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Abstract: This study examines how the dynamic efficiency of public policy influences the export
performance of bioenergy technologies in the short and long run using panel data over the 1995–2012
period for 16 countries that are members of the OECD. Various dynamic panel framework tests to
check data characteristics are performed. The study found evidence of co-movement among the
series, and set up the panel vector error correction mechanism to evaluate the short- and long-run
Granger-causality between the following variables: dynamic efficiency of public policy, export,
and environmental policy stringency. This study highlighted positive effects of the dynamic efficiency
of public policy and environmental policy efforts on exports in both the short and long run. This study
proposes policy considerations based on its results.

Keywords: bioenergy technology; dynamic efficiency of public policy; export performance; panel
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1. Introduction

To date, numerous studies have addressed the role of public policy in the promotion of renewable
energy technologies (RETs). In the literature, two research fields have emerged—an experimental
setting for discussions on policy efficiency, and empirical research on the relationship between
government policy and export. Studies on the measurement of the efficiency of government policy
in the RET sector have tried to define efficiency; discuss various policy input and output factors for
particular policy measures; and evaluate the efficiency of a number of public policies in terms of
cost reduction, price reduction of power, power capacity enhancement, and electricity generation,
among others, which are triggered by policy inputs. These studies are conducted through comparative
analyses (e.g., [1–3]), estimations (e.g., [4,5]), and descriptive analyses [6]. Nonetheless, research on the
dynamic efficiency of public policy remains at a conceptual level [7]. In other words, the literature
does not provide quantitative indicators of the dynamic efficiency of RET policies. Empirical studies
(e.g., [8,9]) have shown that government policy positively affects the export performance of bioenergy
technologies. However, most RETs are at an immature phase in terms of industrial development,
and need continuous innovation [10]. Moreover, public support is one of main forces of innovation
in the biofuels sector [11–13]. Consequently, the investigation of mechanisms, from public policy to
increased exports through innovation creation, remains a challenge.

There are different rationales for supporting RETs—including bioenergy technologies—in which
long-term cost reduction has been central to RET policies of each country examined [14]. Despite
such policy efforts, many RETs, as immature technologies [10], are poised for further and perhaps
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significant cost reduction and performance improvement [15]. This implies that successes in the RET
sector, such as market penetration and larger market shares, mainly depend on creating the potential
for technological innovation and diffusion through reduced costs [16]. In the works by Del Río [3]
and Del Río and Bleda [17], the ability of policy instruments to induce a continuous incentive for
technological improvement and cost reduction of existing RETs—the dynamic efficiency of a RET
policy—is very important for the promotion of exports and industrial growth. Dynamic efficiency is a
synergy that promotes industries’ or firms’ performance. Efficiency that constantly boosts the ability to
innovate is considered dynamic [18], implying continuous innovative efficiency [19,20], which, in turn,
implies using the lowest amount of inputs in producing any given outputs [21]. Empirical results show
that there is no systematic relationship between the level of policy input to support industrial activities
(e.g., R&D expenditure) and public policy outcomes (e.g., market performance) [22,23], while others
indicate that the dynamic efficiency of public policy is more important than the amount of policy input
for promoting industrial performance and growth [24].

Nonetheless, there is no study that empirically investigates the relevance of the dynamic efficiency
(or continuous innovative efficiency) of public policy instruments in promoting the export performance
in the bioenergy technologies sector. After a review of the extant literature, this study aims to address
this gap by empirically testing the role of the dynamic efficiency of public policy on the export
performance of bioenergy technologies using panel data.

For an empirical contribution in line with the extant literature, the current study considers
four relevant aspects that may strongly influence the direction and robustness of empirical results
vis-à-vis the relationship between the dynamic efficiency of policy and exports. First, this study uses
export performance, instead of export competitiveness indexes, in line with studies such as Jha [8],
Sung [9], Costantini and Crespi [25], and Sung and Song [26] that show that export performance is
significantly affected by public policy. Second, although there are studies on the dynamic efficiency
of public policy, they remain at a conceptual level [7]. Thus, this study evaluates the changes in
the dynamic efficiency of public policy for supporting the bioenergy technology sector using the
Malmquist productivity growth index analysis (MPGI) proposed by Färe et al. [27]. It incorporates
these changes into the model, which coincides with the dynamic panel approach adopted in the
current study. Third, this study includes environmental policy in the model to control for potential
omitted variables that may influence the relationship between the dynamic efficiency of public
policy and the export flow dynamics of bioenergy technologies. Environmental policy positively
influences technological innovation [12,13,28] that triggers higher efficiency in the production
process—productivity growth [29]—through various complementarity mechanisms [25,28,30,31].
This then leads to the promotion of export specialization and the enhancement of comparative
advantages for manufacturing goods [32] like bioenergy technologies, as well as components that
are regarded as environment-related products and technologies. Fourth, since most panel data are
heterogeneous and non-stationary co-integrated, and improvements in export performance tend to
become evident after an enhancement of the dynamic efficiency of public policy, this study takes
a dynamic approach. In this respect, Hirshleifer et al. [20] found that there is a time lag between
dynamic efficiency and firm performance; there are dynamic effects in export performance, dynamic
efficiency, and environmental policy (implying that inputs in period t are, to some extent, invested in
promoting output in period t + 1), as well as in their interactions [9,33]. When employing a dynamic
panel approach, notably, it is important to account for possible structural breaks and cross-sectional
dependency that influence the applicability of tests for the presence of stationarity and cointegration.
Moreover, the choice of the empirical model that can be set up to test for the Granger-causality of the
short- and/or long-run relationships among the variables to be examined depends on the results of
the panel unit-root and cointegration tests. Specifically, a panel vector autoregression (VAR) model is
needed to test the short-run linear causality (only in presence of panel unit-roots), while a panel vector
error correction model (VECM) is suitable to evaluate the short- and long-run directions of causality
among variables (with evidence of panel unit-roots and cointegration). In addition, sample size and
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data characteristics (e.g., cross-sectional dependence, heteroscedasticity, simultaneity, etc.) should be
taken into account in the estimation of the empirical model.

