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Abstract: The ability to obtain appropriate parameters for an advanced pressurized water reactor
(PWR) unit model is of great significance for power system analysis. The attributes of that ability
include the following: nonlinear relationships, long transition time, intercoupled parameters and
difficult obtainment from practical test, posed complexity and difficult parameter identification.
In this paper, a model and a parameter identification method for the PWR primary loop system were
investigated. A parameter identification process was proposed, using a particle swarm optimization
(PSO) algorithm that is based on random perturbation (RP-PSO). The identification process included
model variable initialization based on the differential equations of each sub-module and program
setting method, parameter obtainment through sub-module identification in the Matlab/Simulink
Software (Math Works Inc., Natick, MA, USA) as well as adaptation analysis for an integrated model.
A lot of parameter identification work was carried out, the results of which verified the effectiveness
of the method. It was found that the change of some parameters, like the fuel temperature and coolant
temperature feedback coefficients, changed the model gain, of which the trajectory sensitivities were
not zero. Thus, obtaining their appropriate values had significant effects on the simulation results.
The trajectory sensitivities of some parameters in the core neutron dynamic module were interrelated,
causing the parameters to be difficult to identify. The model parameter sensitivity could be different,
which would be influenced by the model input conditions, reflecting the parameter identifiability
difficulty degree for various input conditions.

Keywords: primary loop system model; pressurized water reactor (PWR) units; parameter identification;
sensitivity analysis

1. Introduction

Nuclear power has a large unit capacity and requires high-level security. Nuclear power units
are sensitive to system voltage and frequency fluctuations, because a sudden load rejection or cutting
machine connected to the power grid may cause a big impact on the grid voltage and frequency
stability [1,2]. The second-generation, or the improved second-generation nuclear technology were
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among the most effective methods being used, until the Fukushima nuclear accident in 2011. The newly
constructed nuclear power plants (NPPs) worldwide are required to implement nuclear technology
with higher security protection systems. For example, the third-generation nuclear reactor system,
the AP1000 (i.e., Advanced Passive pressurized water reactor (PWR)) developed by Westinghouse
Electric Corporation (USA), represents one of the important approaches for nuclear power development
with unique, passive safety features, a relatively simplified plant layout design, as well as large unit
capacity and high security requirements. However, it still lacks an applicable simulation model for
third-generation PWR units. In addition, the primary loop system model parameters are still difficult
to acquire. Furthermore, obtaining an effective model and the parameters of a PWR primary loop
system is important for reactor safety, as well as for power system stabilization analysis and control.

A lot of research work has been done concerning second-generation nuclear power plant (NPP)
modeling, including simulators, simulation software and user-defined modeling of various reactor
types [3–9]. The whole process simulator of the nuclear power could provide important training
and accident simulation functions for NPP operators [3]. The Westinghouse Electric Corporation
(Pittsburgh, PA, USA) developed the high-fidelity Personal Computer Transient Analyzer (PCTRAN)
simulation software based on a personal computer in 1985, which was selected as an advanced reactor
simulation software by the International Atomic Energy Agency. It has been widely used for simulation
and transient accident analysis with high simulation efficiency [4], but the software expandibility for
power system simulation analysis was hard. The approach of predictive control was applied to the
NPP model [10]. For current large-scale power system analysis, the established model was mainly
aimed at second-generation PWR nuclear power units [7–9]. There is an urgent need to perform more
intensive studies on third-generation PWR unit models and parameters.

Much parameter identification work had been done on the excitation system and the prime mover
speed control system model [11–13], but there have only been a few studies about NPP parameter
identification. The discrete sequence estimation method was applied for parameter identification
of the nuclear reactor model [14]. Based on the simplified PWR primary loop model, the simplex
method was used for parameter identification with measured data [15,16]. The multidirectional
search method was used for parameter identification based on the reduced PWR nuclear power plant
model and for comparison of data from the Reactor Excursion and Leak Analysis Program (RELAP5)
Software (Idaho National Engineering Laboratory, Idaho Falls, ID, USA) [17]. The above NPP model
parameter identification methods have the shortcoming of high requirements for identified models
and initial parameter values, which is satisfactory for a nonlinear system or model signals with noise.
The Monte-Carlo method was adopted for state estimation of a simplified third-order neutron flux
dynamic model considering xenon poison feedback [18].

The intelligent optimization algorithm is a good solution for the NPP identification problem.
Neural networks were used for malfunction transient identification of the Hungarian Paks nuclear
power plant simulator [19]. The particle swarm optimization (PSO) algorithm has been used for
nuclear engineering applications for fuel reloading, reactor core design, plant transient identification,
maintenance scheduling and so on [20–23]. The PSO computational implementation is much
simpler [20]. PSO was also used for a mechanism model of a pressurizer in a PWR nuclear power
plant [24].

The NPP primary loop system model has a complex structure, including the following variables:
electrical, temperature and pressure. The neutron flux density of a core neutron dynamic module
changes rapidly, while the temperature and pressure changes of a steam generator module are slow.
The different orders of magnitude for parameters also make it harder to identify parameters.

