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Abstract:



Unlike some thermostatically controlled appliances (TCAs) with small capacities, Central Air-conditioner (CAC) has huge potential for demand response because of its large capacity. This paper presents a new CAC control strategy under multiple constraints. The CAC is modeled by three main modules: CAC central unit, water pumps, and temperature simulation of terminal users. The CAC’s power consumption is mainly determined by users’ load ratio. As the information and communication system have become the central nervous system of the smart grid, big data analysis is of great significance. Assuming that reliable two-way communication systems are preset, an integrated parameter priority list (IPPL) control strategy is used to control and monitor CAC. A new intelligent algorithm, Space Exploration and Unimodal Region Elimination (SEUMRE) algorithm, is introduced for solving the optimization problem of demand response targets generation under multiple constraints with the help of big data analysis. In this paper, influences and constrain factors, such as price and users’ comfortable levels are taken into account to satisfy the need of actual situation. Simulation results show that the proposed approach, when comparing with other typical optimization algorithms, yields better performances and efficiency.
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1. Introduction


In recent years, microgrids that are supplied by renewable generation resources, such as photovoltaic or wind power, have received extensive attention worldwide. The State Grid Corporation of China has been building several microgrid demonstration projects that are located in Zhejiang, Guangzhou, and western China. A demonstration microgrid system for a residential community was built in Dongfushan Island, Zhejiang. The microgrid was supplied by a 210-kW wind generation, a 100-kW solar generation with a 200-kW diesel generator, and a 2 V/1200 Ah lead-acid battery storage system. In such a microgrid, an important issue in system operation is to deal with the intermittency of renewable generation resources. Diesel generators (or sometimes gas turbines) and Energy Storage Systems (ESSs) can only provide very limited load balancing services at very high cost.



Recently, demand response (DR) was used as a potential solution to coordinate with ESSs to stabilize renewable power fluctuations. DR had been used to provide energy market and ancillary service functions, such as peak management [1], load shifting [2], primary frequency response [3,4], spinning reserve [5,6,7,8], and voltage stability enhancement [9], traditionally.



Load balance services provided by thermostatically controlled appliances (TCAs), which include residential heating, ventilation, and air-conditioner (HVAC) systems, electric water heaters, and refrigerators, are gaining wider attention. A temperature-priority-list method was used to dispatch the HVAC loads optimally to maintain customer-desired indoor temperature and load diversity [10]. As a follow-up work, a temperature-priority-list algorithm was proposed in [11] using simplified first-order equivalent thermal parameter (ETP) models for TCAs. Thermostat control for TCAs is a typical method to achieve demand response, such as that described by the Fokker-Planck diffusion model proposed in [12], and followed works in [13,14] when considering user comfort-constraints, and active power regulation in wind transmission system [15]. A state-queueing model [16] was proposed to study the state shift behavior of HVAC systems after a change in electricity price, in response to which their thermostat setpoints are changed. Physically-based methodologies for synthesizing the hourly residential HVAC load was developed by Chan et al. [17]. Open communication protocols, internet technologies, HVAC sensors, actuators, control systems, as well as embedded computer hardware and software technologies have made Internet-based HVAC system monitor and control possible [18,19]. A novel real-time optimization approach [20] for two-way direct load control of central air-conditioner chillers was proposed. The proposed optimization approach will minimize the difference between the load required to shed and the load actually shed at each sampling interval. Callaway’s research put more efforts into the population characteristics, where the Markov transition matrix was used to evaluate the power consumptions [21].



In the past research, few papers focused on the demand response strategies of CAC with multi-constraints. A fuzzy-PID (Proportion Integration Differentiation) based method was proposed in [22] to achieve good control effect when considering the air flux, fan speed, and indoor temperature. In [23], the author introduced a refrigerator and a welding machine applied “Neuro-Fuzzy” control, which combined heuristic optimization methods and HVAC control structure. The main contributions of this paper are summarized as follows:

	(1)

	
putting up a new CAC operating status evaluating method aiming to solve the problem of multi-dimensions constraints including pricing, temperature, historical switching number, and users’ willingness;




	(2)

	
based on the CAC operating models and evaluating method, setting up a CAC group joint optimized operation structure with multi-dimensions constraints; and,




	(3)

	
using the new response surface method optimization algorithm, Space Exploration and Unimodal Region Elimination (SEUMRE) is used as the solver of optimization model to calculate the appropriate demand response targets that the CAC groups need to undertake.









The remainder of this paper is organized as follows. A detailed introduction of structure and models, which include CAC modules, electricity price, switching number, is given in Section 2. The SEUMRE algorithm and IPPL strategy are discussed in Section 3. Simulation results are then presented in Section 4, followed by conclusions and recommendations for future work in Section 5.




2. Modeling of Lower-Level Load Control for Central Air-conditioners Based on Comprehensive State-Queuing Model


The coordinated control algorithm is to solve an optimization problem with comprehensive constraints. A new stochastic and heuristic global optimization search method, SEUMRE is introduced in this paper. Based on the original information to predict the possible location where global solutions may exist and the direction where the search iteration times may be increased, this optimization algorithm spreads sampling points to explore the potential design space for search process. The proposed control algorithm should be applied under time-varying conditions. SEUMRE is particularly suitable for such highly nonlinear and complex optimization problems involving expensive analysis and simulation processes. Therefore, SEUMRE is chosen to calculate the optimal coordinated control demand response targets CAC group undertake.



Figure 1 gives a brief description of the optimal coordinated framework SEUMRE and IPPL method. The CAC group (CACG) is divided into two operating groups: CAC Uncontrolled Group (CACUG) and CAC Controlled Group (CACCG) based on price constraints, given optimal target and the states of terminal users at every simulation time step. An integrated-parameter-priority-list control strategy is used to generate the control command for every controlled terminal user. Taking historical switching number, current price and indoor temperature, users’ willingness, and CAC’s operating status into consideration, the integrated parameter aiming to describe the status of CAC can be determined. Although the integrated parameter will be used in a demand response scenario based on incentive mechanism, the integrated parameter also considers the constraints of pricing and other kinds of possible constraints.


