies to prevent the cell imbalance,
which is known as battery equalization.

During the last few years, many balancing topologies have been proposed, which can be classified
into two categories: the passive balancing methods [7,9] and the active balancing methods [10–32].
The passive equalizers employ a resistor connected in parallel with each cell to drain excess energy
from the high energy cells [7,9]. These methods have the outstanding advantages of small size,
low cost, and easy implementation. However, their critical disadvantages are energy dissipation
and heat management problems [7]. To overcome these drawbacks, active cell balancing topologies
are proposed, which employ non-dissipative energy-shuttling elements to move energy from the
strong cells to the weak ones [7], reducing energy loss. Therefore, active balancing methods have
higher balancing capacity and efficiency than the passive equalization ones. They can be further
divided into three groups, which are capacitor based [10–18], inductor based [19–21], and transformer
based [22–32] methods. Among these active balancing topologies, switched-capacitor (SC) based
solutions have the inherent advantages of smaller size, lower cost, simpler control, and higher efficiency.
Ref. [10] proposes an SC equalizer for series battery packs. As shown in Figure 1a, one capacitor is
employed to shift charge between the adjacent two cells. The capacitor is switched back and forth
repeatedly, which diffuses the imbalanced charge until the two cell voltages match completely [10].
The main disadvantage of this structure is the high switching loss. To solve this problem, an automatic
equalization circuit based on resonant SC converters is proposed in [15]. As shown in Figure 1b, an
inductor L0 is added to form a resonant inductor-capacitor (LC) converter, which operates alternatively
between the charging state and discharging state with zero-current switching (ZCS) to automatically
balance the cell voltages [15]. However, it is difficult to apply this topology to the systems with low
voltage gap among cells. For example, the voltage difference among lithium-ion battery cells is not
allowed to exceed 0.1 V [15]. This small voltage difference causes the Metal-Oxide-Semiconductor
Field Effect Transistor (MOSFETs) of the equalizers to fail to conduct, which results in the inevitable
residual voltage gap among cells. Moreover, the equalization current becomes smaller as the voltage
gap gets smaller, resulting in a very long balancing time.
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Figure 1. Battery equalizers based on switched-capacitor (SC) converters. (a) the classical SC equalizer 

[10]; (b) the resonant SC equalizer [15]; and (c) the proposed equalizer based on an inductor-capacitor-

switch (LCS) converter. 
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Figure 1. Battery equalizers based on switched-capacitor (SC) converters. (a) the classical SC
equalizer [10]; (b) the resonant SC equalizer [15]; and (c) the proposed equalizer based on an
inductor-capacitor-switch (LCS) converter.

In order to overcome these problems, a battery equalizer is proposed based on a resonant LC
converter and boost converter that offers several major advantages, e.g., ZCS and zero-voltage gap
(ZVG) among cells, etc. [16]. However, the balancing efficiency of this topology is strongly related to
the voltage conversion ratio, which is expressed as ηe = Voutput/Vin. The lower the conversion ratio
(or the larger the voltage difference), the larger the balancing current, but the lower the balancing
efficiency. This means that high efficiency cannot be achieved at a large voltage gap. Ref. [33] proposes
a high-efficiency SC converter that decouples the efficiency from the voltage conversion ratio. Ref. [34]
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applies the switched-capacitor gyrator to photovoltaic systems, demonstrating ultimate improvement
in the power harvesting capability under different insolation levels. Based on these works, the
objective of this paper is to introduce an adjacent cell-to-cell battery equalization topology based on
three-resonant-state LC converters, with the potential of fulfilling the expectations of high current
capability, high efficiency, easy modularization, ZCS, and ZVG among cells. As shown in Figure 1c,
except the classical design, an additional switch Q4 is added to be connected in parallel with the
LC tank, which is hereinafter to be referred as the inductor-capacitor-switch (LCS) converter. This
structure obtains another resonant current path to release the residual energy stored in the capacitor to
the inductor, which lays the foundations to achieve the bi-directional power flow and weakens the
couplings of a large voltage gap with low efficiency and a small voltage gap with slow balancing speed.