The organization of this paper is as follows. The advanced PWR nuclear power plant model
was divided into several sub-modules for parameter identification and validation in Section 2.
The parameter identification method and process were developed in Section 3. For each module,
we selected appropriate tested data for input and output model variables, then preprocessed the
noise reduction, data resampling and data normalization to get the disposed data for parameter
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identification. After obtaining the variable and parameter constraints, we calculated some parameters
according to the operating characteristics and identified the other parameters. Section 4 contains the
model initialization through variable steady calculation based on differential equations and a program
setting method. The parameters were identified under various conditions using the RP-PSO algorithm
in Section 4. The integrated model adaptation was checked in comparison with the PCTRAN software
in Section 5. Thus, the primary loop system model parameters of a third-generation PWR nuclear
power plant suitable for power system analysis were obtained. The sensitivity analysis of parameters
was performed in Sections 4 and 5. The results and discussion were presented in Section 5 as well.
Section 6 presents the conclusion drawn thereof.

2. Pressurized Water Reactor Nuclear Power Plant Mathematical Model

Considering the main equipment, subsystem boundary, operating characteristics and operational
parameter testability, the PWR primary loop system model was divided into multiple sub-modules
adopting modular modeling method. The established model should fully reflect the energy generation,
transmission and transformation process in a NPP. The focus was on the subsystems that had a greater
influence on the power plant physical process. The subsystems with lower impact were simplified.

Based on the second-generation PWR nuclear power plant model [9] and the characteristics of the
third-generation nuclear power plant, the dynamic AP1000 model of the primary loop system was
established for power system simulation. It contains the core neutron dynamic module, the core fuel
and coolant temperature module, the hot line and cold line temperature module, the primary loop
average temperature module, the steam generator module, the reactor power control system module
and the main coolant pump module. Figure 1 shows each sub-module with multi-input multi-output
(MIMO) characteristics that are coupled with each other to form an integrated system.
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Figure 1. AP1000 system model diagram.

In this figure µ is the tone opening. Pref and ωref are the given unit power and speed, respectively.
PG and QG are the generator output active power and reactive power, respectively. hs is the outlet
steam specific enthalpy.

2.1. Reactor and Coolant System Model

Considering the effect of delayed neutrons, the neutron flux density is assumed in the same shape
of the spatial distribution at different times. Considering the core and coolant system as a lumped
parameter system to simulate normal operation as well as transient processes of the reactor and coolant
system, the point reactor kinetics equations of the core neutron dynamic module are as follows:
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dNr
dt = ρext−β

l Nr +
β
l Cr + (αF(TF − TF0) + αC(Tav − Tav0))Nr

dCr
dt = λNr − λCr

(1)

where l is the average neutron lifetime, β is the total share of delayed neutron group and λ is the time
delay of equivalent delayed neutron group. Cr is the precursor nuclear density of equivalent single
set of delayed neutron. αF and αC are the reactivity coefficients of the fuel temperature and coolant
temperature, respectively.

Considering the effect of nuclear fission energy on fuel temperature, as well as the heat energy
transferred from the fuel to the core coolant, according to energy conservation law and volume
balance, the mathematical model of core fuel and coolant temperature module is given by the
following expression:

dTF
dt = FfP0

µ f
Nr − Ω

µ f
TF +

Ω
2µ f

Tav +
Ω

4µ f
THL + Ω

4µ f
TCL

dTav
dt = (1−Ff)P0

µc
Nr +

Ω
µc
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2µc

Tav +
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2µc
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dTc2
dt = (1−Ff)P0

µc
Nr +

Ω
µc

TF − 4M+Ω
2µc

Tav +
4M−Ω

2µc
Tc2

(2)

where TF0 and Tav0 are the initial temperature values within the fuel and core coolant, respectively.
P0 is the core thermal power. Ff is the heating fuel share. Ω is the heat transfer coefficient between
fuel and coolant in the core. µf and µc are the heat capacities of fuel and core coolant, respectively.
M = Dsp × Cpc × mCn, in which Cpc is the coolant heat capacity and mCn is the rated coolant mass flow.

Ignoring the heat loss of coolant in the pipeline, according to energy conservation law and volume
balance, the hot line and cold line temperature module is given by the following equation:

dTHL
dt = 1

τHL
(Tc2 − THL)

dTc1
dt = 1

τCL
(TCL − Tc1)

(3)

where τHL and τCL are the coolant hotline and cold line time constants, respectively. Considering the
coolant measuring sensor characteristics, the measured average temperature of the coolant loop circuit
can be expressed using first-order inertial link as follows:

Tavg =
1

τcs + 1

(
THL + TCL

2

)
(4)

where τc is the temperature measuring time constant of coolant.

2.2. Steam Generator Module

The AP1000 NPP uses two ∆125-type U-shaped natural circulation steam generators. Assuming
the thermal power from the main pump transmitted to the primary circuit coolant can be neglected,
the specific heat of the U-shaped heat transfer tube, the specific heat and density of the coolant
are treated as constants. According to mass balance, volume balance and energy conservation law,
a steam generator model with centralized parameters containing temperature and pressure equations
is established as shown in Equation (5):
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2M−Ωp
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(5)
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where Tp is the average temperature of the primary coolant. Tm denotes the U-shaped heat pipe
temperature. KPs is the steam pressure time constant. KPs_Ts(Ps) is the conversion relation between
the main steam pressure and temperature of the secondary circuit. Ωp is the heat transfer coefficient
between coolant in steam generator and U-shaped heat pipe. ΩS is the heat transfer coefficient between
U-shaped heat pipe and secondary loop steam. µp and µm are the heat capacities of coolant in the
steam generator and U-shaped heat pipe, respectively. hfw is the inlet temperature specific enthalpy of
secondary loop feed water.