Figure 1. Optimal Coordinated framework Space Exploration and Unimodal Region Elimination (SEUMRE) and integrated parameter priority list (IPPL) method.
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The terminal users in the CACCG will update their operating state according to the command they received; the ones in CACUG will also update their state based on the established model. Then, the CACG will wait for a new optimal target that is generated from SEUMER algorithm, and update the CACUG and CACCG, which react at the next time step. In this section, the data filtering valve, detailed models of CAC that consist of CAC central unit, cooling water pump, chilled water pump, and terminal users’ temperature are presented. Electricity prices model, and switching number model are also illustrated in this part. Figure 2 depicts the relation between different detailed models of CAC.


Figure 2. The Relation between Detailed Models of Central Air-conditioner (CAC).
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2.1. CAC’s Working Principle and Coordination Pattern with Control Strategy


Figure 3 makes detailed descriptions for the working principle of CAC and basic configuration settings when considering the controlling module added in real application. Arrows of black, gray, and dashed line represent low temperature water, high temperature water, and information flow, respectively.


Figure 3. The working principle and basic application settings of CAC.
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The complete working process of CAC can be described as follows. A certain amount of water is chilled by CAC central units, of which the main function is heat exchange using refrigerant. The water distributer distributes the cold water to fan coil unit and air handing unit. The air handing unit is a device that is used to regulate and circulate air to improve users’ comfortable levels. Fan coil unit undertakes the task of sending cold wind to terminal users directly. The temperature of water will rise after flowing through both units. The water collector receives the water and sends it to CAC central units as heat exchange resource. The water will flow through the cooling tower, which is a heat rejection device that rejects waste heat to the atmosphere through the cooling of a water stream to a lower temperature, and it helps to reduce some power consumptions.



The information collection unit extracts CAC’s operating status and sends them to the control center in which control strategy is configured. Commands of device level are generated and are sent to the hardware controller, which forma an integrated control process.




2.2. Terminal Users’ Temperature Model of CAC


The indoor temperatures of terminal users are affected by many factors, including the switching states, setpoints, deadbands, outdoor temperatures, solar radiations, wall materials, and the output power of CAC at previous time step. When a terminal user is uncontrolled, its indoor temperature curve goes like that shown in Figure 4. Detailed descriptions of the temperature trajectory can be referred to our previous work [24]. At every time step, there are two CAC groups: open group and closed group:


[image: ]



(1)
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(2)




where, t is the time studied, [image: ] and [image: ] are the open group and closed group at time t whose number of devices are [image: ] and [image: ]. The total number of controlled device [image: ]. As time goes on, [image: ] and [image: ] will change based on the operating status.


Figure 4. Indoor Temperature Curve of Uncontrolled Terminal User.
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The whole CAC group can be defined as:


[image: ]



(3)







In this paper, the temperature difference between current value and boundary value of a device is defined as temperature extending margin (TEM) at time t:


[image: ]



(4)




where [image: ], [image: ], [image: ] are the temperature of room, lower limit, and upper limit at time t. One can see that TEMs are decided by devices’ current operating status. Therefore, the devices in different group have different definitions of TEM.



Figure 5 gives an intuitive explanation of TEM. The direction from left to right represents the increase of temperature, the shadow regions show operating temperature range of devices. The locations of the black cube indicate current devices’ status and the arrow indicates the direction of temperature extending. TEMs are variable under different operative conditions. When considering the diversity and characteristic of terminal users, deadbands, and upper and lower limits of devices should also be different. At time t, a corresponding TEM set of terminal units [image: ]:


[image: ]



(5)






Figure 5. Schematic diagram of temperature extension margin.
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The intention of introducing TEM is to provide a universal modeling method of response-control, and, finally, realize the unified response control strategies based on the concept of TEM. Through the normalization of TEM, the definition of normalized temperature extending margin (NTEM) can be given to describe the ratio of a single device’s TEM and its deadband:


[image: ]



(6)







For a controllable device, its NTEM satisfies:


[image: ]



(7)







Similarly, at time t, a corresponding NTEM set of terminal units [image: ] is shown in Equation (8). The normalization characteristic of NTEM is beneficial to the follow up work of control strategy design as it gives full consideration for the devices’ parameter diversities.


[image: ]



(8)







The intrinsic rule on how the devices’ temperature changes can be found in Figure 3. Two controllable groups are formed according to their switching status. NTEM can be regarded as an appropriate parameter that reflects the temperature information during the process of simulation, as it takes a full consideration of the terminal devices’ diversity, including setpoints, deadbands, and operating status.




2.3. CAC Central Unit and Water Pumps


The power consumptions of CAC central unit and water pumps account for 90% of the total power CAC needed. Similar to the model of terminal users’ temperature, many parameters have influence on the output of CAC, but most of these parameters are invariable for a unique CAC. Based on the above consideration, the time-varying parameter load ratio becomes the key factor in this model. Load ratio is a parameter that is equal to the actual refrigerated area divided by the total possible refrigerated area. To a single CAC, we calculate its power consumptions through the load ratio. This relationship is exponential like Figure 6 where load ratio varies from 0 to 1. A CAC has many terminal users, and the number of ON/OFF terminal users and the refrigerated area decided the value of load ratio.


Figure 6. Relationship of CAC’s power consumptions and load ratio.
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2.4. Consideration of Switching Number of CAC Operation Process


If a terminal user keeps being controlled during a long period, it may decrease the life of the device. Thus, we put up a parameter to describe the relationship between the controlled switching number and its influence. Equation (10) gives the detailed description. By adding this factor to the integrated parameter, devices could be prevented from being controlled too often. Define parameter [image: ] to represent the influence of historical switching number.


[image: ]



(9)








2.5. Electricity Price Model for CAC Response


In this paper, we use time of use (TOU) pricing as our price model [25]. Time of use pricing is a kind of electricity pricing strategy based on time, which can reflect power supply cost in different periods. The peak electricity price and season electricity price are two kinds of TOU price that are commonly used in China. Through setting appropriate higher electricity prices in the rush hours of a day and lower prices during the off-peak, TOU can effectively improve the users’ behavior of power using, so as to achieve load shedding effect. Figure 7 represents several typical TOU prices [25].


Figure 7. CAC’s time of use (TOU) prices.



[image: Energies 10 02133 g007]






When assuming that the price is the same to one CAC group, that is, the users in one CAC group use the same price. If CACs are in different areas, the prices may be different. The following equation explains the influence of prices. Define parameter [image: ] to represent the influence of pricing.


[image: ]



(10)








2.6. IPPL Strategy for Comprehensive State-Queuing Model in Lower Layer


Given the target from SEUMRE algorithm, we use the IPPL strategy to generate device-level command. The original sorting rule is current indoor temperature only, but it may not be comprehensive. When considering the comfortable levels requested by users, another three parameters historical switching number, price, and users’ will to participate in demand response are introduced.



