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Abstract: The balance between production and consumption in a smart grid with high penetration
of renewable sources and in the presence of energy storage systems benefits from an accurate
load prediction. A general approach to load forecasting is not possible because of the additional
complication due to the increasing presence of distributed and usually unmeasured photovoltaic
production. Various methods are proposed in the literature that can be classified into two classes:
those that predict by separating the portion of load due to consumption habits from the part of
production due to local weather conditions, and those that attempt to predict the load as a whole.
The characteristic that should lead to a preference for one approach over another is obviously the
percentage of penetration of distributed production. The study site discussed in this document is the
grid of Borkum, an island located in the North Sea. The advantages in terms of reducing forecasting
errors for the electrical load, which can be obtained by using weather information, are explained.
In particular, when comparing the results of different approaches gradually introducing weather
forecasts, it is clear that the correct functional dependency of production has to be taken into account
in order to obtain maximum yield from the available information. Where possible, this approach
can significantly improve the quality of the forecasts, which in turn can improve the balance of a
network—especially if energy storage systems are in place.
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1. Introduction

The integration of renewable energy generation has introduced a new strong variability and
intermittence in the power grids, making it increasingly difficult for utilities to maintain the balance
between energy production and consumption [1,2].

Energy storage and generation forecasts are the most promising strategies to reduce the negative
impact of the variability of renewable energy production for a small grid, particularly for use on an
island [3]. These strategies are one of the topics studied in the European H2020 NETfficient project
(http://www.netfficient-project.eu), to which this work is related. The project aims to propose an
effective innovation in the use and distribution of electric power through the development of several
energy storage technologies and an energy management system, enabling the implementation of a
smart grid on the German island of Borkum in the North Sea.

Battery energy storage systems (BESS) can mitigate the variability and uncertainty associated
with renewable resources and can increase the share of renewable energy that can be introduced
into the distribution grid [1,4,5]. The balance of the electrical network and the optimal control of
the accumulation system passes through an accurate forecast of load and generation in the network.
Load prediction is essential for the efficient and reliable operation of power supply systems, leading to
continuous consumer power supply [6].
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In the literature, load forecasts are classified according to the time horizon [7]: the long-term
forecast has a horizon of one to ten years and is required for planning investments and
maintenance; medium-term forecasting has a horizon in the range of one week to a month, and is
used to schedule fuel supply and to schedule maintenance activities; short-term forecasting refers to
times ranging from one hour to one week, and is used for economic optimization, by scheduling loads
and maintenance; very short-term load forecasting refers to prediction times ranging from seconds to
hours, and is responsible for maintaining the balance between demand and power generation.

Several meta-review papers provide a good overview of the relevant literature [8–13].
This paper is focused on a short-term forecast, with a forecast horizon of two days and a resolution

of 1 h. Short-term forecasting techniques can be divided into classical statistics techniques and
machine-learning methods.

Classical techniques include: regression models, auto regressive models (ARIMA) [14], time series
models [15,16], Kalman filtering methods [17], and double seasonal Holt–Winters exponential
smoothing (DSHW) [18], among others. These models perform satisfactorily under normal conditions,
but do not offer adequate performance in the face of sudden changes. Furthermore, errors in the
predictions provided by these methods increase considerably due to the influence of exogenous
(human impact, social and cultural events) and meteorological (i.e., relative humidity of temperature
and wind speed) variables.

In recent years, machine learning and artificial intelligence (AI) forecasting technology have
been gradually replacing the classical techniques. A recent review reports the more significant
benefits of AI methods with respect to the purely statistical ones, and shows the increasing use
of hybrid methods [12].

Neural network approaches combined with other methods (such as evolutionary or fuzzy
methods) are most frequently used [7,19–24], and a lot of interest is now reserved for deep learning,
which seems very promising and uses multi-layered neural networks (e.g., convolutional or recurrent
neural networks) [25].

Proposed by Vapnik [26], support vector machine regression (SVR) is another machine learning
method which is widely used and has been studied for short-term power load forecasting.