2.3. Main Coolant Pump Module

The main coolant pump of the AP1000 is a shielded motor pump, mainly used to complete the
circulation of the reactor coolant. The main coolant pump module is established considering the
influence of auxiliary power supply voltage and frequency on the main coolant pump speed and flow
rate, as shown in Equation (6):

Tpj
dω∗p
dt = M∗pe −M∗pm

M∗pe = ke1

U∗1
2(1−

ω∗p
f ∗l

)

[1+ke2 f ∗1
2(1−

ω∗p
f ∗l

)
2
] f ∗l

M∗pm = ω∗p
2

D∗sp = ω∗p/ω∗pr

(6)

where Tpj is the inertia time constant of main coolant pump rotor. M∗pe and M∗pm are the electromagnetic
torque and resistance moment per-unit values, respectively. ke1 and ke2 are the characteristic coefficients
of the asynchronous motor. ω∗p and ω∗pr are the speed and rated speed per-unit values of the
asynchronous motor, respectively; f ∗1 is the auxiliary power bus frequency per-unit value; U∗1 is
the auxiliary power bus voltage per-unit value and D∗sp is the main coolant pump flow per-unit value.

2.4. Reactor Power Control Module

The PWR reactor power control module adjusts the reactor neutron flux density which reflects
the core power by removing or inserting rods. The dead zone and hysteresis links are applied to
maintain the average primary coolant temperature in the designed control band. Figure 2 showed the
third-generation reactor power control system module including the average temperature link, the
variable amplification link, the nonlinear amplification link, the rod speed control link, the compensator
and filter link. The variable measurement links were omitted. The rod speed varies over the range of
8–72 steps per minute depending on the input signal level.
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2.5. Steam Turbine and Its Control System Module

The steam turbine of the AP1000 has characteristics of a single-shaft with four-cylinder (i.e.,
a high-pressure cylinder and three low-pressure cylinders) reheat condensing steam turbine at half
speed. A digital electric-hydraulic governor is used to respond to the frequency and power changes.
The steam turbine module, speed control system module (i.e., the governor and electro-hydraulic servo
system) and turbine bypass control system module suitable for the AP1000 are shown in Figures 3–6,
respectively, in which the main turbine steam flow is shown as follows:

QST = µ · Ps/Psn (7)

where Psn is the rated main steam pressure.
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In Figure 5, Kp, Ki and Kd are the proportional, integral and differential coefficients, respectively.
SPIDmax and SPIDmin are the upper and low limits, respectively. VELopen and VELclose are the rapid
opening and rapid closing coefficients, respectively. T2 is the time constant of oil motive stroke
feedback link, usually taken as 0.02 s. To and Tc are defined as the main on/off time constants while
To1 and Tc1 are defined as the auxiliary oil motive on/off time constants. The segmented opening and
closing tone values are determined according to actual conditions.
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Figure 6. Steam turbine bypass control system diagram.

Figure 6 shows the steam turbine bypass control system diagram in the case that a large deviation
between the turbine mechanical output power and the coolant average temperature equivalent to the
core power appeared. The steam was discharged through the bypass valve to ensure reactor safety.
τb1, τb2, τb3 and τb4 are compensator and filter time constants. The %FP symbol in Figure 6 means the
percentage of the rated full power.
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2.6. Generator Mathematical Model

As the large-scale nuclear power plant uses a half-speed steam turbine generator unit, the PARK
equation is adopted to establish the mathematical model of the six windings synchronous generator.
The voltage and flux equations are shown in Equations (8) and (9):

u = pΨ + ωΨ + ri (8)

Ψ = xi (9)

where u = [ud, uq, uf, 0, 0, 0]T, Ψ = [Ψd, Ψq, Ψf, ΨD, Ψg, ΨQ]T, i = [id, iq, if, iD, ig, iQ]T, r = diag{Rs, Rs,

Rf, RD, Rg, RQ}, ω =

[
0 −ωr 0 0 0 0

ωr 0 0 0 0 0

]
. x is a reactance matrix of size 6 × 6.

The motion equations of the generator rotor are shown in Equations (10) and (11):

Tj
dω

dt
= Tm − Te − Dω(ω−ω0) (10)

dδ

dt
= ω−ω0 (11)

where Tj is the inertial time constant of generator. Dω is the damping coefficient. Tm is the mechanical
torque. Te = Ψd × iq – Ψq × id, δ is the power angle and ω0 is the rated speed (i.e., ω0 = 1).

The model parameters were obtained according to the AP1000 design manual, the test curves of
second-generation operating PWR units and through comparison with the simulation curves from the
PCTRAN software.

3. Parameter Identification Method and Process

3.1. Particle Swarm Optimization Algorithm Based on Random Perturbation

The PSO algorithm is a bionic algorithm used to solve optimization problems. D is the parameter
dimension. The position of the i-th particle is described as xi = (xi1, xi2, · · · , xiD). The velocity of the
i-th particle is described as vi = (vi1, vi2, · · · , viD), 1 ≤ i ≤ m. The historical best point experienced
by the i-th particle is denoted as pi = (pi1, pi2, · · · , piD). The best point for all particles is denoted as
pg = (pg1, pg2, · · · , pgD). The position and velocity of the particles needed to be constantly updated
by the following equation:

vk+1
iD = vk

iD + C1 × ξ × (pk
iD − xk

iD) + C2 × η × (pk
gD − xk

iD)

xk+1
iD = xk

iD + vk+1
iD

(12)

where C1 and C2 are learning factors. ξ and η are uniformly distributed random numbers in [0,1].
k reflects the k-th number of iterations.