As shown in Figure 8, two controllable groups are formed according to their switching status. In each group, a number of terminal units are sorted by their NTEM, and move to the next location along the clockwise direction [24]. The intrinsic rule on how the devices’ temperature change can be found in Figure 4. As time goes, the NTEM of each device decreases continuously without any outside control in each group. This process can be seen as a constant motion in a clockwise direction.


Figure 8. Schematic diagram of NTEM-based priority list.
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When the temperature of a terminal unit reaches its boundary, that is, the NTEM decreases to zero, its operating status will be flipped to the opposite way, jumping from the tail of a group to the head of the other group at the next time step.



There is a positive correlation between the integrated parameter and uses’ willingness. For example, there is a load shedding requirement in winter due to a huge increase of power consumptions. In CACCG, parts of terminal users whose indoor temperatures are low, but they have strong willingness to participate in demand response. To reflect this appeal, we multiply their current indoor temperatures by the parameter [image: ], which is higher than other users’.



On the contrary, there is a negative correlation between the integrated parameter and historical switching number. To protect the device, switching number should be restricted in a reasonable range. For example, there is a load shedding target in winter. If a terminal user has a relatively high switching number level, we multiply the current indoor temperature by a parameter [image: ], which is between 0 and 1 to decrease the possibility that it is chosen again.



For a terminal device, there is:


[image: ]



(11)







The [image: ] is determined by many factors, including the historical switching number, temperature of the room, users’ willing, price policy, and CAC operating status. As shown in the Equation (8), the four dimensions have played parts in the value of [image: ], and each dimension has its weighting factor [image: ] varying from 0~100%, which is adjustable to adapt to different CAC conditions.



Replacing the order index [image: ] with [image: ], the IPPL has been formed. Selecting the devices on the top of each queue based on the type of response signal, the exact number can be calculated using the stack model [24]. Finally, a group of terminal devices will be turned off or turned on. That is, CACCG decreases or increases a certain amount of power consumptions based on the types of target sent to it. In this way, device-level commands are generated. The terminal users in the CACCG will update their operating state according to the commands that they received.





3. Modeling of Upper-Level Optimal Scheduling Strategy for Aggregated Central Air-Conditioners


SEUMRE algorithm and IPPL strategy are illustrated in detail in this section. To achieve the ideal situation, we have to solve the following sub-problems, which include three aspects: the lowest cost; the best responding performance, and the best users’ comfortable levels. Each sub-problem has its own sub-problems. The best responding performance means that CACCG has accurate reaction during the controlled period and huge potential responding ability, which can be divided into two parts: load shielding ability and load rising ability. These two abilities are contradictory factors, and we try to balance them in the optimal process. The best users’ comfortable levels mean the least sacrifice of users’ living environment. We can define it as the lowest switching time and temperature adjustment. As optimization conditions are very complex, we use the intelligent algorithm SEUMRE to generate a reasonable target and IPPL strategy to generate device-level commands.



3.1. Optimization Model of Scheduling Strategy for Aggregated CAC in Upper Layer Kriging Model Based Optimization


For a single CAC, there is:


[image: ]



(12)
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(13)




where [image: ] is the cooling area of user’s room. As introduced in Section 2. The CAC’s power consumptions has a non-linear relationship with the load ratio that approximates the cooling area percent. Therefore, the [image: ] is obtained through the weighting method.



The objective function can be set according to the different simulation intentions. To make a better performance, the target distributed should be near to the natural power consumptions and avoid too much oscillation. At the start, we use the predicted power consumptions at the previous time step as the reference value, forming the objective function as follows:


[image: ]



(14)
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(15)




where, [image: ] and [image: ] are power limits of CAC; [image: ] is the controllable margin of CAC. [image: ] stands for the ideal operating point CAC want to reach at the next time step. [image: ] can be calculated by the following Equation:


[image: ]



(16)







For historical data, the nearer days are, the more weight they should account, which has been considered in Equation (9). Figure 9 describes the flow chart of SEUMRE algorithm. By using this method, time-varying complex constraints optimization problem can be solved as long as correct configuration is set.


Figure 9. SEUMRE algorithm flow chart.
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3.2. Space Exploration and Unimodal Region Elimination (SEUMRE) Algorithm Based on Metal Model


The key procedure of SEUMRE algorithm has the following steps:

	(1)

	
Based on the original information, divide the designed region into several unimodal regions.




	(2)

	
Sort the unimodal regions and predict the possible location where global solutions may exist, and the direction where the search iteration times may be increased.




	(3)

	
Use Latin square sampling method to fit the Kriging model. Spread sampling points to explore the potential design space for search process.




	(4)

	
First round screening: using the Kriging model, and plenty sampling points to find out the optimal point preliminarily.




	(5)

	
Second round screening: using the Kriging model, and larger number of sampling points near the optimal point generated on step 4 to find out several optimal points.




	(6)

	
The optimal points generated on step 5 will be rechecked with the objective function. After comparing all of the possible optimal points; we can get access to the global optimal point.









Figure 10 gives a description of the whole strategy structure. The constraints of a single device include four kinds of information: electricity pricing, historical switching number, indoor temperature, and user’s participation willingness. The constraints codetermine the integrated parameters that are different from each other. X stands for the targets needed to be calculated and distributed to the CAC response group. If there are five CAC groups, then there would be [X1, X2, X3, X4, X5] to be solved. A and B stand for the constraints matrix or vectors. To a single CAC, they are upper, lower power consumptions limits and the optimal target point, which is decided by the multi-dimension constraints. All of the parameters will be collected by the upper module, which formed the initial objective function. With the initial objective function and initial sampling points that are generated by Latin square sampling method, fitting Kriging objective function is obtained. After two rounds of screening, possible points are picked. Through rechecking and comparing the solutions using the initial objective function, we can find out the optimal point.


Figure 10. Model solving framework.
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4. Simulation Results


In this part, several typical cases are discussed to validate the effectiveness of the strategy and the benefit brought by the application of big data. Table 1 shows the basic simulation parameters, which come from a city park in Southern China.



Table 1. Basic Simulation Parameters.