This class of algorithms uses a high-dimensional feature space via nonlinear mapping through
a kernel function, and performs a linear regression in that space. Thus, the nonlinear problem in
the original lower-dimensional input space could find its linear solution in the higher-dimensional
feature space.

Compared to the neural network algorithm, SVR has the advantages of robustness,
high generalization ability, fast computation speed, and the capacity to avoid falling into local optima [27];
it requires a smaller training data set [28] and is widely used and studied for short-term power
load forecasting [7,29,30].

Currently, the high penetration of solar and wind generation adds further uncertainty to the
forecast of loads.

The energy production of photovoltaic (PV) plants and, even more, of wind turbines is closely
linked to weather conditions, and this entails a further difficulty in forecasting power generation and
grid net consumption.

Improving the power forecast of wind turbines and photovoltaic systems is essential for increasing
their share in the energy mix and for optimally sizing the storage capacity required for grid
stability. To this end, an accurate forecast is essential, as is knowing the uncertainty associated
with that prediction [31].

It is difficult to compare the many different techniques that have been developed over the years;
this is due to the peculiarities of each application, which depend on the type of installation, geographic
characteristics, time horizons of interest, and also on the purpose for which a forecast is required.
The estimated power production is the output of the representative model of the wind turbine or of
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the PV plant, which according to the forecasting technique used, can receive different types of weather
variables as input, which in turn are the output of some Numerical Weather Prediction (NWP) models.

A recent and complete review of the techniques proposed in the literature can be found in [32] for
wind turbine power forecasting and in [33] for PV plants.

The ever-increasing spread of domestic photovoltaic plants poses the problem of a load forecast
net of distributed generation, as these PV systems do not always have a dedicated meter, and it is
nonetheless difficult to process the big data resulting from such meters.

Given that generation from renewable sources has a higher variance than the simple load,
forecasting net load in the presence of a large distributed generation is more difficult to achieve,
and traditional load forecasting systems can become less and less efficient as the power generated by
PV systems increases [34].

The net load forecast for a distribution network will necessarily be directly linked to weather
conditions such as irradiation or cloud coverage, which determine the production of PV systems [35].

The net load forecast also occurs in the case of microgrids to evaluate the exchanges with the
distribution network, the balance of the grid itself when it is isolated [1], and for the optimal control of
any storage system in the grid [36]. In this case, it is possible that medium-sized PV plants and wind
turbines may be connected to the microgrid, and the net power exchange of the grid will be even more
influenced by the meteorological variables.

Efforts to improve net load forecasts have been growing in recent years.
Some recent papers have proposed an integrated approach to achieve a direct forecast of the

net load of a distribution network [1] and the power exchange of a micro-grid [24,37,38]. In this
case, the regression model uses the forecasts of the main meteorological variables of interest as input
variables in addition to the predictors commonly used in traditional load forecasting, such as historical
data, the so-called calendar effects (such as the time of day, the day of the week, the public holidays),
or other social factors.

Some papers take advantage of the measurements of distributed generation through smart meters
and of the total load to make a separate forecast of production and consumption, and thus of the
net load [38,39].

Finally, in some works (such as this one), attempts are made to deduce and separate the renewable
energy generation from load measurement. In this case, the net load forecast is obtained from a reduced
set of measurements, through knowledge or estimation of installed production capacity [40–42].

The work aims to analyze the performance of a forecast system for the load of the distribution
grid and of a forecast system for the power exchange between the microgrid of the island and the
power grid on the mainland. The forecast has a resolution of one hour and a two-day horizon to ensure
that it could cover at least 24 h and be issued at least one day in advance of its use.

The paper will highlight:

• the importance of an accurate forecast of photovoltaic output for low-voltage load estimation;
• how an estimate of the installed photovoltaic capacity can be inferred from the measured net

power consumption and meteorological information;
• how—at least in this case—the use of separate models for the prediction of individual plants can

yield better results than those obtainable by training a single regression model for the microgrid.