This study starts by contextualizing the relationship between the dynamic efficiency of public
policy for and exports of bioenergy technologies based on the extant literature. Then, the model, data,
and empirical methodology employed are presented, followed by the description of the empirical
results and their interpretation. Finally, the main findings are summarized, and the implications and
limitations of the study are outlined.

2. Conceptual Framework: Dynamic Efficiency of Public Policy and Exports

In open economies, government policy promotes the export performance of bioenergy
technologies (e.g., [8,9]); wind; solar; and several aggregated RETs (e.g., [25,26,28,31,32]), which
leads to growth of the RET industry [5,34] and, generally, the economy [35]. This growth provides the
rationale for government policy to promote the technological development of firms directly, as it boosts
their R&D activities, further increases their market shares, and ultimately reduces the prices of their
products [36]. In relation to immature technologies like RETs, public policies act on both the demand
and the supply sides to spur innovation [11–13]. By empirically demonstrating that both demand-pull
and technology-push policies are valid supports for stimulating innovation, Costantini et al. [13]
confirmed that these two types of public policies are important in the biofuels sector. This is because
every government considers supporting innovation in the RET sector continuously as a major policy
initiative toward achieving environmentally sound and sustainable development by addressing aspects
of energy security, environmental protection, and economic growth [37]. Government policy, as one of
the strongest extrinsic political forces, proactively facilitates various innovation activities to create both
local and export markets for RETs [28] for helping firms in the industry to become isomorphic with the
government’s expectations. The positive effects of innovation on export performance become mostly
evident in extant empirical studies (e.g., [38,39]) using heterogeneous firm trade theory [40].

The aforementioned points indicate that the influences of public policies on export performance
must be explored by simultaneously taking into account policy inputs (demand-pull and
technology-push supports) and policy output (innovation). Therefore, the study aims to explore
the relevance of dynamic efficiency (or continuous innovative efficiency) of public policy in improving
the export performance of the bioenergy technologies sector, instead of tackling policy inputs and
outputs separately. According to Johnstone et al. [11], Johnstone et al. [12], and Costantini et al. [13],
in the RET sector, innovation (policy output) measured by the number of patent application is
triggered by government policy (policy inputs) when the government constantly provides incentives
for technological improvements. This means that the steady implementation of innovation-friendly
policy—either dynamic [3,17] or continuously innovative efficiency [19,20]—is important for promoting
growth in the RET sector.

Firms try to increase their profits through innovation [41]. However, innovation stakeholders,
including firms, may not be able to utilize the full innovation potential without public intervention [42],
which is especially relevant for immature technologies, like RETs, which face large systemic barriers in
innovation creation [43]. Furthermore, renewable energy entrepreneurs often tend to pursue short-term,
individually oriented strategies instead of strategies that are more oriented toward the build-up of
innovation systems [44]. In this context, inefficiency in public policy may change the risk-return
relationship in the RETs investment, and consequently affect investors’ behaviors [45]. Additionally,
such changes in the risk-return relationship can shrink the industry’s investment environment, leading
manufacturers to disrupt the smooth functioning of various activities, thus decreasing productivity
in the RETs sector [46]. However, the dynamic efficiency of public policy plays a crucial role in
continuously pushing firms to change their methods of innovation, pull the manufacturers in order to
adjust innovation methods, and exercise full innovation potential to meet the markets’ needs. Hence,
dynamic efficiency can be defined as a tool that can encourage entrepreneurial alertness to valuable
knowledge, thereby enabling firms to discover and increase awareness of the phenomenon [47].
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This indicates that the degree of dynamic efficiency of public policy is closely related to the extent
of encouraging entrepreneurship. One of the ways in which this relationship manifests is by
strengthening the linkages between stakeholders, where, for example, a policy calls for “special
and innovative mechanisms for fostering the academia-research-industry partnership.” For other
examples, see Abhyankar [48] (p. 15), and Cumming and Li [49] (pp. 346–349).

Entrepreneurship, encouraged by such collaboration through the steady implementation of
innovation-friendly policy, is regarded as a productive factor in that it provides a systemic coordinating
function facilitating the allocation of resources to their highly valued uses [50,51]. This makes a pivotal
contribution toward enhancing a firm’s ability to succeed in an ever-changing and increasingly
competitive global marketplace. Furthermore, from the perspective of economics and policy science,
the dynamic efficiency of public policy closely relates to continuous policy-driven cost reductions
through innovation, leading to the achievement of economies of scale and higher competitiveness.
This suggests that an enhancement in the dynamic efficiency of public policy—innovation influence of
public policy [52]—can play a key role in increasing the international competitiveness of RETs.