	
CAC number

	
60

	
CAC‘s user number

	
50~300




	
SEUMRE iteration time

	
5

	
Operating mode

	
cooling




	
Mean area of terminal units

	
69 (m2)

	
Mean power of CAC

	
370 (kW)




	
Mean temperature setpoint of CAC

	
21 (°C)

	
Mean users’ will

	
1.0




	
Mean temperature of upper limit

	
24 (°C)

	
Mean temperature of lower limit

	
18 (°C)




	
Mean users’ maximum controlled switching number

	
20/day

	
Mean users’ maximum total switching number

	
80/day




	
Simulation step (min)

	
1

	
Simulation time (day)

	
15




	
Simulation start time every day (min)

	
600

	
Simulation time every day (min)

	
1260










4.1. Case 1: Simulation Results of SEUMRE Algorithm


Figure 11, Figure 12, Figure 13, Figure 14 and Figure 15 will give an intuitive sense of data distribution with the SEUMRE algorithm. To make the presentation clearly, we choose only two CAC groups, A and B, which together make up the two-dimension solution space. Every point in the following figures represents a pair of target A and target B.


Figure 11. Initial expensive points.
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Figure 12. First round cheap points.



[image: Energies 10 02133 g012]





Figure 13. Second round cheap points.
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Figure 14. Two rounds sampling points’ envelope lines.
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Figure 15. Solution space in contour way.
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In Figure 11, 10 initial expensive points using the real objective function and constraint equations were tested, and we could find out the optimal expensive point dyed red. Based on the 10 initial points and corresponding objective function value, a kriging meta-model can be fitted.



In the present approach, around 1000 cheap points are generated using the metamodel, the optimal cheap point can be found dyed red in Figure 12. It is the first round cheap points screening, this optimal point in this round has already been an excellent solution.



To find a better solution, 5000 cheap points are generated using the metamodel, which has a smaller range when compared with the original sampling range. It is the second round cheap points screening with more targeted sampling points. A few solutions with minimum objective function value are chosen, dyed yellow in Figure 13. These solutions will be rechecked by the real objective function for the final verification, finding out the global optimal point dyed red in Figure 13.



The whole process can also be presented in a three-dimensional 3D and contour way. In Figure 14, target A, target B, and their objective value together make up the 3D space. The two rounds sampling points’ envelope lines are colored based on their corresponding value of objective function. The minimum value represents the global optimal solution, which can also be shown in Figure 15 as the white point.



The advantage of the SEUMRE algorithm is that it has unique method of sample points generating, which can find the optimal global points in a short time. This paper includes 60 variables using SEUMRE algorithm, all of the targets can be solved appropriately in a short time. In order to show the advantage of SEUMRE, the interior point method is used as a comparison algorithm, the SEUMRE algorithm performs better in convergence speed and optimization effect.



On the one hand, SEUMRE algorithm uses experimental data to segment the feasible field into multiple key unimodal areas, identify areas most likely to contain the global optimal solution, and use Latin square methods on these areas to fit the kriging model through additional experiments to identify the local minimum, until find the global optimal solution, which can find the optimal global points in a short time, especially in a middle-scale optimization problem, in which 50~100 variables are involved. Figure 13 shows the simulation process with 60 variables using SEUMRE algorithm, the minimum iteration step to figure out stable global optimal points reduced evidently. The simulation time is 1.6 h with 60 independent variables using the PC (Tianjin University, Tianjin, China) with CPU 2.20 GHz, i7, 4 cores, MATLAB R2013a (MathWorks, Natick, MA, USA), when compared with interior point method 6.2 h in the same machine.



From Figure 16 and Figure 17 we can see that SEUMRE only needs one iteration to get the convergence result and the interior point method need three iterations.


Figure 16. 60 CACs Data distribution process with the SEUMRE algorithm.
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Figure 17. 60 CACs Data distribution process with the interior point method.
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On the other hand, by identifying the possible unimodal regions of the objective function and reducing the search range, the SEUMRE algorithm can efficiently find the global optimal solution and avoid falling into the local optimum, so the optimized result of SEUMRE can be better than other typical optimization algorithms. The optimal solution comparison can be seen in the figure below, the target distributed by SEUMRE is nearer to the natural power consumptions than the interior point method, which can be seen in Figure 18.


Figure 18. Optimization results of 60 CAC.
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4.2. Case 2: Simulation Results of Control Strategy


Generally speaking, CAC operates during a unique time like 10 am to 9 pm. As all of the users switch on the terminal units at an approximate same time and to typical CAC user, like commercial centers, terminal rooms’ variety is not that obvious, the power consumptions of CAC will experience a period of oscillation. After simulation for a long time, like 10 days, all of the operating data have been accumulated. With the usage of historical operating data, we can forecast the power consumptions of CAC in the next day.



Through the method of smoothing, the objective points can be calculated. Figure 16 shows the response target that is generated using the Equation (14) as the objective function. When comparing to the uncontrolled power and response result, conclusions can be drawn that with the predicted objective points, power consumptions of CAC can be controlled and conducted in a smaller range with less oscillation, which can be seen in Figure 19.


Figure 19. Response result of CAC.
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4.3. Case 3: Key Parameters of Control Strategy Analysis


In this part, four key parameters temperature factor (TF), willingness factor (WF), pricing factor (PF), and historical switching number (HSN) are analyzed. Using single parameter as sorting criterion, that is, in Equation (11), set value 1 for one of the four weighting factors [image: ], and 0 for the other three weighting factors. With same targets and initial conditions, four response results and errors can be obtained, as shown in Figure 20 and Figure 21.


Figure 20. Response results under single sorting criterion.
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Figure 21. Box-whisker plot of response errors under single sorting criterion.
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The simulation results indicate that TF has better performance when compared to the other parameters under single sorting criterion condition. This is because temperature has its unique relationship with power consumptions, as shown in Figure 4. When temperature reaches upper or lower limits, the switching status will be changed. Although other possible parameters do not have direct connections with CAC power consumptions, they can reflect corresponding appeals in other aspects, like users’ participation willingness, pricing information, and historical switching number.



Using multiple parameters as sorting criterion, that is, in Equation (11), set value 1 for more than two of the four weighting factors [image: ], and 0 for the other weighting factors. When considering the importance of TF, three cases with TF and one of the other three parameters are set. The last case considers all of the possible factors, which are TF, WF, PF, and HSN. With same targets and initial conditions, four response results and errors can be obtained as shown in Figure 22 and Figure 23. The simulation results indicate that those cases when considering TF has better performance than those do not. For example, case ‘TF&WF’ has better performance than case ‘WF’ as compared with Figure 17. That is because cases considering TF take full advantages of the thermal electric coupling relationship. CAC users can set parameter weightings according to personal preferences, which realizing customization.