The remainder of the paper is organized as follows. In Section 2 the available data for the power
measurements and meteorological data are described. In Section 3 the forecast approaches adopted for
net load forecast and power exchange are illustrated. Section 4 contains the discussion of the results
obtained, and finally in Section 5 the conclusions and future directions are drawn.
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2. Data

2.1. Borkum Grid

Borkum Island lies in the North Sea, and is connected to the mainland via 20 kV cables (network
operator EWE NETZ GmbH, Oldenburg). On the island, power is transformed via 60 local substations
from 20 kV to 400 V and delivered via the low-voltage (LV) distribution networks to the households.

The scheme in Figure 1 shows the overall component architecture of the grid design. In the
medium-voltage (MV) grid are two wind turbines, a PV power plant, and three emergency generators
(they get only activated when the connection to the mainland is interrupted); the figure also shows
the MV BESS realized in the NETfficient project. The two identical wind turbines are located in the
south-west of the island, close to the sea, and have a rated power of 1800 kW each. The MV PV park is
located in the middle of the island, and has a nominal power of 1387 kWp.

Figure 1. Scheme of the grid in Borkum. A photovoltaic (PV) power plant and two wind turbines are
connected to the medium-voltage (MV) line. An energy storage system will be connected to the MV
line in the future. The low-voltage (LV) line distributes power to the town, where several PV devices
are connected. The available power measurements are relative to the total power exchange with the
mainland (pe) and to the LV net load (pn). BESS: battery energy storage system.

There are are 5600 m connected to the LV serving a population of 5200, three industrial CHP
(combined heat and power), seven home CHP and, 101 PV devices with a total PV capacity close to
1 MW. Tourism is essential for the island’s economy, and the number of residents increases considerably
during holidays and summer.

The net power exchange with the mainland and the net load of the LV distribution have been
measured with a frequency of 15 min. The available measures are relative to the years 2012, 2013,
and 2014. The data has been averaged over a period of 1 h for this analysis. The data of the first two
years will be used as the training set for the regression models; the testing will be done on the measures
of the year 2014.

Table 1 summarizes the properties of the available power measurements. Figure 2 shows the box
plots of the net load on the low-voltage distribution grid and of the power exchange of the microgrid
as a function of the hour of the day. Two peaks are evident in both plots—during the morning and the
evening. The variability is maximum during daytime for the net load, and is minimum at nighttime.
Both the local minimum near noon and the high variability during daytime are partially related to the
distributed PV generation. The variability of the power exchange is approximately constant during
the day. This is related to the wind turbine production, which does not have any daily pattern.
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Table 1. Number of samples for power measures available for the Borkum grid. Three years, with 15 min
frequency, of power measures in two measurement points are available. The minimum, maximum,
mean values, and the standard deviations are listed.

Power Exchange pe Net Load pn

number 105,216 105,216
mean (kW) 2029.5 3603.7

std (kW) 1600.7 1137.1
min (kW) −2303.6 1446.2
max (kW) 6651.2 6928.9

Figure 2. Box plots of the net load and of the power exchange of the microgrid. The box represents the
interquartile range, the line in the box is the median, and the whiskers are set at the 5 and 95 percentile
of the data range.

2.2. Weather Forecast

The weather forecasts of wind speed at 100 m above ground (height more representative of the
wind effect on turbines), radiation, cloud cover, and ground temperature are provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF) operating model (OP) [43]. For the three
years examined, the OP ECMWF model was the TL1279L137 (horizontal resolution equivalent to about
14 km at medium latitudes with 137 vertical levels).
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The data were collected from the ECMWF MARS archive for 00GMT analysis and forecast time
up to 48 h with a prediction interval of 1 h. The weather data were interpolated from the values on the
nearest four grid points with weights inversely proportional to the distance.

3. Method

The power balance of the microgrid can be written as:

pe + pg − pn = 0, (1)

in which pe is the net power exchanged by the microgrid (positive in sign if entering in the system),
pg is the power produced by the MV generators, and pn is the net load of the low-voltage distribution
grid in the island (see Figure 1).