The concept of inertia weight was introduced in the particle’s velocity updating equation to adopt
global search followed by local search for solution efficiency [11]. The position and velocity were
written as the following:

vk+1
iD = ω× vk

iD + C1 × ξ × (pk
iD − xk

iD) + C2 × η × (pk
gD − xk

iD), Vmin ≤ vk+1
iD ≤ Vmax

ω = ωmax − (ωmax −ωmin)× k/MI, 1 ≤ k ≤ MI
(13)

where ω is the inertia weight. Vmin and Vmax are the minimum and maximum velocity values. MI is
the largest iteration.
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Let C1 and C2 change linearly and the convergence factor is introduced by the following expression:

C1 = C1max − (C1max −C1min)× k/MI
C2 = C2max − (C2max −C2min)× k/MI
xk+1

iD = xk
iD + λ× vk+1

iD

(14)

where λ is the convergence factor. The velocity and position of the particles cannot exceed their upper
and lower limits.

To further enhance the optimization ability, the particle initial population was generated by chaos
method to achieve better initial solution. The two-dimensional cat map was written as follows:{

xk+1
iD = mod(xk

iD + vk
iD, 1)

vk+1
iD = mod(xk

iD + 2vk
iD, 1)

(15)

where “mod” means modular operation.
Furthermore, the random perturbation method was introduced to avoid the parameters staying at

the boundary value of the given parameter scope and get the appropriate solution. The global optimal
value of the parameter was perturbed as follows:

zbesti = zbesti × (1+ K× randn) i ∈ [1, D] (16)

where zbesti is a certain identified parameter and “randn” stands for the standard normal distribution
function. The formula “zbesti × K× randn” reflects the perturbation value, which can make zbesti larger
or smaller, wherein K is the perturbation coefficient which is set reasonably according to the order
of magnitude of the parameter. Various parameters were chosen to be perturbed. The number
of perturbed parameters were reduced gradually during solving process to make the solution
stabilized finally.

The fitness function of the algorithm was expressed as follows:

f =

N
∑

j=1

T
∑

i=1
(yj(i)− yj0(i))2

T
, 1 ≤ n ≤ N (17)

where T is the total data points. n and N are the selected number of model output variables for
identification and the total output variable number, respectively. yj(i) and yj0(i) are the simulation and
test results of the i-th data point for the j-th output variable, respectively. The random perturbation
may not reduce the fitness function sometimes, but it increases the parameter difference which is
helpful for global parameter optimization.

3.2. Parameter Identification Process

Both the single input variable steps and multiple input variable steps were given to get the test
data under various working conditions, which was useful for the actual test work as well as for
parameter identification. The more working conditions and more output variables that were used
in one identification process instance, the more difficult the identification was. The variable and
parameter constraints were explored according to the design characteristics and the parameter effect
on the model gain. The noise reduction using wavelet de-noising and data smoothing were applied to
reduce the effect of noise to test signals. The data resampling was used to get the appropriate data
points for identification. The model parameters are obtained in the following steps.

Step 1: Divide the PWR primary loop system model into several modules properly.
Step 2: Select the input and output variables of tested data for identification of each module.
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Step 3: Have preprocessing of noise reduction, data resampling and data normalization to a range
of 0 to 1 for some variables (e.g., Nr, Dsp and so on) before parameter identification.

Step 4: Make the model initially stable through variable initialization based on the differential
equations of each module and program setting method.

Step 5: After obtaining the constraints of variables and parameters, calculate some parameters
according to the operating characteristics for PWR primary loop system. Identify parameters
of each module using the RP-PSO algorithm.

Step 6: Conduct sensitivity analysis for model parameters. Check parameters under various
conditions based on sub-module and the integrated model.

Figure 7a shows the nuclear power parameter identification process diagram. Figure 7b shows the
parameter identification process diagram with the RP-PSO and Simulink. Big sensitivity is beneficial for
parameter identification in both time domain and frequency domain analysis. Apart from parameter
influence analysis on model dynamic simulation, the trajectory sensitivity analysis [25] could provide
a reference for parameter identifiability and reference for the perturbed parameter selection in the
RP-PSO algorithm (see Figure 7a).Energies 2017, 10, 173 10 of 22 
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4. Model Parameter Identification and Validation

The tested data was obtained from a sub-module test, or the integrated model test. It required
more than 300 s for the steam generator module. The main features of the PWR primary loop system
model parameter identification were analyzed through the specific identification of each module. It is
important to keep the model initially stable before parameter identification.

4.1. Model Initialization Based on Differential Equations and Program Setting

The rod position control is an integral part of the AP1000. When the input variable deviation
is not within the dead band, there will be a rod position output, which works on another module.
As a result, more variables are changed. The model initialization is needed to make the model initially
stable, which is also conducive to the parameter identification work.

For the mathematical differential equations of each module given in Section 2, let the derivative
of the variables in the left sides of the equations equal zero. Then, the initial variable values can be
calculated under a certain stable condition by the following expression:

Cr0 = Nr0β
lλ

Tav0 = Ω×(Tc20−Tc10)
8×M + 0.5× (Tc10 + Tc20)

TF0 = Ff×P0×Nr0
Ω + 0.25× (Tc10 + Tc20) + 0.5× Tav0

Tm0 = Ts0 +
M×(THL0−TCL0)

2×Ωs

Tp0 = Tm0 × 2− Tav0 +
M×(THL0−TCL0)

Ωp

(18)

where Nr0 refers to a certain core power. It should be noted that Cr, which is useful for identification
analysis, is an intermediate variable whose value is difficult to be obtained. The initial variable values
are closely related to the design parameters such as Ω, Ωs and Ωp.