2. The Proposed Equalizer

2.1. Basic Circuit Structure

As shown in Figure 2, the proposed equalizer can be easily extended to a long series battery
string without limit. The architecture consists of n battery cells connected in series and n − 1 resonant
LCS tanks connected in parallel with each two adjacent battery cells, through which energy can be
exchanged among all cells.

The proposed equalizer has several major advantages per the following:

(1) The proposed equalizer can achieve ZCS for all MOSFETs, and obtain ZVG among cells.
(2) Due to the other resonant current path, the balancing efficiency is improved at a large voltage

gap among cells, and the balancing speed is increased at a small voltage gap.
(3) By changing the parameters of the resonant LCS converter, different balancing speeds can be

achieved to meet the requirements of different energy storage devices.
(4) The concept is modular [35], and the topology can be extended to any long series-connected

battery strings or individual cells without limit.
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Figure 2. Schematic diagram of the proposed system for n series-connected battery cells.

2.2. Operation Principles

In order to simplify the analysis for the operation states, the following assumptions are made: the
proposed equalizer is applied to two cells connected in series, i.e., B0 and B1, where B0 is over-charged
and B1 is undercharged. The operation principles are shown in Figure 3. The switching sequence is set
as (Q0, Q2), (Q1, Q3), and Q4, as shown in Figure 4. Three resonant states S1–S3 are employed to charge,
discharge, and release the LC tank, which is connected to a voltage of VB0, VB1, or 0 in each switching
state, respectively. Figure 5 shows the theoretical waveforms of the proposed equalizer at VB0 > VB1.
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Charge State S1 [t0-t1]: At t0, switches Q0 and Q2 are turned ON with ZCS. The LC tank is
connected with B0 in parallel through Q0 and Q2, as shown in Figure 3a. B0, L0, and C0 form a resonant
current loop. The capacitor C0 is charged by B0. vC0 increases from −Vh2, which is a remnant of C0

from the last period (see Figure 5). iL0 and vC0 in this state can be expressed as

iL0(t) =
VB0 + Vh2

Zr ·
√

1− ρ2
· e−ρωn(t−t0) · sin

[
ωn ·

√
1− ρ2 · (t− t0)

]
, (1)

vC0(t) = −Vh2 + (VB0 + Vh2) ·
{

1− e−ρωn(t−t0)√
1− ρ2

· cos
[

ωn ·
√

1− ρ2 · (t− t0)

]}
, (2)

where Zr =
√

L0/C0, ωn = 1/
√

L0C0, and ρ = RS/2Zr. RS represents the equivalent parasitic
resistance in each current path.

The charge state ends when iL0 crosses zero at t = t1. From Equation (1), the duration of this state
is determined by
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∆t = t1 − t0 =
π

ωn ·
√

1− ρ2
. (3)

At t1, vC0 is positively charged to Vh1, which can be given by

Vh1 = vC0(t1) = (VB0 + Vh2) · (1 +
e−ρωn∆t√

1− ρ2
)−Vh2. (4)

Discharge State S2 [t1-t2]: At t1, the switches Q1 and Q3 are turned ON with ZCS, connecting B1

to the resonant LC tank. B1, L0, and C0 form a resonant loop. B1 is charged by C0. iL0 and vC0 in this
state are given as

iL0(t) = −
Vh1 −VB1

Zr ·
√

1− ρ2
· e−ρωn(t−t1) · sin

[
ωn ·

√
1− ρ2 · (t− t1)

]
, (5)

vC0(t) = Vh1 − (Vh1 −VB1) ·
{

1− e−ρωn(t−t1)√
1− ρ2

· cos
[

ωn ·
√

1− ρ2 · (t− t1)

]}
. (6)

At t = t2, the discharge state ends when iL0 drops to zero. The voltage Vr of C0 at t = t2 is
represented by