The pg may be divided into components due to the renewable energy generators: ppv is the power
due to the PV plant and pwt is the power produced by the wind turbines:

pg = ppv + pwt. (2)

The net load can in turn be divided into a pure load component pl and the distributed generation
component pdg due to the domestic PV installed on the island:

pn = pl − pdg. (3)

Only the measures pe and pn are available, and the task is to obtain a forecast of the exchanged
power p̂e and of the net load p̂n.

3.1. Generated Power Forecast

The power generated by wind turbines and the PV plant is directly related to weather conditions.
A model of the PV power plant has been developed in [44], in which a multivariate adaptive

regression spline (MARS) approach is used to derive a regression model that links the power to the
forecasts of the Global Horizontal Irradiation (GHI) and of the total cloud cover (TCC) produced by a
numerical weather prediction model. The same procedure have been adopted for this analysis.

The wind turbines have been studied in [45], where a distribution mapping (DM) method is
presented and used to forecast the power produced by the turbines from the forecast of the wind speed
at 100 m (WS100).

The forecast of the power generated by the MV plants is obtained from Equation (2). Table 2 lists
the main properties of this and the other models used for this work.
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Table 2. Models and feature set for each forecast model. The first column represents the distinguishing
abbreviation of the model; in the second column, the forecast variable is indicated; in the third column,
the predictive technique used; and finally in the fourth column, the predictors used are listed. PV:
photovoltaic forecast model; WT: wind turbine forecast model; MVF: forecast system for the medium
voltage production; NL: denotes net load models; PE: denotes power exchange models; p̂pv: forecast of
MV photovoltaic production; p̂wt: forecast of MV wind turbine production; p̂g: forecast of total MV
power production; p̂n: forecast of LV net load; p̂e: forecast of power exchange; MARS: multivariate
adaptive regression spline; DM: distribution mapping; SVR: support vector machine regression; GHI:
Global Horizontal Irradiation; TCC: total cloud cover; WS100: wind speed at 100 m; T2: forecast of
the temperature 2 m above ground; h: the hour of the day; dow: decimal for the day of the week; doy:
days from the beginning of the year; work: indicates whether the day of the measure or forecast is a
working day or not (including holidays); dst: indicates whether the time is relative to the period in
which daylight saving is active; pn2d and pn7d: net load 2 days and 7 days before the forecast; pe2d and
pe7d: power exchange 2 days and 7 days before the forecast; pg2d and pg7d: power generated by the MV
plants 2 days and 7 days before the forecast.

Model Variable Technique Features

PV p̂pv MARS GHI, TCC
WT p̂wt DM WS100

MVF p̂g Equation (2) p̂pv, p̂wt

NL0 p̂n SVR pn2d, pn7d, h, dow, doy, work, dst
NL1 p̂n SVR T2, pn2d, pn7d, h, dow, doy, work, dst
NL2 p̂n SVR GHI, pn2d, pn7d, h, dow, doy, work, dst
NL3 p̂n SVR, Equations (3), (6) p̂pv, pn2d, pn7d, h, dow, doy, work, dst

PE0 p̂e SVR pe2d, pe7d, h, dow, doy, work, dst

PE1 p̂e SVR
GHI, WS100, pe2d, pe7d,
h, dow, doy, work, dst

PE2 p̂e SVR
pe2d, pe7d, pg2d, pg7d, pn2d, pn7d,
h, dow, doy, work, dst

PE3 p̂e Equation (7) p̂n, p̂g

3.2. Load Forecast

The power absorbed by the low-voltage distribution grid is directly linked to the habits of the
population of the island, which obviously has a daily, weekly, and yearly periodicity.

Support vector machine regression (SVR) is a widely used and efficient technique for regression
in the field; it has been adopted in this analysis due to its efficiency and the relatively small data set
that is required for its training.