3. The Model

The model to test the effect of dynamic efficiency of public policy on the export performance is
expressed as follows:

EXit = α1j +
n

∑
p=1

βi1pEXit−p +
n

∑
p=1

βi2pDEit−p +
n

∑
p=1

βi3pEPSit−p + ηit + εit (1)

where, i = 1, . . . , N is the country; t = 1, . . . , T is the time period; ηit is the country-specific effect; and
εit is the error term. EX is the natural logarithm of export performance. DE is the dynamic efficiency that
represents changes in the dynamic efficiency of public policies to support the bioenergy technologies
sector; it was measured using the MPGI analysis proposed by Färe et al. [27], and calculated using
data envelopment analysis (DEA) under the assumption of variable returns to scale. DEA is a
non-parametric method used because of its transparency, ability to handle multiple inputs, conditions
that do not require specific assumptions about a specific functional form of production function [53],
and appropriateness—considering the objective of the study. According to Färe et al. [27], Barros and
Alvese [54], and Price and Weyman-Jones [55], the productivity growth between t and t + 1 in Figure 1
can be measured in terms of the change from the input-output bundle z(t) to the input-output bundle
z(t + 1).
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The production frontier represents the efficient levels of policy output (y) that can be produced
from a given level of policy input (x). When the public policy of a country is efficient in period t,
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it produces the maximum output attainable along the frontier. Each country on input-output bundle
z(t) in period t is not efficient as they use more than the minimum amount of policy input to
produce a given level of policy output. To make the production efficient, the input-output bundle
z(t) needs to be reduced by the horizontal distance ratio (= ON/OS). The frontier can shift over time.
The input-output bundle z(t + 1) should be multiplied by the horizontal distance ratio (= OR/OQ) to
achieve comparable efficiency. Since the frontier has shifted, the bundle z(t + 1) is inefficient in period
t + 1. To make the bundle z(t + 1) efficient in period t + 1, it should be reduced by the horizontal
distance ratio (= OP/OQ). The relative movement of a production observation over time may occur
because countries are catching up with their own frontier or because the frontier shifts upwards over
time. The MPGI is the ratio of the two distances in periods t and t + 1. To break down the index in
catching up (MC) and shifting up (MF) effects, MPGI is rescaled by multiplying the top and bottom
by OR/OQ: OR·ON

OQ·OS =
[

OP·ON
OQ·OS

]
· OR

OP = MC ·MF.
A variety of policy instruments to promote the RET industry have been implemented in many

countries. The development path of policy support for RETs has been similar in all European
countries [56]. The first wave of policies that started in the late 1970s and early 1980s focused on
public R&D and investment incentives, along with voluntary programs and obligations. A second
wave of policies in the 1990s mainly concentrated on feed-in tariffs and tax incentives. The following
decade, instead, was characterized by the implementation of quota systems based on renewable energy
certificates. China has introduced many policy instruments to support the RET industry since the early
1980s. In this context, feed-in tariffs, financial subsidies like public R&D and investment incentives,
and other forms of technological support emerged as favorable policy instruments [57]. The US
has also employed many policy instruments since 1978. The main policies included investment
subsidies like R&D and tax incentives, and generation incentives like feed-in tariffs and quota
systems [58]. The policy instruments for technology diffusion are often classified by scholars into two
broad categories: market-pull (also referred to as demand-pull) and supply-push (also referred to
as technology-push) approaches [59]. The stimulus for new RETs through technology-push policy
measures mainly comes from R&D investments, most commonly made by the government. As for
market-pull measures, feed-in tariffs are the most common and effective policy measure currently being
implemented (or revised) in both developed and developing countries. Thus, overall, public R&D
expenditures and feed-in tariffs are considered as the most important and prominent drivers in spurring
RETs innovation and diffusion [60]. This study uses two policy input factors—technology-push and
demand-pull policy instruments [3,17,60]—and one output factor—innovation outcome [11–13,20,25],
which are directly related to bioenergy technologies. Public R&D expenditure is taken as a proxy
for the technology-push policy [5,9,11,28]. Extant literature, such as Johnstone et al. [11], uses a
dummy variable to capture the effect of the implementation of a feed-in tariff. The dummy variable
is not continuous and suitable as a policy input factor. The contribution of bioenergy to the total
energy supply is taken as a proxy for a directed feed-in tariff, owing to the lack of a reference
database. This represents the demand-pull policy [9]. It follows from the logic that a feed-in
tariff positively affects the percentage of renewable energy in the grid (contribution of bioenergy
to the total energy supply and the feed-in tariff, constituting a composite variable, are highly
correlated at 0.7 [8]). The number of patent applications is taken as a proxy for the innovation
outcome [11,13,61]. The number of patent applications of bioenergy technologies and the contribution
of bioenergy to total energy supply are measured in terms of flow. The public R&D expenditure
of bioenergy technologies is measured in terms of stock. The R&D stock of each country i at
the time t (RADSit) is computed from public R&D expenditures through the perpetual inventory
model—RADSit = (1− δ)RADSi,t−1 + RADi,t−x—where δ (the depreciation rate) is set at 10% and x
(the time lag) is set at five years [9]. Based on the review of previous studies, such as Söderholm and
Klaassen [16], Bosetti et al. [61], Kobos et al. [62], Popp et al. [63], and Bointner [64], the current study
assumes a five-year time lag and a depreciation rate of 10% for the R&D stock estimation. We measure
the initial value of the stock by dividing the average of the first four observations of R&D expenditure
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in bioenergy technologies by the sum of the R&D depreciation rate of 10% and an estimate of the
R&D growth rate of each country during the period, for the years for which the R&D expenditure
data are available in each country up to 2012. In calculating the dynamic efficiency, this study uses
each country i’s patent applications in year t, and the contribution of bioenergy to the total energy
supply in year t. Each country i’s R&D stock in fiscal year ending in year t− 2 is used based on the
approach by Popp [65], Johnstone et al. [11], and Hirshleifer et al. [20]. As the dynamic efficiency,
MPGI, is often zero, we used DE as the natural log of one plus MPGI in the model. It is based on
a study that uses the natural log of one plus a firm’s innovative efficiency that is measured as the
ratio of its patents and scaled by its R&D capital [20]. EPS is the natural logarithm of a composite
index of environmental policy stringency (EPS) in the energy sector developed by the OECD [66].
The ESP indicator includes a market- and non-market-based component [67]. The former groups
market-based policy instruments that assign an explicit price to the externalities, while the latter
clusters command-and-control instruments. Following Costantini and Crespi [25], Costantini and
Mazzanti [28], and Groba [31,32], the current study uses both broad (general) and sector-specific
proxies for environmental policy stringency to control the nexus between environmental policy and
export. However, in analyzing specific sectors (as in this study), using a broad proxy may not capture
the true relationships [31]. Therefore, we used the environmental policy stringency based on policies
in the energy sector.