The initial values of some temperature variables set by the program were written as follows:

TCL0 = 280.7− (Pm0 − 1)× 11
THL0 = 321.1 + (Pm0 − 1)× 29.4
Ts0 = 271.3− (Pm0 − 1)× (291.7− 271.3)

(19)

where Pm0 is the given mechanical power value.

4.2. Parameter Identification Analysis

The model parameters were identified by the RP-PSO algorithm with the parameter identification
process given in Section 3.2. The parameters for the RP-PSO algorithm were set as ωmax = 0.7,
ωmin = 0.01, C1max = 2.5, C1min = 0.5, C2max = 2.5, C2min = 0.5, Vmax = 1, Vmin = −1, MI = 200.
The population and iteration in the algorithm was set as 200. The largest iteration of 200 was
the algorithm termination criterion. A large parameter range was given for the sake of objectivity.
The parameter scope was given with a range of 0–1 for the parameters of the core neutron dynamic
module, or there was a scope of 0–500 for the other parameters. When the parameter value
exceeded 500, the parameter upper limit was set to a 2 order of magnitude larger than its actual value.

Next, it is important to get the model simulation curves under certain working conditions as
tested curves with given appropriate parameter values. The data sampling frequency was 0.01 s per
point. If the identified parameters were the same with the given values, the fitness function value of
the algorithm should be infinitely close to zero.
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4.2.1. Core Neutron Dynamic Module Parameter Identification

Regardless of the temperature feedback, ρ and Nr are the input and output variables of the core
neutron dynamic module, respectively. Supposing a step change of ρ from 0 to 0.0001 p.u. (i.e., per unit)
at 1 s, the deviation of Nr was selected as the fitness function to identify l, λ and β.

Figure 8 shows the simulation comparison. The identified parameter values changed with
iteration increase until they reached their true values after 80 iterations. The fitness function value
reached a negative 9 order of magnitude with the identified parameter values in full compliance with
their actual values. The simulation curve was consistent with the tested curve as Nr changed from
the initial value of 0.9 p.u. (i.e., per unit) with a suddenly steep change to about 0.92 in about 0.03 s,
followed by a slower linear growth (see Figure 8e).Energies 2017, 10, 173 12 of 22 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8. Core neutron dynamic module simulation comparison. (a) Fitness function change with 

optimization iterations; (b) change of β with optimization iterations; (c) change of λ with optimization 

iterations; (d) change of l with optimization iterations; and (e) simulation comparison of Nr. 

4.2.2. Core Fuel and Coolant Temperature Module Parameter Identification 

Nr and Tθ1 are the input variables. TF, Tθ2 and Tav are the output variables. Given a step change 

of Nr from 0 to 0.01 at 1 s with all the initial variable values of 0, the parameters identified were fit 

with their real values as the fitness function value reached negative a 11 order of magnitude. Figure 

9 showed the simulation results, proving the effectiveness of the parameter identification. Each 

output variable raised to a steady-state value with no overshoot. 

  
(a) (b) 

0 50 100 150
-9

-8

-7

-6

-5

-4

-3

-2

Iteration number

1
og

1
0 f

0 50 100 150
0

0.01

0.02

0.03

Iteration number

C
h
a

n
g
e

 o
f 

β

0 50 100 150
0

0.02

0.04

0.06

0.08

Iteration number

C
h
a

n
g
e

 o
f 

λ

0 50 100 150
0

0.02

0.04

0.06

Iteration number

C
h
a

n
g
e

 o
f l

0 1 2 3 4 5
0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

Time (s)

N
r (

p
.u

.)

 

 

Simulation curve

Tested curve

0 10 20 30 40 50
0

2

4

6

8

10

Time (s)

T
F
 (

℃
)

 

 

Simulation curve

Tested curve

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Time (s)

T
θ

2 (
℃

)

 

 

Simulation curve

Tested curve

Figure 8. Core neutron dynamic module simulation comparison. (a) Fitness function change with
optimization iterations; (b) change of β with optimization iterations; (c) change of λ with optimization
iterations; (d) change of l with optimization iterations; and (e) simulation comparison of Nr.

4.2.2. Core Fuel and Coolant Temperature Module Parameter Identification

Nr and Tθ1 are the input variables. TF, Tθ2 and Tav are the output variables. Given a step change
of Nr from 0 to 0.01 at 1 s with all the initial variable values of 0, the parameters identified were fit
with their real values as the fitness function value reached negative a 11 order of magnitude. Figure 9
showed the simulation results, proving the effectiveness of the parameter identification. Each output
variable raised to a steady-state value with no overshoot.
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Figure 9. Core fuel and coolant temperature module simulation comparison. (a) Change of TF;
(b) change of Tθ2; and (c) change of Tav.

4.2.3. Reactor Power Control System Module Parameter Identification

The input variables are Tavg, and, Pm and Nr. ρT is the output variable. Since the transfer function
1+τ3s
1+τ4s was the lead link, τ3 was larger than τ4.