Several features have been used for the SVR model: the hour of the day, the day of the week,
and the day in the year have been used, transforming them as follows to ease the introduction of the
cited cyclic behaviors in the model:

sind = sin(2π h/24)

sinw = sin(2π dow/7)

siny = sin(2π doy/365)

cosd = cos(2π h/24)

cosw = cos(2π dow/7)

cosy = cos(2π doy/365),

(4)

where h is the hour of the day, dow is a decimal for the day of the week, and doy is the days from
the beginning of the year. As tourism seems to have a significant influence on electricity demand,
an additional feature work is used, indicating whether the day of the measure or forecast is a working
day or not, including holidays. Moreover, the feature dst indicates whether the time is relative to the
period in which daylight saving is active.

All the features have been normalized, and a radial basis function has been chosen as kernel of
the SVR algorithm.
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These features alone would allow a decent but unsatisfactory model to be obtained for load
prediction. In this case, it is of paramount importance to include the recent history of loading as part
of the features considered. Taking into account the 2-day forecast horizon, the loads measured 2 days
before and one week before the forecast time have been considered and are denoted as pn2d and pn7d.

pn2d(t) = pn(t− 2 days) pn7d(t) = pn(t− 7 days). (5)

A first model was generated using the SVR technique and the feature set just described, and it has
been denoted with NL0. The main properties of this model and of all the others are listed in Table 2.

To verify the influence of weather on the net load forecast, a similar model was trained using the
forecast of the temperature 2 m above ground (T2) as an additional feature, denoted as NL1.

Since a significant distributed generation from PV panels is present in the distribution grid,
an influence of the solar irradiation is expected. A model denoted with NL2 was trained, based on the
same feature set as NL0 with the addition of the forecast of the GHI.

Finally, for the net load forecast, another approach is proposed that takes advantage of Equation (3)
and is labeled with NL3. Equation (3) separates the contribution of the power demand pl from the
distributed generation pdg. The latter is not measured directly, but can be estimated by scaling the
output of the photovoltaic system according to the ratio between the total installed photovoltaic
capacity (pvc) and the peak power of the plant (PVpeak). The measurement of the power generated by
the PV plant is not available for all three years of study, so an estimate is used: p̄pv is obtained, like p̂pv,
from the regression model for the plant and the weather conditions.

pdg ≈
pvc

PVpeak
p̄pv. (6)

The assumption of optimal orientation and good maintenance of domestic PV appliances is
implicit in this, probably leading to an overestimation of the distributed generation. As mentioned
above, the power demand pl is not measured directly. However, it is possible to have an estimate of it
from Equations (3) and (6).

An SVR model can then be trained on pl using the same features adopted for model NL0. This SVR
model is then used to forecast p̂l , Equation (6) is used to obtain p̂dg, and finally Equation (3) is used to
calculate p̂n. See Table 2 for a summary.

3.3. Power Exchange Forecast

In order to predict the net power exchange between the island and the mainland’s power grid
and to assess the influence of weather conditions on its performance, the same incremental approach
was used as for net load forecasts. The characteristics of the models are summarized in Table 2.

The first model is labeled with PE0; it is an SVR model that uses a feature set similar to that
adopted for NL0, and therefore no weather influence is included. The features pn2d and pn7d have been
replaced by pe2d and pe7d.

The weather forecast is incorporated in the feature set of the second model, labeled as PE1,
with the estimates of GHI and WS100.

These two models are blind to the grid structure and details of renewable energy installations.
In the third model—labeled with PE2—all the information available for the Borkum grid has been
used as features for an SVR model. Included are measures of power exchange, MV generation (pg2d,
pg7d), and LV net load (pn2d, pn7d) 2 and 7 days before the the time of forecast. The forecast of MV
generation by the PV plant and wind turbines are additional features of the model, indirectly including
the influence of atmospheric conditions.
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Finally, for model PE3, the Equation (1) is exploited. Separate forecasts for the net load p̂n and for
the power generation p̂g are obtained from model NL3 and the PV plant and wind turbines models.
The power exchange forecast is obtained algebraically:

p̂e = p̂n − p̂g. (7)

4. Results and Discussion

4.1. Load Forecast

The electrical load prediction for the island of Borkum is complicated by the distributed
photovoltaic generation “behind the meter” (DG). The effect of DG on the load introduces a dependence
on the weather conditions that overlaps with the typical daily and weekly usage patterns of customers.
current use of domestic and commercial electricity can be affected by weather conditions, such as air
conditioning during hot summer hours or heating in winter.