4. Data and Methodology

The data used in this study consist of annual measures for each country over the 18-year
period from 1995 to 2012 for 16 OECD countries (for the countries, see Table 1). Data on bioenergy
technology exports were obtained from the Personal Computer Trade Analysis System (PC-TAS)
database released by the International Trade Centre based on the topologies of bioenergy technologies
and components proposed by Jha [8] using the Harmonized Commodity Description and Coding
System 1996. The public R&D expenditures of bioenergy technologies are obtained from the freely
available database of the International Energy Agency’s Energy Technology Research and Development
section. The contribution of bioenergy to the total energy supply for each country is calculated from
data obtained from the IEA’s Renewable and Waste Energy Supply Database and the US Energy
Information Administration’s International Energy Statistics. The patent counts were generated for the
International Patent Classification codes for bioenergy using the OECD Patent Statistical Database.
The codes include C10L 5/42 (solid fuels based on materials of non-mineral origin or vegetables),
F02B 43/08 (engines operating on gaseous fuels obtained from solid fuel—wood), C10L 1/4C (liquid
carbonaceous fuel—organic compounds), and B01J 4/16C (anion exchange—use of materials, cellulose,
or wood). Only patent applications deposited at the European Patent Office were included, following
Johnstone et al. [11]. Exports and R&D stock are calculated at 2009 prices and international purchasing
power parity levels.

In a panel context, a test for determining the relationship among the variables considered is
conducted. In estimating the panel, it is important to check for the possibility of a structural break
or cross-sectional dependence. First, the Jarque-Bera [68] test for normality, the cumulative sum of
recursive residuals (CUSUM), and the cumulative sum of recursive residuals of squares (CUSUMQ)
tests for structural breaks [69] in each individual time series are performed. Second, to detect the
presence of cross-sectional dependence, the study employs the Lagrange Multiplier (LM) tests of
Breusch and Pagan [70]. It is suitable when T(time) > N(number of cross− section) (as is the case
in this study). Third, panel unit-root tests to investigate the order of integration of the series in
the panel data are performed. A number of panel unit-root tests are proposed in the literature
(e.g., [71–73]). The alternative that can be applied in a test for stationarity in panel data depends on
whether the panels allow for both structural breaks and cross-sectional dependence or either one of
them. Fourth, if the panel unit-root exists, this study conducts panel cointegration tests based on the
methodologies by Pedroni [74], Banerjee and Carrioni-i-Silvestre [75], or Westerlund [76] to confirm
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a long-term relationship among the variables, while taking explicitly into account the results of the
Jarque-Bera [68] test, CUSUM and CUSUMQ tests, and LM tests of Breusch and Pagan [70]. Finally,
the study sets an empirical model based on the results of the panel unit-root and cointegration tests,
whereupon the short- and/or long-run estimations are performed while accounting for sample size
and panel data characteristics (e.g., cross-sectional dependence, heteroscedasticity, simultaneity).

5. Empirical Analysis

5.1. Testing Panel Frameworks

We performed the Jarque-Bera’s [68] test for normality. The test results in Table 1 show that these
series do not deviate substantially from the normal distribution, except for the dynamic efficiency
variables of Canada and Denmark, and the environmental policy stringency variable of Japan.

Table 1. Descriptive Statistics (Variables in Natural Logarithm).

Country Variable Mean SD MIN MAX Skewness Kurtosis J-B

Australia
EX 6.330 0.476 5.730 7.153 0.326 1.596 1.679
DE 0.464 0.435 0.000 1.160 0.230 1.591 1.556
EPS 0.345 0.621 −0.780 1.313 −0.269 2.295 0.557

Austria
EX 5.990 0.903 4.362 7.020 −0.429 1.956 1.294
DE 0.437 0.508 0.000 1.479 0.774 2.312 2.037
EPS 0.898 0.204 0.617 1.202 0.023 1.619 1.351

Canada
EX 6.501 0.624 5.110 7.284 −0.775 2.828 1.727
DE 0.453 0.515 0.000 2.037 1.675 6.207 15.240 ***
EPS 0.422 0.738 −0.780 1.349 −0.103 1.524 1.572

Denmark
EX 5.625 0.850 4.273 7.311 0.123 2.216 0.478
DE 0.828 0.283 0.529 1.655 1.502 5.319 10.230 ***
EPS 1.031 0.247 0.682 1.404 0.169 1.889 0.954

Finland
EX 4.832 0.604 4.078 5.862 0.470 1.632 1.953
DE 0.470 0.515 0.000 1.699 0.775 2.749 1.750
EPS 0.831 0.337 0.303 1.246 −0.236 1.482 1.789

France
EX 7.713 0.575 6.524 8.410 −0.476 2.294 0.995
DE 0.725 0.359 0.000 1.350 −0.407 3.315 0.541
EPS 0.740 0.442 0.136 1.308 −0.012 1.333 1.969

Germany
EX 8.530 0.695 7.259 9.386 −0.595 2.230 1.423
DE 0.811 0.187 0.457 1.104 −0.367 2.199 0.835
EPS 0.914 0.189 0.617 1.144 −0.326 1.520 1.852