Figure 22. Response results comparison under multiple sorting criterion.
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Figure 23. Box-whisker plot of response errors under multiple sorting criterion.
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4.4. Case 4: Parameters’ Influence on Optimizing Target


The influences of parameters’ customization are not only on the executive part, but also on the generating of optimizing target. from Equation (14), we know that the ideal optimal point is [image: ], and [image: ] is determined by CAC users to a certain extent. Therefore, if a CAC user has larger [image: ], it means the users should undertake more target (load shedding or load rising). A case of load shedding is shown in Figure 24, two targets are generated using Equation (14) colored by black and red. The target using TF&WF&PF&HSN has smaller [image: ] as it considers more factors, which are all in the range of 0~1. Thus, less load shedding target are distributed to it when compared with the CAC user only considering TF. By considering the parameters in the generating of optimizing target, CAC users can get reasonable targets, which match their response abilities.


Figure 24. Parameters’ influence on optimizing target.
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5. Conclusions


This paper presents a new CAC control strategy IPPL under multiple constraints with Metal-Model-based Optimization Method and big data analysis. The simulation environment is complex and time-varying in which large amount of factors like the historical switching number, temperature of the room, users’ willing, price policy, and COP (coefficient of performance) conditions are taken into consideration, the more factors that the CAC consider, the less load shedding target would be distributed to the CAC, and the TF has better performance when compared to the other parameters. The structure in which algorithm, constraints, and models can interact effectively is presented, power consumptions of CAC can be controlled and conducted in a smaller range. The simulation results show that based on big data, with the combination of SEUMRE algorithm and IPPL strategy, CAC groups can become good candidates for demand response on the premise of accuracy and efficiency, the SEUMRE algorithm performances better in convergence speed and optimization effect, the simulation time of SEUMRE is less than 30% of the simulation time using interior point method, and the optimized result of SEUMRE is much better as the target distributed by SEUMRE is nearer to the natural power consumptions. As the optimization problem has heavy computation requirements and multi variables, in the future, more work of big data will be studied to offer auxiliary service, and help to improve the strategies.
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	TCA
	Thermostatically controlled appliance



	CAC
	Central air-conditioner



	IPPL
	Integrated parameter priority list



	SEUMRE
	Space Exploration and Unimodal Region Elimination



	DR
	Demand response



	ESS
	Energy storage system



	HVAC
	Heating, ventilation, and air-conditioner



	ETP
	Equivalent thermal parameter



	CACG
	Central air-conditioner group



	CACCG
	Central air-conditioner controlled group



	CACUG
	Central air-conditioner uncontrolled group



	TEM
	Temperature extending margin



	NTEM
	Normalized temperature extending margin



	TOU
	Time of use



	TF
	Temperature factor



	WF
	Willingness factor



	PF
	Pricing factor



	HSN
	Historical switching number







References


	1. 
Abbey, C.; Strunz, K.; Joós, G. A knowledge-based approach for control of two-level energy storage for wind energy systems. IEEE Trans. Energy Convers. 2009, 24, 539–547. [Google Scholar] [CrossRef]

	2. 
Heffner, G.; Goldman, C.; Kirby, B.J.; Meyer, M.K. Loads Providing Ancillary Services: Review of International Experience; LBNL-62701, ORNL/TM-2007/060; Ernest Orlando Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2007.

	3. 
Molina-García, A.; Bouffard, F.; Kirschen, D.S. Decentralized Demand-Side Contribution to Primary Frequency Control. IEEE Trans. Power Syst. 2011, 26, 411–419. [Google Scholar] [CrossRef]

	4. 
Samarakoon, K.; Ekanayake, J. Demand side primary frequency response support through smart meter control. In Proceedings of the 2009 44th International Universities Power Engineering Conference (UPEC), Glasgow, UK, 1–4 September 2009. [Google Scholar]

	5. 
Kirby, B.J. Spinning Reserve from Responsive Loads; ORNL/TM-2003/19; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2003.

	6. 
Wang, J.; Redondo, N.E.; Galiana, F.D. Demand-side reserve offers in joint energy/reserve electricity markets. IEEE Trans. Power Syst. 2003, 18, 1300–1306. [Google Scholar] [CrossRef]

	7. 
Behrangrad, M.; Sugihara, H.; Funaki, T. Effect of optimal spinning reserve requirement on system pollution emission considering reserve supplying demand response in the electricity market. Appl. Energy 2011, 88, 2548–2558. [Google Scholar] [CrossRef]

	8. 
Wang, D.; Parkinson, S.; Miao, W.; Jia, H.; Crawford, C.; Djilali, N. Hierarchal electricity market-integration of disparate responsive load groups using comfort-constrained load aggregation as spinning reserve. Appl. Energy 2013, 104, 229–238. [Google Scholar] [CrossRef]

	9. 
Wang, D.; Parkinson, S.; Miao, W.; Jia, H.; Crawford, C.; Djilali, N. Online voltage security assessment considering comfort-constrained demand response control of distributed heat pump systems. Appl. Energy 2012, 96, 104–114. [Google Scholar] [CrossRef]

	10. 
Lu, N. An Evaluation of the HVAC Load Potential for Providing Load Balancing Service. IEEE Trans. Smart Grid 2012, 3, 1263–1270. [Google Scholar] [CrossRef]

	11. 
Lu, N.; Zhang, Y. Design Considerations of a Centralized Load Controller Using Thermostatically Controlled Appliances for Continuous Regulation Reserves. IEEE Trans. Smart Grid 2013, 4, 914–921. [Google Scholar] [CrossRef]

	12. 
Callaway, D. Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy. Energy Convers. Manag. 2009, 50, 1389–1400. [Google Scholar] [CrossRef]

	13. 
Parkinson, S.; Wang, D.; Crawford, C.; Djilali, N. Comfort-constrained distributed heat pump management. Energy Procedia 2011, 12, 849–855. [Google Scholar] [CrossRef]

	14. 
Parkinson, S.; Wang, D.; Crawford, C.; Djilali, N. Wind integration in self-regulating electric load distributions. Energy Syst. 2012, 3, 341–377. [Google Scholar] [CrossRef]