In order to investigate the effect of weather conditions on the electrical load, a series of different
experiments were conducted, making different hypotheses and using corresponding forecasting
approaches, the results of which are summarized in Table 3.

Table 3. Error analysis on the load forecast, from +24 to +48 h, for different forecast approaches.
Row NL0 shows the results without taking into account weather influence and using as predictor only
statistics about load two and seven days before. Row NL1 refers to the forecast obtained adding as
predictor forecast of temperature at 2 m from the ground; NL2 as before but using as predictor, forecast
for GHI instead of T2. The last row shows the results for model NL3, in which a separate model forecasts
the photovoltaic distributed generation. The values of nMAE and nRMSE are normalized mean absolute
error and root mean squared error with respect to the mean value of the measured quantity.

Model R2 (-) MAE (kW) RMSE (kW) nMAE (%) nRMSE (%) Q1 (kW) Q3 (kW)

NL0 0.950 182.1 247.0 5.23 7.10 −87.7 165.5
NL1 0.950 182.8 247.8 5.25 7.12 −87.5 167.2
NL2 0.955 173.2 233.7 4.97 6.71 −89.9 156.6
NL3 0.957 170.3 228.7 4.89 6.57 −85.3 158.1

Results of the first model NL0—which does not take into account any influence of weather
conditions—are shown in the first row of Table 3.

Meteorological conditions may have an impact on electricity consumption [46–48]. It has been
shown that the electrical load is low if the ground temperature ranges between 45 and 65 degrees
Fahrenheit, while it increases outside this range due to the use of heating and cooling systems.
The forecast of temperature 2 m above surface has been added as a predictor to the approach described
above to evaluate the effect of varying weather on the consumption habits. The results in Table 3
row NL1 are almost identical to those for NL0, demonstrating that electrical consumption habits in
Borkum are most likely not influenced by outside temperature—at least for a short-term forecast.
The temperature effect is probably hidden in the correlation with the power measurements 2 and
7 days before, which are used as predictors for this model. This result is confirmed by the plot in
Figure 3, in which the error between the measure and the forecast obtained with model NL0 is plotted
against the temperature, showing no apparent pattern or correlation (coefficient of determination
R2 = −1.67).
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Figure 3. Error in the LV load forecast as a function of the temperature 2 m above ground forecast.
Coefficient of determination R2 = −1.67.

Assuming that to be true, the possibility of filtering out the distributed generation from the electric
load has been investigated.

First, the ECMWF forecast for GHI is added as predictor, and an SVR model is trained and labeled
NL2. The results of Table 3 show a significant improvement, with R2 going from 0.950 to 0.955 and and
MAE and RMSE decreasing by about 10 and 14 kW, respectively. This demonstrates the importance of
solar irradiation for predicting net load through the effect of the distributed generation in the grid.

In the NL3 model, the load of the LV grid pl and the distributed generation pdg are predicted
separately. The forecast p̂dg is proportional to the forecast of the MV power plant as for Equation (6),
the value of the total installed capacity is known and is equal to 953.2 kW. The errors for this forecast
approach are shown in row NL3 of Table 3. They show a further improvement in performance with an
increase of R2 from 0.955 to 0.957 and a decrease of mean absolute error (MAE) and root mean squared
error (RMSE) of about 3 and 5 kW, respectively.