Italy
EX 7.527 0.444 6.833 8.129 0.026 1.430 1.748
DE 0.654 0.492 0.000 2.009 0.980 4.564 4.460
EPS 0.657 0.304 0.303 1.044 0.166 1.204 2.361

Japan
EX 8.440 0.380 7.588 8.907 −0.863 2.958 2.115
DE 0.529 0.411 0.000 1.127 −0.036 1.901 0.858
EPS 0.555 0.258 0.287 1.252 1.592 4.924 9.808 ***

The
Netherlands

EX 7.468 1.055 4.909 8.176 −1.090 3.642 3.661
DE 0.706 0.468 0.000 1.544 −0.099 2.160 0.527
EPS 0.813 0.395 0.206 1.419 0.434 1.577 1.439

Norway
EX 4.807 1.103 2.276 6.392 −0.914 3.177 2.392
DE 0.575 0.511 0.000 1.676 0.434 2.297 0.884
EPS 0.542 0.445 0.020 1.181 0.245 1.583 1.592

Spain
EX 6.140 0.822 4.434 7.369 −0.243 2.347 0.469
DE 0.543 0.401 0.000 1.081 −0.435 1.562 2.002
EPS 0.847 0.218 0.446 1.098 −0.573 2.169 1.421

Sweden
EX 5.993 0.650 4.529 6.797 −0.738 2.587 1.665
DE 0.729 0.566 0.000 2.282 1.108 4.334 4.742
EPS 0.802 0.411 0.040 1.206 −0.968 2.352 2.952
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Table 1. Cont.

Country Variable Mean SD MIN MAX Skewness Kurtosis J-B

Switzerland
EX 6.413 0.387 5.566 6.992 −0.878 3.323 2.261
DE 0.780 0.458 0.000 1.452 −0.089 2.150 0.532
EPS 0.833 0.223 0.523 1.203 0.720 2.056 2.103

The United
Kingdom

EX 7.492 0.436 6.438 8.052 −1.126 3.808 4.062
DE 0.689 0.496 0.000 1.718 0.648 3.197 1.218
EPS 0.475 0.559 −0.207 1.285 −0.013 1.492 1.610

The Unites
States of
America

EX 8.529 0.642 7.354 9.497 −0.016 1.950 0.781
DE 0.778 0.203 0.445 1.193 0.231 2.639 0.243
EPS 0.485 0.410 0.048 1.152 0.434 1.415 2.314

Notes: *** denotes significance at the 1% level. The Jarque-Bera statistic is used to determine whether the data come
from a normal distribution. The null hypothesis is normality. J-B denotes the Jarque-Bera statistic.

The study also performs CUSUM and CUSMUSQ tests to detect whether systematic changes in
long-term coefficients of regression occur, and whether deviations from the short-term constancy of
regression coefficients are randomized and occasional. Apart from the CUSUM test results of Finland
and Italy and the CUSUMQ test results of Canada, the Netherlands, and Spain, the results of the tests
also suggest that almost all the series are stable over the observation period (for the full results, refer to
Figure S1 in the supplementary material available online).

The LM tests of Breusch and Pagan [70] based on the fixed-effects model are conducted to
detect the presence of cross-sectional dependence. In the pooled cross-section time series context,
the assumptions of the model’s error process (independently and identically distributed) may be
violated in several ways [77]. The error process may be homoskedastic within cross-sectional
units, but its variance may differ across units—a condition known as groupwise heteroscedasticity.
A modified Wald statistic for groupwise heteroscedasticity in the residuals of a fixed-effects regression
model is calculated, following Greene [78] (p. 598). The results of LM tests revealed that cross-sectional
dependence exists (Breusch-Pagan LM test of independence = 312.669, p = 0.000). The modified Wald
test result showed that there is no homoscedasticity within cross-sectional units (modified Wald test
for groupwise heteroscedasticity = 844.007, p = 0.000).

Table 2. Results of Panel Unit-root Tests.

Variables EX ∆EX DE ∆DE EPS ∆EPS

Pesaran CADF
test z (t-bar) stat.

(A) 0.522 −3.636 *** 0.695 −4.224 *** −2.081 * −2.194 **
(B) −1.169 −4.319 *** −0.292 −2.673 *** −2.304 −4.202 ***

Notes: The individual intercept and time trend are included in (A) and the individual intercept in (B). The lag
lengths for the panel test are based on those employed in the univariate ADF test. The normalized z-test statistic is
calculated by using the t-bar statistics. ***, **, and * denote significance at 1%, 5%, and 10%, respectively.

Having established that the series display cross-sectional correlation, we conduct Pesaran’s [73]
panel unit-root test that allows for the presence of cross-sectional dependence. The results of
Pesaran’s [73] test that include an intercept, as well as those with an intercept and a linear trend
for EX, DE, and EPS, as presented in Table 2, indicate that the hypothesis of the series containing a
unit root is confirmed, and that the first difference of the three variables is stationary.

The results of panel unit-root tests suggest that there can be co-movement among variables.
Hence, the current study implements Westerlund’s [76] heterogeneous panel cointegration tests, which
allow for cross-sectional dependence.

Table 3 shows the results of Westerlund’s [76] panel cointegration tests that include an intercept,
as well as those with an intercept and a linear trend. The results demonstrate that, overall, there is
at least some evidence of co-movement among the variables for bioenergy technologies, showing
significance in both cases, with the constant (statistic Gt, Gα, Pt, and Pα) and with the constant and the
trend (statistic Gt and Pt).
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Table 3. Results of Panel Cointegration Tests.