	15. 
Miao, W.; Jia, H.; Wang, D.; Parkinson, S.; Crawford, C.; Djilali, N. Active Power Regulation of Wind Power System through demand response. Sci. China (Technol. Sci.) 2012, 55, 1667–1676. [Google Scholar] [CrossRef]

	16. 
Lu, N.; Chassin, D.P. A state queueing model of thermostatically controlled appliances. IEEE Trans. Power Syst. 2004, 19, 1666–1673. [Google Scholar] [CrossRef]

	17. 
Chan, M.L.; Marsh, E.N.; Yoon, J.Y.; Ackerman, G.B.; Stoughton, N. Simulation-based load synthesis methodology for evaluating load-management programs. IEEE Trans. Power Appar. Syst. 1981, PAS-100, 1771–1778. [Google Scholar]

	18. 
Lin, P.I.-H.; Broberg, H.L. Internet-based monitoring and controls for HVAC applications. IEEE Ind. Appl. Mag. 2002, 8, 49–54. [Google Scholar] [CrossRef]

	19. 
Taylor, K.; Ward, J.; Gerasimov, V.; James, G. Sensor/actuator networks supporting agents for distributed energy management. In Proceedings of the 29th IEEE International Conference on Local Computer Networks, Tampa, FL, USA, 16–18 November 2004. [Google Scholar]

	20. 
Yao, L.; Lu, H.-R. A Two-Way Direct Control of Central Air-Conditioner Load via the Internet. IEEE Trans. Power Deliv. 2009, 24, 240–248. [Google Scholar] [CrossRef]

	21. 
Koch, S.; Mathieu, J.L.; Callaway, D.S. Modeling and control of aggregated heterogeneous thermostatically controlled loads for ancillary services. In Proceedings of the 17th Power System Computation Conference (PSCC), Stockholm, Sweden, 22–26 August 2011. [Google Scholar]

	22. 
Zhao, X.; Su, H.; Liu, X. Study of Control Strategy about Central Air-Conditioning Control System. In Proceedings of the Second International Conference on Information and Computing Science, Manchester, UK, 21–22 May 2009. [Google Scholar]

	23. 
Wakami, N.; Araki, S.; Nomura, H. Recent applications of fuzzy logic to home appliances. In Proceedings of the IECON’93 International Conference on Industrial Electronics, Control, and Instrumentation, Maui, HI, USA, 15–19 November 1993. [Google Scholar]

	24. 
Qi, Y.; Wang, D.; Jia, H.; Huang, R.; Zhang, Y.; Yang, Z. Demand Response Control Strategy for Central Air-conditioner Based on Temperature Adjustment of Partial Terminal Devices. Autom. Electr. Power Syst. 2015, 39, 82–88. [Google Scholar]

	25. 
New York Independent System Operator Official Website Public Information Page. Available online: http://www.nyiso.com/public/markets_operations/market_data/pricing_data/index.jsp (accessed on 6 March 2009).



























































© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file8.jpg
Low Temperature

gh Temperature

>
e 1EM
7 i’ M7 77 7T
@ Tl Thign
@ 177 7 zi!
3 17777 M Z
k— M ——
7 L £== Zil
Tiow Thigh
Oz . == 7 ]
[e—— 1M ——>|
@ . . === 1
le— rEM —3






media/file27.png
-
-

___‘.\-
Zramz

'y
g ._..*Ht.."*_..._ _-4_._.._..
i g, LR
L@ﬂmﬂmﬁmmw
s._..i..qﬁ.-_iﬁ_-wi .3.........1
‘-~t4*a
th.#~+¢
ety
K
2y
y«.n
o
l..\.‘.i.“m.#..-.
et
S
o,






media/file43.png
180
gl 50 Using TF+WF as sorting criterion Response target
4 ‘ Response result
2120 o . X ’4 e " a Uk q ‘L‘h.ﬁl <,
~ 90 | = WA s e
60
10 11 12 13 14 15 16 17 18 19 20 21
Time (h)
180
g 150 Using TF+PF as sorting criterion Response target
) Response result
5120
0.)
2
~ 90
60
10 11 12 13 14 15 16 17 18 19 20 21
Time (h)
180
- Using TF+HSN as sorting criterion Response target
E 150 5 s Response result
5120
0.)
2
~ 90
60
10 11 12 13 14 15 16 17 18 19 20 21
Time (h)
180
g 150 Using TF+WF+PF+HSN as sorting criterion Response target
o Response result
=120
0.)
2
~ 90
60
10 11 12 13 14 15 16 17 18 19 20 21





media/file12.jpg
110,

————CAC_1 TOU price
— — CAC2TOUprice

'AC_3TOU price
— == CAC_4TOU price
=+ -CAC_S TOU price
— = —CAC_6TOU price

90

Price (S/MWHr)
g 32






media/file14.jpg
e— =M ——3|
Ay 77777777774
'

' TEM






media/file35.png
Power (kW)

8000
7 T N :f} S~ e Natural power consumptions
AT S 7 N AN 1 SEUMRE optimization
7000 \ A RN / A 7 \
g = N~ = = = =~ Interior point method
£ M"‘\#/ e . ~ N / o R .
6000 > ,, 7 il \\\~ )
e -.ﬂ} ————— '\.‘
5000 s WPV .
4000
10 11 12 13 14 15 16 17 18 19 20 21






media/file20.jpg
180,

140} d 5. :

| e .
« . X
% W @ o R T —T]

TargetA





media/file5.png
\ cooling tower cooling water pump CAC central unit chilled water pump

I I I water collector . d I '
‘ I ‘ I ‘ I I water distributor

LN NN W N NN g

("

Q@ Q@ Q@ LI I L
— =t V=t S—

airMunit U i “i
; | fan coil 1 1 :

_— ---> - t 1 '
information el O : & Q g 8:]:
collection unit control center hardware I I
controller : o q :
Sesossssssssesosescescsccceccecnl teninfal_u_seis ______ II

el (0w temperature water ~— e high temperature water  ===<=p> information flow





media/file19.png
Meta-Model-based Optimzation

Recheck using initial

First round screening Second round screening
> . objective function
[ ] [} O L] “__. _________ - [ ] : [ _ o . .
° ¢ ° : . ° ¢ O/’-.‘s‘ i‘ ° ¢ ‘ . ,/.” \\\\ L ( ,/”——-~~ ~
° ° ° .o ° ° (\ . J + ° ) ° °® "I P .\\ ° ,’l \
° ° ° B = Y ® | PY | 3 o ® \
[ [} ¢ . e ‘e ° o . o O o, 1 1
A O [ ] [ [ ] ° [ ] [ ] \ 7 l .. . 1
. . ° ° ° .. \ ° , ® ® ' l'
° ° o° ¢ o’ ¢ ¢ NS -7 ® o \ )
® ® o o - o ® \\ . 7
° ° ° e e ° e @ o Y N S
° ° ° ° ° ° ° ° o o L
¢ ¢ ¢ L ‘ o ‘ [ ] ¢ [ ] ‘ o e . . . . \~~—_—’
° ® ® o °
f f
Initial sampling points Kl’lglllg
° ° . .
. o o »| objective
L functi
° - - uncton - - oousE e e e e e