The model NL3 can be used to obtain an estimate of installed capacity. Several instances of the
model have been trained and tested using different pvc values. The errors obtained are shown in
Figure 4. Note that the minimum errors have been obtained for values of PV capacity close to the real
value. It seems that in our study, distributed generation can in principle be separated from the net load
if a representative measurement of PV plant production is available, or if it is possible to produce a
reasonably accurate estimate of the PV generation. A reasonable estimate of the total installed capacity
can also be obtained.

The results in Table 3 highlight the importance of weather forecast in the case of relevant power
production from PV devices and the importance of separating load and generation forecast in order to
reduce the overall prediction error. Figure 5 shows the box plots for all models. The reduction of the
interquartile range and of the whiskers distance is apparent with the improvement of the methodology.
The average values of the first and third quartile of the forecast error (Q1 and Q3) are listed in the last
two columns of Table 3.



Energies 2017, 10, 2171 11 of 16

Figure 4. Root mean squared error (RMSE) and mean absolute error (MAE) for load forecast using the
approach NL3 as a function of the distributed PV capacity assumed. The vertical line corresponds to
the estimated real value obtained by summing up the single utility capacities.

Figure 5. Boxplot of the net load forecast error as a function of the hour of the day. The box represents
the interquartile range, the line in the box is the median, and the whiskers are set at the 5 and
95 percentile of the data range. The uncertainty follows the same daily pattern of the PV generation.
The improvement in the forecast accuracy obtained with the model NL3 is apparent.

4.2. Power Exchange Forecast

In a grid such as that of a small island with high penetration of renewable energies, the balance
between generation and load is strongly influenced by the variability of weather conditions. For this
reason, an efficient system power exchange of the grid must necessarily incorporate information
regarding weather conditions, and at the same time, this must be done in such a way that maximizes
the benefits for forecasting.

To do this optimally, some alternative strategies have been studied, using as a benchmark the results
obtained by training an SVR learning model using only statistical information extracted from past load
observations. The errors obtained with this forecast model PE0 are shown in the first row of Table 4.

Subsequently, the forecasts of GHI and wind speed at 100 m from the ground are added to the set
of features used for PE0, as predictors related to the weather variability. These two additional features



Energies 2017, 10, 2171 12 of 16

together should be able to capture the weather influence in net load due to the PV and wind turbine
generation. The performance of model PE1 is compared with previous results in Table 4, showing that
the influence of weather is substantial and cannot be ignored.

In an attempt to use all available statistical information, another predictor has been built, called PE2,
which adds the statistical information available for the measurements of the load and the MV generation
to the previous one. Comparison with the PE1 performance shows a substantial improvement in all
indicators. R2 increases from 0.784 to 0.864, and both relative errors of about 7%.

Although all the available information—both as past time series of observed energy flows and
as weather forecasts for the atmospheric part—has been used in PE2, even a sophisticated predictor
such as SVR may not be able to capture the correct physical form of the production dependence
on the weather conditions. However, the latter can be easily incorporated by developing a forecast
system for the medium voltage production (MVF) as the sum of the production forecasts for the PV
and the two turbines. The detailed features of the MVF system are described in Section 3.1, and the
corresponding forecast errors are shown in the first row of Table 4.

Table 4. Error analysis on net load forecast for different prediction strategies. PE1 is the net load forecast
obtained using a SVR using as predictors the time series of net load itself and the meteorological forecast
for GHI and wind speed at 100 m from the ground; PE2 is the SVR predictor using all the predictors
used for PE1 with the addition of the features used for NL3; PE3 is the net algebraic sum obtained
summing the NL3 forecast with the MVF forecast; MVF shows errors of the medium voltage production
forecast. The values of nMAE and nRMSE are normalized with respect to the mean value of the
measured quantity.

Model R2 (-) MAE (kW) RMSE (kW) nMAE (%) nRMSE (%) Q1 (kW) Q3 (kW)

MVF 0.820 336.5 482.4 22.16 31.76 −274.7 188.7
PE0 0.375 971.4 1239.3 49.50 63.15 −661.0 968.6
PE1 0.784 555.7 729.2 28.32 37.16 −390.3 465.7
PE2 0.864 429.9 577.7 21.91 29.44 −296.7 356.8
PE3 0.880 400.7 542.8 20.42 27.66 −213.7 368.9

The model PE3 uses the best forecast for the net load of the low-voltage distribution grid p̂n;
this is algebraically added to the forecast of the production of the renewable energy plants p̂g to satisfy
the power balance.