Statistics
With Trend Without Trend

Value Z Robust p-Value Value Z Robust p-Value

Gt −3.004 −2.262 0.057 −2.796 −3.304 0.011
Ga −7.136 3.545 0.198 −8.303 3.545 0.011
Pt −10.829 −1.861 0.062 −11.519 −4.515 0.009
Pt −6.446 2.392 0.268 −8.249 1.706 0.017

Notes: The lag and lead lengths are set to 1 and 0, respectively. To control for cross-sectional dependence, robust
critical values are obtained through 5000 bootstrap replications.

5.2. Model Specification and Empirical Test

Presence of cointegration indicates that the Engle and Granger [79] approach can be used to
estimate an error correction model. Hence, this study performs dynamic panel causality tests based on
the vector error correction model (VECM) to evaluate the short- and long-run directions of causality
between the examined variables. Granger causality is not a relationship between causes and effects,
but a method for testing the predictability of a series. It is defined in terms of predictive ability [80]
based on the following premises: (i) a cause occurs before its effect, and (ii) knowledge of a cause
improves the prediction of its effect [79]. The Granger causality model used in this study is based on
the panel VECM. It can be expressed as follows:

∆EXit =
n−1

∑
p=1

β11p∆EXit−p +
n−1

∑
p=1

β12p∆DEit−p +
n−1

∑
p=1

β13p∆EPSit−p + γ1iECTit−1 + ∆ε1it (2)

∆DEit =
n−1

∑
p=1

β21p∆EXit−p +
n−1

∑
p=1

β22p∆DEit−p +
n−1

∑
p=1

β23p∆EPSit−p + γ2iECTit−1 + ∆ε2it (3)

∆EPSit =
n−1

∑
p=1

β31p∆EXit−p +
n−1

∑
p=1

β32p∆DEit−p +
n−1

∑
p=1

β33p∆EPSit−p + γ3iECTit−1 + ∆ε3it (4)

where ∆ is the first difference operator; EX is the natural logarithm of exports; DE is the natural
logarithm of one plus MPGI, which represents the dynamic efficiency of public policy of bioenergy;
EPS is the natural logarithm of environmental policy stringency based on energy sector; ECTit−1 is
the error correction term lagged by one period coming from the lagged residuals derived from the
long-run cointegrated relationship; bij are the short-run adjustment coefficients; and εit are error terms.

This study uses a single estimator proposed by Kao and Chiang [81], called dynamic ordinary
lease squares (DOLS), to estimate the long-term equilibrium coefficients. The DOLS estimator is
fully parametric, computationally convenient, and more precise than other single equation estimators
in estimating the long-run relationship. By including the past and future values of the differenced
I(1) regressors, it corrects the serial correlation in the error and the endogeneity of regressors that
are normally present in the long-run relationship between the variables. In this way, it produces
an unbiased estimate of the long-run parameters. Considering these points, we used the DOLS to
estimate long-run coefficients in a cointegrated panel regression. However, to estimate the long- and
short-run parameters of the panel VECM, Pesaran et al.’s [82] pooled mean group [PMG] estimator is
used. The PMG requires reparameterization into the error correction form; it combines both pooling
and averaging in its estimation procedure. It is considered an intermediated estimator that can
allow the evaluation of two different Granger causality relationships—a short-run causality that tests
the significance of coefficients related to the lagged difference between the variables in question
(heterogeneous short-run dynamics) and a long-run causality related to the coefficient of the error
correction term in the panel VECM (identical long-run dynamics). Despite these advantages of the
DOLS and PMG estimators, they cannot allow for cross-sectional dependence. Hence, cross-sectional
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dependence is another challenge that must be addressed for producing accurate and efficient parameter
estimates. According to Roodman [83] and Sarafidis et al. [84], cross-sectional dependence among
errors can be eliminated by including time dummies or cross-sectionally demeaning the data.
We created year-dummy control variables to prevent cross-individual correlation [83,84].

The DOLS results in Table 4 show that DE and EPS have positive effects on EX at the 1%
significant level. This means that a 1% increase in the dynamic efficiency of public policy and a 1%
increase in the environmental policy stringency will increase the export by 0.939% and 0.426% in the
long run, respectively.

Table 4. Panel DOLS Long-run Estimates (Panel with Time Dummies).

Estimators
Variables

DE EPS

Coefficients 0.939 (8.18) [0.115] 0.426 (2.870) [0.148]

Notes: The results are those of model tests, wherein EX is the dependent variable. Numbers in parentheses are
t-statistics. Numbers in square brackets represent standard errors.

Since the variables are cointegrated, the PMG estimator is used to perform Granger-causality
tests for the DE export nexus in the sector of bioenergy technologies. However, in the VECM
Equations (2)–(4), differencing introduces a simultaneity problem because the lagged endogenous
variables on the right-hand side correlate with the new differenced error term.

In addition, the genuine errors across industries are heteroscedastic. This leads us to use
instrumental variables (IV) [85] or the generalized method of moments (GMM) [86] to efficiently
estimate coefficients. However, with these techniques, under certain conditions, the variance of the
estimates may increase asymptotically and generate considerable bias. This occurs if the sample is
finite (as in this study) [87]. When T(time)→ ∞ , the least squares dummy variable (LSDV) estimator
is consistent, and it is biased at a negligible degree [88]. However, when T is smaller than 30, Judson
and Owen [89] showed that the LSDV estimator has a bias of up to 20% of the time value coefficient
of interest.

When T is smaller than 30 (as in this study), a bias-corrected LSDV (LSDVC) estimator
outperforms IV, GMM, and LSDV estimation techniques for the balanced [89] and unbalanced
panels [90] in terms of bias and root mean squared error of the short- and long-term coefficient
estimates, regardless of the initiating estimator. An important advantage of using the LSDVC estimator
is that its performance is independent of the ratio of the fixed effects’ variance to the error term’s
variance. Moreover, the LSDVC can be the most accurate estimator in the absence of endogenous
independent variables and second order serial correlation.