Vr = Vh1 − (Vh1 −VB1) · (1 +
e−ρωn∆t√

1− ρ2
). (7)

Release State S3 [t2-t3]: During this state, the resonant LC tank is short-circuited by turning on
the switch Q4 with ZCS. This releases the residual charge of the capacitor into the inductor and even
charges reversely the capacitor C0, so B0 can charge C0 with a large current at the beginning of S1. This
state provides the opportunity to transfer energy from a low voltage cell to a high voltage one, which
lays the foundations to achieve ZVG among cells. iL0 and vC0 in this state are given by

iL0(t) = −
Vr

Zr ·
√

1− ρ2
e−ρωn(t−t2) · sin

[
ωn ·

√
1− ρ2 · (t− t2)

]
, (8)

vC0(t) = Vr ·
e−ρωn(t−t2)√

1− ρ2
· cos

[
ωn ·

√
1− ρ2 · (t− t2)

]
. (9)

The release state ends when iL0 crosses zero at t = t3. The voltage Vh2 of C0 at t = t3 can be
expressed as

−Vh2 ≡ vC0(t3) = Vr ·
e−ρωn(t3−t2)√

1− ρ2
· cos

[
ωn ·

√
1− ρ2 · (t3 − t2)

]
= −λVr, (10)

where

λ =
e−ρωn∆t√

1− ρ2
=

e−πρ/
√

1−ρ2√
1− ρ2

. (11)

By solving Equations (4), (7), and (10), Vh1, Vr, and Vh2 can be calculated as

Vh1 =
VB0 + λ2VB1

1− λ + λ2 , (12)

Vr =
VB1 − λVB1

1− λ + λ2 , (13)

Vh2 =
λ(VB1 − λVB0)

1− λ + λ2 . (14)



Energies 2017, 10, 206 6 of 15

The operating period T is composed of three resonant states, which can be expressed as

T =
3π

ωn ·
√

1− ρ2
=

3π ·
√

L0C0√
1− ρ2

. (15)

The direction of the balancing power flowing can be changed by controlling the switching
sequences. According to the above analysis, the switching sequence (Q0, Q2), (Q1, Q3), Q4 is to
deliver energy from B0 to B1. In the case of energy transferred from B1 to B0, the switching sequence is
changed to (Q1, Q3), (Q0, Q2), Q4. Figure 6 shows the three consecutive operating states of the proposed
equalizer: (a) charge state; (b) discharge state; and (c) release state at VB0 < VB1. Figure 7 shows the
corresponding switching sequence. It can be seen that, by controlling the switching sequence, energy
can be delivered between two adjacent cells arbitrarily, by which ZVG between cells can be achieved
without any limit.

It is important to note that the release state can also be achieved by turning simultaneously on Q1

and Q2 without using Q4, which results in a reduced MOSFET number but complex control. Figures 8
and 9 show the three consecutive operating states without using Q4 and the corresponding switching
sequences at VB0 > VB1. Figures 10 and 11 show the three consecutive operating states without using
Q4 and the corresponding switching sequences at VB0 < VB1. The operation principles of this system
are similar to those shown in Figures 3–6 and will not be described here in detail.
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2.3. Equalizing Power and Efficiency

During one switching period T, the charge delivered to C0 from B0 is

∆QD = C0 · (Vh1 + Vh2), (16)

and the charge received by B1 is expressed as

∆QR = C0 · (Vh1 −Vr). (17)

Using Equations (12)–(14) and (16), the average power flowing out of B0 is obtained as

Pavg,D = ∆QD ·VB0 =
VB0 ·

√
1− ρ2

3πZr
× (1 + λ) · [(1− λ) ·VB0 + λ ·VB1]

1− λ + λ2 , (18)

and, using Equations (12)–(14) and (17), the average power flowing into B1 is given as