A

CAC 2 integreted
parameter

CAC_1 integreted

CAC 3 integreted

CAC Kk integreted
parameter

parameter

Initial objective function

parameter

Integrated parameter 2#

Integrated parameter n#

Integrated parameter 1#
A A A
T T
Device 1# Device 2# Device n#
csssse Electricity pricing

Electricity pricing

Historical switching number
Indoor temperature
Participation willingness

Electricity pricing
Historical switching number
Indoor temperature

Participation willingness

Historical switching number
Indoor temperature
Participation willingness






media/file45.png
Q)
—

)
—

(M) Jomod

v o n O
—

w
—
1

o
i

e
i

TF+PF TF+HSN TF+WF+PF+HSN

TF+WF





nav.xhtml


  energies-10-02133


  
    		
      energies-10-02133
    


  




  





media/file11.png
CAC
power

load ratio
0 0.5 1






media/file41.png
rfE—' —_—

+ o+

*- rr’vv —

)
—

- v O v O
— 1 —

(M) Jomog

W
p—
1

o
a3

e
<

HSN

PF

WF

TF





media/file37.png
Rl
5 ezt o
= > = g
5 & B
2 «nm () "1
= ~— =~ 1
] Q Seoy
— 1} 17} e
e £ £
2 & 2 -
w 5 5 -n.-.-
S X = O
e LI
- "
4
i T
} 1 -
: TR
] Ll T
H il
: 2.
: »
' >

Ry
T ~
o522l
mos

LYy
Rl L LT -

X -l
T
>
cospgem=m" -
]
... O
I~
=X
g
1] -
]

(M) Jomod

21

20

19

18

17

16

15

14

13

12

11

10

Time (h)





media/file46.jpg
Tagetwing TF only
Tuget wing TRRWFPFRHSN,






media/file10.jpg
CAC
power

load ratio
>
0 0.5 1






media/file40.jpg
3
1
==
T
T

—
|
|
1
T






media/file16.jpg
Given st
et seating regonseened [, __ [ Constins e, X1
used on Lt s smyig AR b

T T

[E——

T

X

“Caletaing il ot o

Eo— Optinal e

Tirting g gion srerd sl |
o Lt s samping
XX X,

'
|
|
|
|
|
|
Lo
|
|
i

st round srsening.

Calctingcbxeine fncton tosed on K]
model, g s cpima sampling o

Sccond rownd seccnin
Tieming sehng Rason ST ST o
Lainsquae sampl rar .
[N X

e
inction using op p s o C:
oyl

Seriing po mergre.
X XXX
=X X XU B )

Carposi e Gatalopima Respondng st o
uonvsue mering

it exhCAC
b El
EIUN. V) I

@D






media/file3.png
‘ CAC’s working principle

Terminal users’
temperature model

In/Outdoor
Temperature

P

CAC central unit and
water pumps

_,l

Switching number of
CAC operation process

Electricity
price model

v

Y

vy
current temperature CAC Historical Switches TOU power
constraint operating state number Constraint price






media/file22.jpg
60,

™ = -

T o






media/file25.png
180

140

TargetB
[E—Y
o
S

ro.2
60 ”"}fe'
° * M
¢ L .'.o" woe o ¥ @ o0 © o0 % Qoo °° 08 °
2()
20 40 60 30 100 120 140
TargetA

180





media/file0.jpg
CAC Operaing
state

ToU(
Use) Power Pri

number Constmint Constraint

Historical s‘mml ‘ Current Temperatur

Optimal
Scheduling
Stateey

Based o

Gperi ComforableLevel | [ Pre Mo Model
Consiints Consiint Consimins -,.
Unper e
— MRE Algortm | State
update
Ol g PP Strncey
- CAC Group (CACG) eini
command | L Coneol
i Dascdon
; e e Comprensive
e CAC Uncommlled Group CAC Conolld Group |,
0 (€ACUG) (CACCG)

D BED






media/file26.jpg
Firt ound chesp point.
enveope ne

Sccond ound cheap |

Targetl. = % =






media/file34.jpg
Woouwom o owm w6 owmowow oW ow





media/file13.png
110

———CAC_1 TOU price
— #— (CAC 2TOU price
------- #-------CAC 3 TOU price
— =+ — -CAC 4 TOU price
— -+ - -CAC 5TOU price
——e+— —CAC 6 TOU price

O
-

Price ($/MWHTr)
w
o -]

30,
L

10

10 12 14 16 18 20 22 24
Time (Hr)





media/file31.png
Distributed targets(kW)

80

40

20

—_ -_—

—— . ———

The optimized result converges in the first iteration.

lteration number






media/file48.png





media/file39.png
180

ngO Using TF as sorting criterion Response target
4 Response result
5120
5 N
~ 90
60
10 11 12 13 14 15 16 17 18 19 20 21
Time (h)
180
ngO Using WF as sorting criterion Response target
o4 Response result
5120
Z
~ 90
60
10 11 12 13 14 15 16 17 18 19 20 21
Time (h)
180 . o
—~ Using PI as sorting criterion Response target
E 150 Response result
= e WL ST AL,
5120 w“mu,w"‘.wm-l-*‘“" Y/ 7 Y TN iy W
~ 90 e
60
10 11 12 13 14 15 16 17 18 19 20 21
Time (h)
180 , : o
ngO Using HSN as sorting criterion Response target
) Response result
5120
2
~ 90
60
10 11 12 13 14 16 17 18 19 20 21





media/file18.jpg
Meta-Model-based Optimzation

First round sercening,

Sccond round sercening.