For the reactor power control system module, the tested data were obtained under a nuclear
power change from the rated power of 1–0.9 based on the whole PWR primary loop system model.
Furthermore, the turbine bypass control system module was omitted due to its smaller effect when
the power changed to 0.1. As the fitness function value reached a negative 14 order of magnitude,
the parameters identified were almost the same as their actual values. Figure 10 showed the simulation
result after identification. ρT declined approximately linearly from 0 before 110 s, followed by a slower
decline, until eventually it reached a steady level. The simulation curve fitted the tested curve well.
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Figure 10. Reactor power control module simulation comparison.

4.2.4. Steam Generator Module Parameter Identification

The input variables are THL and Qsg. Besides some other intermediate variables, TCL and Ps are
the main output variables. The steam generator parameters are mainly related to design parameters
with different order magnitudes large to a 7 order of magnitude. Supposing that Qsg was constant
at 1, it gave THL a step change of 10 ◦C from the rated value of 321.1 ◦C at 1 s. Both the simulation and
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tested deviation values of TCL and Ps were used in the fitness function. Figure 8 shows the input THL

change and output variable simulation comparison.
The simulation result could basically fit with the tested curve (see Figure 11). The variable

curves of another condition with Qsg that were given a step change from 1 to 0.9 were more complex.
The identification result using single variable deviation (i.e., the deviation of TCL or Ps) as the fitness
function could not match multiple output variable curves. Thus, the identified parameters might only
fit several output variables or parts of the tested curves, if the output variables and tested curves
chosen for identification are unable to completely reflect the variable transition process.Energies 2017, 10, 173 14 of 22 
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Figure 11. Steam generator module simulation comparison. (a) Input change of THL; (b) output change
of TCL; and (c) output change of Ps.

Moreover, the parameters of the turbine bypass control system module and the time constants of
the cold line, hot line and primary loop average temperature module were easy to be identified, which
were omitted in details due to space limitations. Besides the designed parameters, Table 1 lists the
main sub-module parameters. Table 2 lists partial parameters with their actual and identified values.
The index of relative error was applied to judge the identified results that deviated from their true
values. Through the caculation of relative error given in Table 2, the identification precision is basically
higher than 95%.

Table 1. Sub-module parameters.

Core neutron dynamic module

l Average neutron lifetime
β Total share of delayed neutron group
λ Time delay of equivalent delayed neutron group
αF Reactivity coefficient of fuel temperature
αC Reactivity coefficient of coolant temperature

Reactor control system module KC Position coefficient of control rods
τ1, τ2, τ3, τ4 and τ5 Time constants of compensator and filter

Cold line, hot line and primary loop
average temperature module

τHL and τCL Hot and cold line time constants
τc Temperature sensor time constant

Core fuel and coolant temperature module a1 = P0 × Ff/µf, a2 = P0 × (1 − Ff)/µc, a3 = Ω/µf, a4 = Ω/µc, a5 = M/µc

Steam generator module

KPs Steam pressure time constant

KPs_Ts
Conversion coefficient between pressure and

temperature of the secondary loop main steam

c1 = M/µp, c2 = Ωp/µp, c3 = Ωp/µm, c4 = ΩS/µm, c5 = ΩS, c6 = (hs − hfw) × Gsn
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Table 2. Model parameter values.

Parameter Value Identified Relative Error Parameter Value Identified Relative Error

l 2.1 × 10−5 s 1.99 × 10−5 s 5.238% τ2 56.3514 s 56.1513 s 0.355%
β 4.4 × 10−3 0.004417 0.386% τ3 12.1755 s 12.1525 s 0.189%
λ 0.0767 s−1 0.0784 s−1 2.216% τ4 3.9368 s 3.9496 s 0.325%
a1 144.1409 144.14007 5.76 × 10−4% τ5 0.7275 s 0.7157 s 1.622%
a2 0.2043 0.20359 0.347% c1 0.4529 0.4282 5.454%
a3 0.1760 0.17601 5.68 × 10−3% c2 0.8007 0.8082 0.937%
a4 0.0093 0.009357 0.613% c3/c4 0.8094 0.8754 −8.151%
a5 0.1945 0.19457 3.60 × 10−2% c5 185,800 181,267.446 2.439%
τ1 19.4949 s 19.3830 s 0.574% c6 1,717,989.6 1,698,615.318 1.128%

4.3. Parameter Sensitivity Analysis

The parameters should be kept in a suitable range to ensure system transient stability. The parameter
influence on the system dynamic response was revealed through the sub-module parameter sensitivity
analysis under different input conditions, which gave reference for parameter identification.

Taking the core fuel and coolant temperature module for example, Figure 12 shows the trajectory
sensitivity analysis results with changes of ±10% to Ω/µc under a step change of 0.01 for Nr, or a
positive step change of 10 degrees for Tθ1.
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Figure 12. Sensitivity of parameter change to the output variables under two different cases.
(a) Sensitivity analysis of Ω/µc under input change of Nr; and (b) sensitivity analysis of Ω/µc under
input change of Tθ1.

The parameter influence of Ω/µc on output variables (i.e., TF, Tav and Tθ2) existed constantly as
Nr changed. The trajectory sensitivities eventually dropped to zero after about 30 s under step change
of Tθ1 (see Figure 12). Thus, there was a significant difference in the sensitivity of Ω/µc to each output
variable under two cases. The change of Nr was more beneficial for the parameter identification of
Ω/µc. Similarly, some other structural and thermal parameters for the steam generator module also
had a constant effect on the model output variables under given input conditions.

5. Results and Discussion

The self-stabilization of the core neutron dynamic module plays an important role in the stability
of the PWR plant system. There was also further discussion about the parameter identification analysis
of the core neutron dynamic module and the effect of parameter sensitivity on parameter identification.