Pavg,R = ∆QR ·VB1 =
VB1 ·

√
1− ρ2

3πZr
× (1 + λ) · [VB0 − (1− λ) ·VB1]

1− λ + λ2 . (19)

Based on Equations (18) and (19), the equalization efficiency ηe can be calculated as

ηe =
Pavg,R

Pavg,D
=

VB1

VB0
· VB0 − (1− λ) ·VB1

(1− λ) ·VB0 + λ ·VB1
× 100%. (20)

Figure 12 shows the balancing efficiency curves obtained from Equation (20) as a function of the
L0/C0 ratio, for various RS, under the conditions of VB0 = 3.3 V and VB1 = 3.2 V. It can be observed
that the efficiency increases as the L0/C0 ratio increases or RS decreases, which show how the coupling
of the large voltage gap with low efficiency can be weakened by keeping RS as low and the L0/C0

ratio as high as possible. However, from Equations (1) and (5), it can be concluded that the balancing
current would become smaller as the L0/C0 ratio increases. Therefore, an appropriate L0/C0 ratio
(e.g., L0/C0 = 10) should be selected in order to achieve a higher balancing efficiency and larger
balancing current.

Figure 13 presents the efficiency curve as a function of power at L0/C0 = 10 and RS = 0.18 Ω.
The balancing efficiency rises rapidly when the power increases from 0.12 W to 0.5 W and basically
stays at a high value when the power increases from 0.5 W to 0.9 W, but decreases slightly when the
power increases from 0.9 W to 1.3 W. The peak efficiency of 91.5% is achieved at 0.74 W.
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MicroAutoBox®  II manufactured by dSPACE (Wixom, MI, USA) was used for the digital control, 

which can generate Pulse-Width Modulation (PWM) singles to control the MOSFETs, and receive the 

cell voltage information by analog-to-digital converters. 
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3. Experimental Results

In order to verify the theoretical analysis and evaluate the equalization performance of the
proposed system, a prototype for four 6200-mA·h lithium-ion cells is implemented and tested. Figure 14
shows the photographs of the experimental setup. The MOSFETs are implemented by STP220N6F7
MOSFETs with 2.4 mΩ internal resistance. The values of L0 and C0 are determined as 10.99 µH and
1.05 µF, respectively. The measured equivalent resistance RS in the LC converter is about 0.18 Ω.
A MicroAutoBox® II manufactured by dSPACE (Wixom, MI, USA) was used for the digital control,
which can generate Pulse-Width Modulation (PWM) singles to control the MOSFETs, and receive the
cell voltage information by analog-to-digital converters.
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Figure 15 shows the experimental waveforms of resonant current iL0 and capacitor voltage vC0

with different switching sequences. It can be observed that the MOSFETs are turned ON and OFF
at zero current state, thus significantly reducing the switching losses. This provides the equalizer
with the potential to work at higher frequencies, leading to a small size of the proposed equalizer.
From Figure 15a,b, it can be seen that controlling the switching sequence can govern the direction of
the balancing power flowing. This agrees well with the theoretical waveforms.
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proposed method. We observe that, after about 2056 s, the cell voltages are fully balanced to the same 

value of 3.171 V, showing the outstanding balancing performances (i.e., fast balancing and ZVG 
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balancing process. 

Figure 15. Experimental waveforms of the proposed equalizer with different switching sequences.
(a) energy transfer from B0 to B1; (b) energy transfer from B1 to B0.

Figure 16 shows the measured efficiency ηe as a function of power at L0/C0 ≈ 10. When power
increases from 0.226 to 0.595 W, ηe increases from 47.7% to 89.1%. When power increases from 0.595 to
0.913 W, ηe decreases slightly from 89.1% to 81.5%. This indicates that the proposed equalizer obtains a
high efficiency over a wide range of output power.Energies 2017, 10, 206 11 of 16 
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Figure 16. Measured efficiency ηe as a function of power at L0/C0 ≈ 10.