Errors in the Table 4, show that the latter approach is the most skillful among those considered
for this case study, with a significant increase in R2 and a corresponding decrease in nRMSE ('1.8%)
and nMAE ('1.5%).

Together with that highlighted for the net load forecast, this result underlines the importance
of a correct estimation of the renewable energy generation for the estimation of the net power in a
distribution grid. While the model NL0 for the low-voltage distribution grid has achieved decent
results without including dependence on weather conditions, increasing the supply of energy from
renewable sources and introducing power generators that do not have diurnal cycles (e.g., the wind
turbine) has a dramatic effect on the quality of the forecast. In fact, the accuracy of model PE0 is
insufficient, and a good improvement has been obtained by refining the model to PE3.

The results also show—at least in this case—that all information is important for the production of
a forecasting model, and that a good understanding of the grid structure and the loads and production
systems present—if available—can still offer a significant advantage over a blind machine learning
system. Figure 6 confirms this, showing the substantial reduction of the error spread. The average
values of Q1 and Q3 are shown in the last columns of Table 4.
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Figure 6. Boxplot of the PE forecast error as a function of the hour of the day. The box represents the
interquartile range, the line in the box is the median, and the whiskers are set at the 5 and 95 percentile
of the data range. The improvement in the forecast accuracy is evident. The uncertainty is still related
to the PV generation, but the pattern is less apparent compared to the net load forecasting case, due to
the influence of the wind power forecast uncertainty.

5. Conclusions

This study describes and analyzes a forecasting system for the power exchange and the net
load of the distribution grid of the German island of Borkum. The island is connected to the
power grid by MV cables, but a significant fraction of its energy demand is provided by renewable
energy, through distributed generation with domestic PV panels, a medium size PV plant, and two
wind turbines.

Several regression models of increasing complexity, based on the support vector machines
methodology, have been developed, progressively introducing predictors based on the elaboration of
the results of the ECMWF meteorological model.

The forecast horizon is two days, with an hourly resolution.
The results showed that in the case of predicting the net load due to the low voltage distribution

grid, there is no significant influence of the ground temperature. The most critical meteorological
parameter is represented by radiation to the ground, due to the effect this has on photovoltaic
production. In this case, it was possible to obtain a reasonable breakdown between the load and
the distributed generation and to make predictive models for the two quantities by having only the
net load measurement available. It was also shown how it is possible to obtain a reasonable estimate
of the installed photovoltaic power from the measurement of the aggregate net load and a forecasting
model for photovoltaic production.

The analysis of the power exchanges in the Borkum grid showed the importance of accurate
forecasts for individual renewable production plants as well as for the load. A forecasting model that
ignores the network configuration and characteristics of individual systems has failed to achieve the
results obtained by making the most of all available information.

The results obtained show that even in the presence of a significant distributed photovoltaic
generation, it is still possible to achieve an accurate forecast of the net load. On the contrary, the forecast
accuracy for the power exchanged by the island is lower, due to the higher production from renewable
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sources, the concentration of production in single plants of relatively high power, and the difficulty of
predicting the generation by wind turbines.

Future developments will be aimed at achieving an improvement in net load forecasting through
the introduction of a predictor linked to the tourist presence on the island—for example, using the
information related to the hotel bookings or the reservations of seats on the ferries connecting Borkum
to the mainland. The prediction of the power exchange of the island’s grid will benefit from an
improvement in the prediction of the renewable plants’ production, for instance by assessing the
effectiveness of using the results of the Ensemble Prediction System (EPS) of the ECMWF.

Finally, the effectiveness of the forecasting algorithm will be evaluated when its output is used by
the optimal control algorithm of the BESS system that will be installed soon.
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