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Abstract: Minimizing the energy consumption is a dominant problem in data center design
and operation. To cope with this issue, the common approach is to optimize the data center
layout and the workload distribution among servers. Previous works have mainly adopted the
temperature at the server inlet as the optimization constraint. However, the inlet temperature does
not properly characterize the server’s thermal state. In this paper, a chip temperature-based workload
allocation strategy (CTWA-MTP) is proposed to reduce the holistic power consumption in data
centers. Our method adopts an abstract heat-flow model to describe the thermal environment in
data centers and uses a thermal resistance model to describe the convective heat transfer of the
server. The core optimizes the workload allocation with respect to the chip temperature threshold.
In addition, the temperature-dependent leakage power of the server has been considered in our
model. The proposed method is described as a constrained nonlinear optimization problem to find
the optimal solution by a genetic algorithm (GA). We applied the method to a sample data center
constructed with computational fluid dynamics (CFD) software. By comparing the simulation results
with other different workload allocation strategies, the proposed method prevents the servers from
overcooling and achieves a substantial energy saving by optimizing the workload allocation in an
air-cooled data center.

Keywords: data center; energy optimization; workload allocation; chip temperature

1. Introduction

Numerous trends in the information technology (IT) industry show an increasing energy
consumption of data centers’ operation during the past decade [1]. Recently studies have shown that
the energy consumed by data centers has accounted for nearly 2% of the world’s power consumption
and that this number will continue to rapidly increase in the future [2]. For an air-cooling data center,
cooling infrastructure consumes 30–50% of the operating power to maintain stable operation of the
IT equipment [3,4].The operating cost of the cooling system in data centers is close to that of the IT
equipment and attracts more and more attention [5]. Therefore, enhancing the energy efficiency by
optimizing thermal management has become one of the main foci in data center design and operation.

Currently, air-cooled data centers usually adopt a raised-floor configuration to maintain an
appropriate temperature and humidity condition, as illustrated in Figure 1. The racks placed on the
plenum are usually arranged in a cold aisle–hot aisle layout. Supply air from a computer room air
conditioner (CRAC) enters the plenum and is then distributed into the cold aisle through perforated
tiles. The racks extract air from the cold aisle and exhaust it into the hot aisle. The cold air flows through
the server rack and removes the heat generated by the IT equipment. Finally, the exhaust air of the
racks returns to the intake of the CRAC to complete a cycle. The cold aisle–hot aisle structure separates
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the flow paths of hot air and cold air. However, the recirculated air from the hot aisle and the escaped
air from the cold aisle are still present. Hot-air recirculation causes an elevated temperature at the
server inlet and forms some localized hot spots around the server racks. In order to cool these localized
hot spots, the CRAC has to blow excessive cold air into the whole room. The high utilization of the
CRAC not only leads to more energy consumption but also affects the efficiency through reducing its
coefficient of performance (COP).
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Figure 1. Typical air cooling system in data centers.

In order to enhance the energy efficiency in data centers, many existing works focus on optimizing
the layout of the data center or minimizing the effect of heat recirculation by placing the workload
intelligently. These methods have adopted the inlet temperature to describe the thermal environment
of the server and have achieved some effects in terms of energy saving. However, the inlet temperature
does not properly characterize the server’s thermal state. The server’s thermal state depends on its
heat load and inlet temperature. For the same inlet temperature, a low server utilization causes the
chip temperature to drop below the threshold, which means the cooling capacity of the supply of
cold air is not effectively utilized. In the present study, we use the chip temperature to characterize
the server’s thermal state directly, and the workload allocation scheme is optimized with the chip
temperature constraint to reduce the holistic power consumption of the data center. The proposed
method adopts an abstract heat-flow model to describe the thermal environment in data centers and
uses a thermal resistance model to describe the convective heat transfer of the server. Furthermore,
the temperature-dependent leakage power is considered in our model. By comparing with other
workload assignment strategies, our method achieved an optimal workload allocation scheme that
prevented the servers from overheating or overcooling, and a significant amount of cooling energy
was saved without degrading the server’s thermal reliability.