Thus, Equations (2)–(4) are estimated using LSDVC. The equations include the error correction
term and one-period lagged dependent and independent variables. The results from the two
estimators—Ander Hsiao (AH) and Arellano Bond (AB)—in Table 5 are similar in terms of estimated
parameters and corresponding p-values. However, the LSDVC estimation initiated by the AB estimator
(part II of Table 5) exhibits smaller p-values compared to the one that initially uses AH (part I of
Table 5), since the former estimator is more efficient [91].

The panel vector error correction results (Panel A and B in part II of Table 5) show that, in the
short run, DE and EPS in period t− 1 positively influence EX in period t at the 1% significance level.
However, there is no short-run path-dependent process between EPS and DE, or from EX to DE
and EPS. This study also highlights the presence of positive, significant (at the 1% level) short-run
relationships between the contemporaneous and the one-period lagged EX and EPS in two out of
three equations; additionally, the joint tests of EX and EPS (not reported for conciseness) show that the
export performance is positively correlated with a country’s environmental policy stringency.
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Table 5. Panel Vector Error Correction Results of Dynamic Efficiency of Public Policy-export Nexus (Panel with Time Dummies).

Panel A: Bias-Corrected LSDVC Estimation

Independent Variables

(I) Initial (AH) (II) Initial (AB)

Dependent Variables Dependent Variables

∆EX ∆DE ∆EPS ∆EX ∆DE ∆EPS

∆EXit−1 0.190 (0.039) *** 0.007 (0.105) 0.010 (0.041) 0.191 (0.038) *** 0.105 (0.077) 0.008 (0.033)
∆DEit−1 0.086 (0.031) *** 0.101 (0.078) −0.030 (0.029) 0.086 (0.031) *** 0.006 (0.103) −0.024 (0.024)
∆EPSit−1 0.508 (0.063) *** 0.133 (0.158) 0.896 (0.109) *** 0.506 (0.062) *** 0.135 (0.154) 0.826 (0.052) ***
ECTit−1 0.695 (0.038) *** −0.004 (0.087) −0.074 (0.033) ** 0.694 (0.038) *** 0.001 (0.085) −0.080 (0.026) ***

Panel B: Statistical Values for Panel Causality Tests

Independent Variables
Dependent Variable Dependent Variable

∆EX ∆DE ∆DE ∆EX ∆DE ∆DE

Short run
∆EX - 0.000 0.070 - 0.000 0.060
∆DE 7.620 *** - 1.080 7.680 *** - 0.960
∆EPS 64.180 *** 0.710 - 64.180 *** 0.770 -

Long run ECT 330.340 *** 0.000 4.860 * 331.830 *** 0.000 9.120 ***

Notes: The results are based on biased corrected LSDV estimations, which initially utilize Anderson Hsiao (AH) and Arellano Bond estimators, respectively. Bias is corrected up to the
first order, 0 (1/T), and 500 replications are used in bootstrap procedure to find asymptotic variance-covariance matrix of estimators. Leg length is chosen as one based on BIC. ***, **,
and * denote the 1%, 5%, and 10% significance levels, respectively. Standard errors are in parentheses.
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The coefficient of ECT, wherein ∆EPSit is the dependent variable (Equation (4)), is negative
(−0.080) and significant, indicating that EPS could be a key adjustment factor as the system departs
from the long-run equilibrium. However, the coefficients of ECT in Equations (2) and (3) are positive
and insignificant (or significant), indicating that EX and GDP cannot be considered as adjustment
factors for closing the gap with respect to the long-run relationship between the two variables.

6. Discussion

6.1. Summary and Policy Implications

The current study investigated the relationship between dynamic efficiency of public policy and
export performance in the bioenergy technologies sector using panel data for 16 OECD countries
over the 1995–2012 period. The study used the panel VECM as an empirical model to test causal
relationships, while considering the results of various panel framework analyses to check the
characteristics of the data. The parameter of long-term dynamic efficiency of public policy is calculated
using the DOLS. The PMG estimator is used to estimate the long- and short-run parameters in the
dynamic panel through the following Granger-causality tests: (1) LSDVC estimations were conducted
to avoid autocorrelation and endogeneity problems in the model and to overcome the limit of the finite
sample; (2) subsequently, based on the LSDVC estimation results, causality is determined by running
Wald tests on the coefficients of the variables.

The main results of this study and their implications are as follows.
First, this study finds convincing evidence of a positive long-run relationship between the

dynamic efficiency of public policy and export performance. Specifically, from the DOLS results,
it emerges that a 1% increase in the dynamic efficiency of public policy will increase exports by
0.939% in the long run. This study also highlights a positive short-run linear causal relationship.
These relationships suggest that governments should continue to focus on a reliable and flexible
long-term dynamic efficiency of the bioenergy technology policy fostering exports, while building
reliable and positive short-term dynamic efficiency of public export policies. Moreover, these policies
should be harmonized with the long-term policy goals. Dynamic efficiency of public policy in the RET
sector involves the extent to which public policy (policy input) can encourage firms to make more
proactive efforts to foster innovation (policy output). This requires governments to provide continuous
incentives and create favorable conditions for technological improvement or innovation [11–13].
It is important to note that public policy does not lead to an immediate knowledge increase [92].
Following the implementation of any energy policy, facilitating knowledge increases requires time;
additionally, scientific capacity, as an important driver of innovation [11], is somewhat inelastic
to knowledge increases to a certain extent [64]. Further, both uncertainty and/or inefficiency in
public policies reduce private incentives to invest [45,93], thus compromising the smooth running of
various entrepreneurial activities. They decrease productivity in the RET sector [46]. In this context,
the steady and continuous provision and creation of incentives and favorable conditions for facilitating
an increase in knowledge-based technological capacity in the long run becomes essential, in the
sense that such stability and continuity may leverage complementary private investments [61,94]
to develop and diffuse RETs [38]. This would contribute to the RET industry growth [5,34] by creating
both local and export markets. Therefore, policymakers should make great efforts to monitor and
evaluate the development and export specialization position of bioenergy technologies, and explicitly
consider the monitoring and evaluation results in the implementation of public policies. Since the
bioenergy technology sector is influenced by various policies not restricted to the energy, industrial,
environmental, and competition fronts [95], such efforts need to be undertaken in all these domains.