Figure 17 shows the experimental results for two cells connected in series. The initial cell voltages
are set as VB0 = 3.240 V and VB1 = 2.574 V, respectively. The initial maximum voltage gap is about
0.666 V. It is important to note that, in order to achieve the initial cell voltages, the battery string is
not balanced until 200 s’ standing. Figure 17a shows the balancing result with the classical switched
capacitor. After about 8.2 h, the voltage gap between the cells is still larger than 0.109 V, which shows
that the switched capacitor method cannot achieve ZVG between the two cells. Figure 17b shows the
balancing result with the resonant switched capacitor. The balancing speed is increased a lot, but ZVG



Energies 2017, 10, 206 11 of 15

between cells is still not achieved after 8000 s. Figure 17c shows the balancing result with the proposed
method. We observe that, after about 2056 s, the cell voltages are fully balanced to the same value of
3.171 V, showing the outstanding balancing performances (i.e., fast balancing and ZVG between cells)
of the proposed scheme. Figure 17d shows the balancing result using the proposed equalizer without
the release sate. It can be seen that the balancing speed becomes slow, and ZVG between cells cannot
be achieved, which indicates that the release sate plays an active role in the balancing process.
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Figure 18 shows the experimental results for four cells connected in series. Because of the
nonlinear behavior of lithium-ion batteries, it is very difficult to determine when the cell voltages are
fully balanced. Thus, it is optimal to take numerous small equalization cycles to complete the energy
exchange. In our method, one equalization cycle includes 10-s equalization time and 20-s standing
time for the equalizer. The initial cell voltages are set as VB0 = 3.216 V, VB1 = 2.783 V, VB2 = 3.233 V,
and VB3 = 3.023 V, respectively. After about 12,960 s, a balanced voltage of 3.096 V is achieved with
about 178 equalization cycles.
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4. Comparison with Conventional Equalizers

In order to systematically evaluate the proposed scheme, Table 1 gives a comparative study with
conventional battery equalizers focusing on the components, balancing speed, balancing efficiency,
ZCS, ZVG among cells, and modularization. It is assumed that the battery string includes n cells
connected in series, which is divided into m battery modules. Components focuses mainly on the
numbers of switches (SW), resistors (R), inductors (L), capacitors (C), diodes (D), and transformers
(T). The equalization speed is determined by the equalization current, the number of cells involved in
balancing at the same time, and the average switching cycles to complete the charge transportation
from the source cell to the target one. The balancing efficiency is evaluated according to the average
energy conversion efficiency for one switching cycle and the average switching cycles to transfer
energy from a cell to another one. ZCS and ZVG are evaluated according to whether the systems
can achieve ZCS for all MOSFETs and obtain ZVG among cells in a battery string. Modularization is
evaluated according to the implemented complexity of the equalizers when a new cell is added. These
balancing performance parameters are fuzzified into three fuzzy scales, for which “H” represents
the higher performance, “L” represents the lower performance, and “M” represents the medium
performance, specifically, Speed (L: low, H: high), Efficiency (L: low, H: high), ZCS (L: no, H: yes), ZVG
among cells (L: no, M: yes), and Modularization (L: difficult, H: easy).

All of the existing solutions provide good performance targeting. For example, the dissipative
equalization method [9] has the outstanding advantages of small size, low cost, and easy
implementation. However, the excess energy is consumed by the shunt resistors, resulting in a
very low balancing efficiency.

SC based methods [10–14] tend to be lighter and smaller due to the absence of any magnetic
components. Moreover, they have the outstanding advantages of simple control, easy modularization,
and automatic equalization without cell monitoring circuits. However, the balancing efficiency is very
low at a large voltage gap among cells, and the balancing speed becomes slower as the voltage gap gets
smaller. In other words, these methods cannot have a high equalization efficiency and a fast balancing
speed at the same time.