The article is organized as follows: Section 2 gives a brief overview of the related works. Section 3
presents the models used in our study and the proposed strategy for minimizing the total power
through allocating the workload intelligently. Section 4 gives the results of a case study and evaluates
the proposed method by comparing with different workload allocation strategies. Lastly, Section 5
concludes the paper with a brief summary and a discussion about future work.

2. Related Works

Recently, many researchers have focused their attention on optimizing the thermal environment
of data centers. In this section, we briefly summarize the related works that have made efforts to
enhance energy efficiency by thermal management in air-cooled data centers.

Computational fluid dynamics (CFD) is one of the major options for evaluating the thermal
environment of data centers. Nada et al. [6] performed an in-depth analysis of the temperature and
airflow distribution in a data center under different operational and geometric conditions, and they
evaluated the cooling performance with several metrics. Nagarathinam and Srinarayana et al. [7,8]
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used CFD simulation to study the thermal performance of different room and ceiling layout strategies
in air-cooled data centers. The optimization of the room layout for a raised-floor data center was
performed with respect to the arrangement of racks and the CRAC, the geometric structure of the
room, and the opening ratio of the perforated floor. Their results give some appropriate guidelines to
help designers achieve a more efficient cooling system. However, CFD simulation consumes a huge
amount of computational resources and is not suited for optimization techniques based on iteration.
To cope with this issue, Tang et al. [9,10] proposed a low-complexity linear heat recirculation model
that adopts cross-interference coefficients to express air recirculation among the servers; thus the server
inlet temperatures can be predicted for different workload distributions and supply air temperatures.
By allocating the workload among servers intelligently, they saved a substantial amount of cooling
energy through maximizing the supply temperature of the cooling system. Many researchers have
adopted this heat recirculation model in their studies. Banerjee et al. [11] integrated the workload
assignment approach with cooling system management to achieve energy saving in data centers.
Siriwardana et al. [12] presented an optimization approach based on Tang’s model to find the best
equipment upgrading strategy to minimize the impact of new equipment on the existing thermal
environment. Meng et al. [13] adopted the heat recirculation model to study the cooling consumption
with respect to communication cost. Fang et al. [14] combined a two-time-scale control algorithm with
Tang’s model to optimize the workload allocation, the cooling supply and the IT equipment operating
state; thus the total power of the cooling system and IT equipment was minimized. In addition to
this, Khalaj et al. [15] proposed another reduced-order model to predict the temperature distribution
in data centers. On the basis of the prediction, a particle swarm algorithm was employed to find
the best load allocation strategy for a given total workload. Machine learning algorithms are also
fast temperature-prediction methods that can be used for iterative optimization. Lorenzi et al. [16]
developed an artificial neural network-based model to obtain the server inlet temperatures; they
coupled this neural network model with the control algorithm to determine the optimal cooling of
data centers in real time. Song et al. [17] developed an artificial neural network to predict the thermal
operating conditions in data centers with respect to a specified set of control variables. On the basis of
the artificial neural network model, a genetic algorithm (GA) was employed to optimize the thermal
condition around the racks. Besides this, proper orthogonal decomposition (POD) is an effective
prediction approach adopted by many researchers to obtain airflow and temperature profiles in data
centers, and this observation-based method is much faster than CFD simulation [18–20]. Ghosh and
Joshi [21,22] developed a POD-based model to predict the temperature distribution. They assumed
the power consumption of a server is linearly mapped to its utilization rate. Their model can be used
in iterative calculations to optimize the operating parameters of air-conditioning systems and the
workload distribution among servers. Demetriou et al. [23,24] studied several thermal-aware workload
assignment strategies in open-aisle data centers using the POD approach. Their results showed a
significant energy saving can be achieved by optimizing the workload allocation. Fouladi et al. [25]
proposed a hybrid model based on the POD method; the model was applied to a sample data center
to improve the efficiency of the cooling system. All these researchers have adopted the server inlet
temperature to characterize the server thermal state in their studies.

Although the aforementioned studies have optimized the power consumption of air-cooled data
centers with respect to the server inlet temperature constraint, these thermal-aware workload allocation
strategies cannot avoid the overcooling of the server, which decreases the energy efficiency of the data
center. Moreover, the simplified server model adopted by these studies does not take into account the
increase in leakage power when the chip temperature increases, which affects the energy efficiency of
the data center.