5.1. Core Neutron Dynamic Module Parameter Sensitivity Analysis

5.1.1. Parameter Sensitivity Analysis without Temperature Feedback

The typical values of l0, λ0 and β0 were 2.1 × 10−5, 0.0767 and 4.4 × 10−3, respectively. The initial
output of Nr was 0.9. This gave changes of ±10% to l0, λ0 and β0, then the trajectory curve of Nr with a
step change of ρ from 0 to 0.001 at 1 s was recorded. Figure 13a shows the trajectory sensitivity analysis.



Energies 2017, 10, 173 16 of 22

For a time period longer than 0.04 s, the trajectory sensitivity of β could be expressed by the
trajectory sensitivity of λ as follows:

β = −0.9451λ− 0.02044 (20)

Figure 13b shows the trajectory sensitivity curves and the fitting relationship. There was a strong
linear correlation between the trajectory sensitivity curves of β and λ for a time slightly longer than 0 s.
β had a larger trajectory sensitivity during the entire time, meaning that λ was more difficult identify.
Furthermore, l, λ and β were changed by ±10%, ±20% and ±30% at the rated working condition.
Figure 13b to Figure 13e show the trajectory sensitivity curves.

From Figure 13a–e, l and λ had greater impact on the initial time with a sudden change of ρ,
but l did not affect the dynamic simulation of Nr when the time was slightly over 0 s. λ and β had a
continuous opposite influence on the dynamic simulation of Nr. The trajectory sensitivity had little
relation to the initial working conditions due to a lack of a non-linear link in the core neutron dynamic
module. In addition, the impact of l and λ on Nr did not change with the parameter disturbance
depths, but β had a larger effect on the simulation result with a bigger parameter disturbance depth.
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Figure 13. Sensitivity analysis of parameter change without temperature feedback. (a) Trajectory
sensitivity with parameter disturbances of ±10%; (b) fitting relationship between the trajectory
sensitivity of β and λ; (c) trajectory sensitivity with different disturbance depths for l; (d) trajectory
sensitivity with different disturbance depths for λ; and (e) trajectory sensitivity with different
disturbance depths for β.
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5.1.2. Parameter Sensitivity Analysis with One Loop Temperature Feedback

The core neutron dynamic module has fuel temperature and coolant temperature feedbacks with
the total feedback coefficient being negative, which is necessary to ensure the reactor self-stability.
Supposing the temperature feedback was reduced to one-loop, it could be expressed by the first-order
inertia link as follows:

H(s) =
a

s + d
× RD (21)

where a and d are the constant coefficients. RD is the temperature feedback coefficient. The transfer
function analysis of the core neutron dynamic module with one-loop feedback showed that the reactor
temperature feedback coefficient change would change the model gain. It also showed that it would
change the model output Nr under the same input of ρ.

With typical parameters, it gave changes of ±10% to l, λ, β and RD, respectively, under a step
change of ρ from 0 to 0.001 at 0 s. Then, it recorded the trajectory curve of Nr. Figure 14 shows the
trajectory sensitivity analysis.
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Figure 14. Sensitivity analysis of parameter change with one-loop temperature feedback.

From Figures 13 and 14, the track sensitivities of β and λ first became larger due to the effect of
the negative temperature feedback. Then, eventually the track sensitivities tended to zero at about
90 s. The effect of RD always existed with its value reducing gradually from 0, indicating that the
temperature feedback coefficient had an evident effect on the steady-state value of Nr.

To summarize, the reactor temperature feedback coefficient, as well as some design parameters
actually changed the model gain. As a result, the output variable steady-state values were changed
with the trajectory sensitivities constantly existing. Meanwhile, the effects of other parameters were
only reflected in the variation process with the trajectory sensitivities eventually reduced to zero.
The trajectory sensitivity analysis of parameters could generally reflect the influence of parameters on
the system dynamic response and provide a reference for the parameter identifiability. The parameter
was easier to be identified if the parameter trajectory sensitivity had a large value over a long time
interval. On the contrary, it was not conducive to parameter identification.

5.2. Identification Discuss of Core Neutron Dynamic Module

5.2.1. Influence of the Tested Data

For core neutron dynamic module, the identification results under two kinds of situations were
further analyzed.

(a) In the case of tested data with random noise

Assuming that the tested data contained random noise with the maximum noise value reached 3%
of its steady value, the parameters of the core neutron dynamic module without temperature feedback
were identified. β and l could be well identified, whereas when λ was slightly different from the given
value, the identification result was acceptable (see Figure 15).
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(b) Input signal related to β

For the core neutron dynamic module without temperature feedback, the input signal was
0.01 multiplied by β. In this case, λ and the parameter β divided by l could be identified well.
However, β and l were difficult to obtain since the parameter β divided by l could be simplified
as one parameter from the differential equation of the core neutron dynamic module in Section 2.
The correlation between β and l did not affect the identification of other parameters such as λ that
were not associated with them.Energies 2017, 10, 173 18 of 22 
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Figure 15. Comparison results tested data in case of tested data with random noise. (a) Input signal
with random noise; and (b) simulation comparison of Nr with random noise.

5.2.2. Identification of Temperature Feedback Coefficient for the Core Neutron Dynamic Module

Given the power set a step change from 1 to 0.9 at 1 s, the fuel temperature and the coolant
temperature feedback coefficients could be identified assuming that β, λ and l were already known.
The identification of five parameters (i.e., β, λ, l, αF and αC) of the three-input single-output core
neutron dynamic module was attempted using the RP-PSO algorithm with the parameter scope of
1 × 10−8 to 1. Table 3 listed the parameters for core neutron dynamic module. Figure 16 showed the
comparison results after identification.