Kriging
objective
function

o TR ... [ ORC KT
PR paramter paramter paramcer
S Initial objective functi
T e
= armeer |

[E—

s }

.+ by i

- isors iching b |

Ry
Paripation willingacss

i s
iy piing

Hisoral siching e

Indur s

ey priing






media/file9.png
Low Temperature High Temperature

|-
| ot

& TEM
(1) 77777777777 777777 7R7 7 7 7]
Liow Thigh
(2) P77 777777 R 7 7 7 7 7 7 7 7 7 7 7]
©) IEIIS. = IS I IIIII I
le—— TEM ——3
(4) [Frr7 77777777 Al 7 7 7 7 7 7 7 7
Tiow Thigh
G L7777 7 M 7 7 7 7 7 7 |
< TEM >|
(6) ITTTIIIS = “TTTTTTITIIIIITS

l«— TEM —>
(7 FITIIIIL ==  PITIIITS






media/file42.jpg
180

Sis0|  Using TEWF as soting crierion JE—

Z! Resporse el

S0

H

2%

O 2 B o1 16 17 s 1 20 2
Time (h)

130

- Using TF+PF as sorting critrion —— Resposs et

219 Respons s

5120

H

2o

oo B w15 16 17 o 19 2 2
Time (h)

150

= Using TE+HSN as soring citrio [ —

2150 AL oiting ctterion Resporss s

EIZOWM

H

2o

6

oo 15 16 17 18 19 2 2
Time (h)

180

B Using TF+WF +PF+HSN as orting critrion Response g

Z150 Respors ek

$120

H

Zo

R A N LA S U |

Time (h)





media/file23.png
180

140

TargetB
-
-

60

oo

20

cheap point
o o ®°°

100
TargetA






media/file36.jpg
“Time ()





media/file15.png
) TEM





media/file28.jpg
,,,,,





media/file2.jpg
CAC’s working principle

AR

Terminal users’
temperature model

CAC central unit and
water pumps

In/Outdoor

Temperature Switching number of Electricity
CAC operation process | | price model

current temperature. Historical Switches TOU power

constraint

number Constraint

price






media/file32.jpg
Distributed targets(kW)

The optimized result are scattored and
converges in the third teration.

Heration number






media/file6.jpg
Temperature segint upperimit Switch state

A A AT
VNN






media/file24.jpg
180y

140)

100)

60

B






media/file29.png
12,000

130 10,000
110 8000
TargetB
90 16000
70 14000
50 82000
30 —
30 50 70 90 110 130 150 170

TargetA





media/file1.png
| |
i CAC Operating Historical Switches Current Temperature TOU(Time Of I‘
i State number Constraint Constraint Use) Power Price | |
|
e e L LR R T e Optlmal
Scheduling
Strategy
- Y \ 4 v \ 4 Based on
< Given < Operation Comfortable Level Price Metal Model
Target Constraints Constraint Constraints In
Upper Layer
\ 4 A4 ( Users’ (
—I SEUMRE Algorithm I Willingness State
update v
A
\ 4 \ 4 \ 4
L Optimal target . IPPL Strategy —
>|| CAC Group (CACQG) Control
A command Load Control
: i Based on
state lilpdate i Comprehensive
State : Y Y i State-Queueing
sodate CAC Uncontrolled Group CAC Controlled Group | Model
P (CACUG) (CACCG) In

“ . Terminal User 1(TU 1)

Terminal User 1(TU 1)

Terminal User n(TU n) ,,"

Lower Layer






media/file7.png
Temperature

T high

Tset

T low

To

A . .
Setpomt upper limit

A o

| | | . | | |
. lower limit | | I | |
o | L |
' I |

/L /\/\/K T! l

A .
Switch state

“1on

—Joff

time






media/file33.png
Distributed targets(kW)

-

o

S
I

o
o
I

- -
——— ———

The optimized result are scattered and
converges in the third iteration.

Iteration number






media/file44.jpg
Power (kW)

TFWF TEPF TFHHSN FWEPFHHISN






media/file47.png
130

p—
p—
()]

Power (kW)
=
o

0]
(9

70

ngid
G id

-----
i haelPlantd

-------
(i

Sead
.y

—— Target using TF& WF&PF&HSN

Target using TF only

---------

---------
o o]

10

11

13

14

15

Time (h)

17

18

19 20 21





media/file38.jpg
Using TF as sorting criterion _

Z Response esult
5120
290

P2 oW1 16 17 18 19 20 21
Time (h)

180

Sigp) Ve WF assoringcerion omom s

5120

E9

P2 B s a6 17 18 19 20 2
Time (h)

P80 Using PF as soting et

E sing PF as sorting criterion Response target

S| Ve R

5120

H

290

P2 B o1 a6 17 18 19 20 2
Time (h)

P80 Using HSN as sorting crt

o ing HSN as sorting criterion ET—

g0 Resporse resit

5120

E9

P2 B 16 17 18 19 20 2

Time (h)





media/file17.png
| iteration = 1 |

v

Given target
Initial searching region generated _ Constraints [Xiin, Xax]
based on Latin square sampling AX<B;aX=b
v Operation

- ‘ ' constraints
| — — Initial sampling points[X;, Xy, X,]
| ]

Calculating initial objective functi . : :

| aictiating Mtat OBJecve TnCHoN L — Objective function F [ Optimal target
I [Fla anu.n Fl’l]
I
I

== —>| fitting Kriging model Ii

| | lterating searching region generated based

A

— p on Latin square sampling
[Xl > ij e Xl’l’l] 9m>>n

>

First round screening

Calculating objective function based on Kriging
model, finding out optimal sampling pointC,

Second round scre ening"

Iterating searching region generated based on
Latin square sampling near C,
[Xla Xza. ) .9 Xh]9h>>m

Calculating mitial objective

function using top p points of C | ( — = = — — — — — — 4

iteration
=iteration +1

A

[Yi Y]

Sampling points merging
[Xla ij...j Xl’b Xl'l""lau.n Xn+p]
= [Xla inu.n Xl’l] U [leu.a Xp]

Corresponding objective
function value merging
[F"1, Fa, o, By Fot, o, Fog]
=[FLFp e EJUTY o Y

2

iteration
iteration _may

yes
A 4
Global optimal Responding targets of
point F*, g each CAC

end






media/file4.jpg





media/file30.jpg
Distributed targets(kW)

Tho optiaized result comorges n the first iteration.

Reration number






media/file21.png
180

140

TargetB
[E—Y
-
S

optimal expensive point

60
°
20
20 40 60 80 100 120 140
TargetA

160

180