Second, since the coefficient of the error correction term in Equation (4) using EPS as the dependent
variable is negative and significant, this study finds evidence that environmental policy could be a key
adjustment factor for closing the gap with respect to the long-run equilibrium between exports and the
dynamic efficiency of public policy. In Equation (4), this study also shows that exports have a positive



Energies 2017, 10, 2131 13 of 18

effect on environmental policy stringency in the short run. Exports could deviate from the long-run
equilibrium because of shocks in the short run; however, after the shock, they eventually converge
to the equilibrium in subsequent periods. In such a framework, the long-run export dynamics are
driven by both the changes in environmental policy and the stable nature of the long-run equilibrium.
The adjustment factor, thus, reflects the speed of adjustment toward the equilibrium in case of deviation.
Furthermore, based on the Granger representation theorem, a negative and significant adjustment
coefficient implies a long-run relationship between the variables, which, in this study, it is confirmed
for export performance, dynamic efficiency of public policy, and environmental policy stringency.
The results also show that the short-run environmental policy plays an important role in promoting
steady and stable export growth in the long run, by converging quickly to equilibrium with about
8% of the discrepancy corrected in each period. This suggests that it is possible for governments to
achieve environmentally sound and sustainable development by enhancing export competitiveness,
promoting the growth of the bioenergy technologies sector, and increasing environmental sustainability
(e.g., greenhouse gas emissions’ reduction) at the same time. Hence, wherever possible, policymakers
should formulate and implement policy strategies related to the bioenergy technologies sector aiming to
implement mechanisms able to build a positive relationship between export and environmental policy
efforts, especially taking into account their path-dependent processes (i.e., a dynamic learning effect).

Third, this study shows that environmental policy stringency has a positive effect on export
performance. As seen in the DOLS results, this also suggests that the environmental policy of the
energy sector can drive the exports of bioenergy technologies in the long run. Specifically, stringent
environmental policy may not necessarily be detrimental to industrial productivity if policymakers
adequately take into account the dynamic dimension of the Porter and Van der Linde hypothesis [96].
According to Porter and Van der Linde [29], increasing the number of stringent environmental
policies will lead to innovations that would reduce inefficiencies, thus eventually reducing costs.
This implies that due emphasis should be placed on the role played by environmental regulations in
the energy sector in order to promote the export performance of bioenergy technologies. Governments
remain the most important and strongest stakeholders that can influence industries to improve their
environmental performance by using both market- and non-market-based instruments. According
to Botta and Kózluk [66], who developed the composite index of environmental policy stringency
(EPS) adopted in this study, market-based policies include instruments that can be used for punishing
environmentally harmful activities (e.g., taxes on pollutants), while non-market measures aim to
reward environmentally-friendly activities (e.g., incentives). In this context, this study’s finding
suggests that governments need to develop and implement environmental policy measures to promote
various activities based on an understanding of the voluntary, eco-friendly, and innovative initiatives
independently undertaken by firms and industries themselves.

Fourth, this study shows that there is no short-run bidirectional causal relationship between
dynamic efficiency of public policy and environmental policy stringency. The study also highlights that
there is no casual linear relationship running from exports to the dynamic efficiency of public policy and
to the environmental policy stringency. These findings do not necessarily imply that a growth in exports
cannot contribute to an increase in the dynamic efficiency of public policy and promote environmental
policy efforts at all, but rather that, due to various factors, such contribution has not been significant.
In reality, there are many relevant factors, such as public sector functioning, social conditions,
and politics, which may affect the dynamic efficiency of public policy [57] and environmental policy
efforts. In such a context, the findings of this study suggest that, at least in the short run, policymakers
should make great efforts to understand the interaction between these relevant factors and the dynamic
efficiency of public policy and environmental policy efforts by conducting various qualitative and
quantitative studies.
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6.2. Limitations and Future Research

Although this study contributes to an understanding of the importance of maintaining a
consistent innovation-friendly policy—maintaining policy dynamic efficiency—for promoting exports
of bioenergy technologies, it has several limitations. First, this study does not control for the variable
related to policy strategies (e.g., industry-specific export promotion [97]) that is a relevant factor,
and likely to affect the extant of exports. Hence, future research should consider it. Second, this study
focuses on the role of the dynamic efficiency of public policy in ways that only consider output
in terms of economic aspects in the promotion of exports of bioenergy technologies. However,
according to Shen et al. [37], policies to promote the renewable energy technology sector also have
a non-economic goal of environmental protection, which requires the examination of undesirable
factors in efficiency evaluation and the consideration of eco-innovations. This can be achieved by
including the contribution of bioenergy policies toward sustainability by reducing the environmental
burdens in the overall evaluation. Further research should address these issues. Third, despite their
influence on the renewable energy technology sector, this study does not control for the presence of
other renewable energy technology policies (e.g., voluntary programs, obligations, tradable certificates,
tax credits, etc.) [11], as well as economic and social factors (e.g., social acceptance, energy price, FDI,
and private innovation) [98–101]. Further research should account for these omitted variables.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1073/10/12/1231/s1.
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