Inductor based methods [19–21] require only inductors and MOSFETs. Therefore, the sizes
of these solutions are small, and the costs are low. These approaches can also achieve automatic
equalization among cells without the requirement of cell monitoring circuits. Moreover, they are easily
modularized and not limited to the numbers of battery cells in a battery string. However, they work in
the hard-switching mode, and the switching loss tends to be high, leading to a low balancing efficiency.
Particularly, ZVG among cells cannot be achieved due to the asymmetry of inductors and the voltage
drops across power electronic devices.

Transformer-based solutions [22–32] have the inherent advantages of easy isolation, high efficiency,
and simple control. However, it is definitely difficult to apply a single multi-winding transformer into
a long series-connected battery string because of the mismatching, bulk size, and high complexity
implementation of the multi windings. Moreover, the mismatched multi windings naturally cause the
imbalance voltages during the balancing. In addition, these methods need additional components for
the equalization among modules, leading to bulk size and loss related to the modularization.

By using an additional switch Q4 connected in parallel with the LC tank, the proposed solution
obtains another resonant current path to release the residual energy stored in the capacitor to the
inductor, which lays the foundations to achieve the bi-directional power flow and weakens the
couplings of a large voltage gap with low efficiency and a small voltage gap with slow balancing speed.
From Table 1, it is apparent that the size of the proposed equalizer is comparable with the existing
solutions. Moreover, it has clear advantages in terms of the balancing speed, efficiency, ZCS, ZVG, and
modularization, which make the proposed system be a feasible solution for EVs in the future.



Energies 2017, 10, 206 13 of 15

Table 1. Comparison of several battery equalizers.

Category
Components

Speed Efficiency ZCS ZVG Modularization
SW R L C D T

Dissipative equalizer [9] n n 0 0 0 0 M L L M H
SC [10] 2n 0 0 n − 1 0 0 L M L L H

Chain structure of SC [11] 2(n + 2m) 0 0 n + m 0 0 L M L L L
ZCS SC [15] 2n 0 n − 1 n − 1 0 0 L M H L H

Single LC resonant converter [18] 2(n + 5m) 0 m m 0 0 M M H L M
Buckboost (multiple inductors) [19] 2n 0 n − 1 0 0 0 M M L M H
Multiphase interleaved method [20] 2(n − 1) 0 n − 1 0 0 0 M M L M L

Optimized next-to-next balancing [21] 4(n − 1) 0 2(n − 1) 0 0 0 L M L M H
Flyback conversion [22] 2(n − m) 0 0 0 2(n − m) m M M L M L

Flyback or forward conversion [23] 2n 0 0 0 0 m M M L M M
Forward conversion [24] n 0 0 n 0 m H H H L M

Wave-trap [28] 2m 0 n n n n M M H M L
Proposed equalizer with Q4 5(n − 1) 0 n − 1 n − 1 0 0 H M H H H

Proposed equalizer without using Q4 4(n − 1) 0 n − 1 n − 1 0 0 H M H H H

n is the number of cells in the battery string; m is the number of battery modules in the battery string; SC (Switched capacitor); ZCS (zero-current switching); LC (inductor capacitor).



Energies 2017, 10, 206 14 of 15

5. Conclusions

In this paper, an adjacent cell-to-cell equalizer with ZCS and ZVG based on three-resonant-state
SC converters is proposed. The scheme configuration, modular design, operation principles, theoretical
analysis, cell-balancing performance, and comparative studies with the conventional battery equalizers
are presented. The proposed scheme obtains ZCS due to the three resonant states of the LCS converter,
which reduces inherently the frequency dependent switching losses, allowing efficient operation at
very high switching frequencies. ZVG among cells is achieved thanks to the newly added resonant
current path, which also weakens the couplings of a large voltage gap with low efficiency and a
small voltage gap with slow balancing speed. A prototype with four 6200-mA·h lithium-ion cells is
optimally implemented. Experiment results show that the proposed scheme exhibits good balancing
performance with ZCS and ZVG, and the measured peak conversion efficiency is 89.1% at L0/C0 ≈ 10.
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