Table 3. Model parameters for core neutron dynamic module.

Parameter Value Identified

l 2.1 × 10−5 s 8.30 × 10−6 s
β 4.4 × 10−3 0.02529
λ 0.0767 s−1 0.07666 s−1

αF −5.81 × 10−6 −5.8080 × 10−6

αC −9.81 × 10−5 −9.8085 × 10−5

As the power set was reduced, the control rod insertion decreased the reactivity. Nr decreased
rapidly with instantaneous change of TF, and then slowly raised to 0.9. Tav firstly presented an
increasing trend (see Figure 16).

The RP-PSO was compared with two other algorithms namely PSO and CPSO (i.e., the cooperative
particle swarm optimization algorithm) [26]. Figure 17 shows the fitness function distribution of
optimization solutions with three kinds of identification algorithms.

Due to the orders of magnitude (i.e., for the parameters to be identified were far less than 1),
the PSO and CPSO algorithms were easier to cause a certain parameter to reach the set boundary
value of 1 × 10−8 with the fitness function value reaching about a negative 6 order of magnitude
(see Figure 17). The identification results of these two algorithms were bad. However, the RP-PSO
algorithm produced some better results with the fitness function value of one group solution reaching
a negative 11 order of magnitude. For this group of solution, the simulation results were acceptable
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(see Figure 17). The identified parameters of αF, αC and λ were consistent with the real value. However,
β and l were slightly different from their real values since the input signal of ρ was related to β,
which affected the identification as analyzed in Section 5.2.1. From the above analysis, it could also
be concluded that, to a certain extent, the parameter scope might affect the optimization results of
the algorithm.
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Figure 16. Comparison results of the core neutron dynamic module. (a) Input change of ρ; (b) input
change of TF; (c) input change of Tav; and (d) output change of Nr.
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Figure 17. Fitness function value distribution of optimization solutions for three kinds of
identification algorithms.

The identification process that would obtain five parameters provided a way to get appropriate
core neutron dynamic module parameters using the measured data of various working conditions,
or under different fuel life cycles. Also through the identification based on the integrated primary loop
system model, the temperature feedback coefficients had a significant effect on the identification results.

5.3. Model Adaptation

The adaptability of the established integrated model was analyzed through the comparison with
the PCTRAN software, which mainly analyzed the primary loop system variables with data that was
sampled at a frequency of 5 s per point. Assuming that the power set value stepped from 1 to 0.9
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in 1 s, Figure 18 showed the simulation results with a nuclear power unit model connected to the
single machine infinite power system. The curves in Figure 18 marked by the triangle were obtained
with PCTRAN.

The thermal power of the reactor was approximated by Nr. The power set value change leads
to the valve opening closure and the decrease of turbine mechanical power. The reactor core fuel
temperature and the coolant average temperature were also reduced as the core power was controlled
at about 0.9 p.u (see Figure 18).Energies 2017, 10, 173 20 of 22 
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Figure 18. Response of AP1000 with power disturbance. (a) Change of TF; (b) change of reactor thermal
power; (c) change of Tavg; (d) change of Ps; and (e) change of Pm.

6. Conclusions

The electrical, temperature and pressure variables with clear physical meaning were integrated
in the primary loop system model using a modular modeling method, which reflected the actual
operating characteristics. The PWR primary loop system had the characteristics of orders of magnitude
that ranged from −5 to 7 for parameters and variables with a time scale of more than 300 s, which
increased the parameter identification difficulty. The sampling frequency should be increased to record
the rapid transition process in actual tests. Different disturbance depths under multiple conditions
should be applied to get the test data, especially in case of signals with noise. The model practicability
was increased by the variable initialization based on the differential equation and program setting
method. The parameters were obtained from calculation or identification with the RP-PSO algorithm
and were checked under various working conditions.

The trajectory sensitivities of the same parameter to the output variables under various input
disturbances might be quite different for a MIMO system. Thus, the design of the appropriate test
conditions was beneficial to parameter identification. The linear correlation between the trajectory
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sensitivities of different parameters made the parameter identifiability worse. However, the relevance
parameters did not affect the identification of other parameters that were not associated with them.
The parameters that changed the model gain, like the reactor temperature feedback coefficients
and some other design parameters, had a more significant effect on the simulation results. These
parameters needed to be obtained properly, since large deviations from their real values changed
the output variable steady-state values. Meanwhile, the effects of some other parameters were only
reflected in the variation process.

The parameter identification features of the advanced PWR primary loop system and the
parameter identifiability difficulty degree through sensitivity analysis was helpful for the test-work
design. It also laid the foundation for the calculation and identification of the model parameters based
on measured data.
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Nomenclature

f 1 Auxiliary power bus frequency
U1 Auxiliary power bus voltage
Dsp Main coolant pump flow
ρext and ρ Control rod introduced reactivity and total core reactivity
Nr Neutron flux density
Tavg and Tav Measured primary loop average temperature and reactor coolant average temperature
TCL Cold line temperature
Tc1 Reactor coolant inlet temperature
THL Hot line temperature
Tc2 Reactor coolant outlet temperature
TF Reactor core fuel temperature
Qs Steam generator flow
Ps Main steam pressure
Pm Turbine mechanical output power
ubp Bypass valve opening
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