3. Strategy for Minimizing Holistic Power Consumption of Data Centers

In the present study, we propose a chip temperature-based workload allocation approach to
reduce the total power consumption of the IT equipment and cooling system. Our method can be
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described as an optimization problem that adopts Tang’s abstract model [10] and a thermal resistance
model to quickly predict the thermal state of the server equipment. For simplicity, we assume that
all servers in the data center have the same power consumption and computing capacity. In order
to accurately describe the server’s thermal state, the chip temperature is used as the constraint of
the optimization problem (the properly formulated problem is named the “chip temperature-based
workload allocation strategy” or CTWA-MTP), rather than the server inlet temperature. Moreover,
the temperature-dependent leakage power of the IT equipment is considered in our study, which affects
the load allocation strategy in the data center.

3.1. Server Power Model

The power consumption of a typical server contains two main components: computing power
and leakage power [26]. For simplicity, we adopt a linear model to map the computing power to the
server utilization rate [27]. Thus, the computing power of a server i can be modeled as

Pcp
i = a1 + uia2 (1)

where ui ∈ [0, 1] denotes the server utilization, a1 is the server’s idle power, and a2 is the gain factor
that maps the computing power to the server utilization.

In order to further model the server consumption with the effect of leakage power, the computing
power consumption is multiplied by a temperature-dependent factor FT(Ti

chip), which is used to

characterize the relationship between the server temperature Ti
chip and the leakage power [28]. Then,

the power consumption of server i is expressed as

Pi = Pcp
i FT(Ti

chip) (2)

Because the exact form of FT(Ti
chip) is quite complex, researchers have proposed several

approximate models of FT(Ti
chip), such as linear functions [29], quadratic functions [30], and piecewise

linear functions [31]. In the present study, we adopt a linear function FT(Ti
chip) = b1 + b2Ti

chip to estimate
the leakage power. This simple model is capable of accurately modeling the temperature-dependent
leakage power of a typical server [29]. Thus, the power consumption of server i is rewritten as

Pi = (a1 + uia2)(b1 + b2Ti
chip) (3)

which is a function of the server utilization rate and the server temperature.

3.2. Abstract Heat-Flow Model

In the present study, we assume the sample data center houses n server chassis. Each chassis
houses an equal number of servers, which run at the same utilization rate. The server chassis are
regarded as thermal nodes from the thermal perspective. The node i sucks a fixed amount of air from
the inlet to cool down the IT equipment and expels the same amount of exhaust air to the outlet;
Ti

in and Ti
out denote the average temperature at the server inlet and the server outlet, respectively.

The heat load of node i determines the temperature rise of airflow passing through the server chassis.
Unfortunately, the recirculation heat makes some temperatures at the server inlet higher than the
supply temperature of the CRAC. The typical heat transfer among the racks in an air-cooled data
center is presented in Figure 2. The heat recirculation can be described with the model proposed by
Tang et al. [9].

According to the definition of heat in the law of thermodynamics, the heat carried by an airflow
with a specific temperature can be described as

Q = ρ f CpT (4)



Energies 2017, 10, 2123 5 of 19

where ρ denotes the air density (kg/m3), f denotes the volume flow rate of air (m3/s), Cp denotes the
specific heat of air (J/kg·K), and T denotes the absolute temperature of airflow (K).

CRAC Rack Rack i RackRack j

Supply Air

Return Air

Qsup

Q iout

αiiQ iout

αjiQ jout

Figure 2. Schematic of typical thermal cross-interference among equipment.

Considering that the power consumed by IT equipment will dissipate as heat, the steady-state of
a node can be described by the law of conservation of energy. For node i, the relationship between the
inlet temperature (Ti

in) and the outlet temperature (Ti
out) is written as

Pi = ρ fiCp(Ti
out − Ti

in)

or equivalently as
Ti

out = Ti
in + K−1

i Pi (5)

where Pi denotes the power drawn by node i, and fi denotes the airflow through node i and Ki = ρ fiCP.
This means that the power consumption Pi heats up the airflow of node i from the inlet temperature
Ti

in to the outlet temperature Ti
out.

The air drawn by the node inlet originates from the supply air of the CRAC and the recirculated
hot air expelled by other nodes, as illustrated in Figure 2. The heat recirculation among the nodes can
be expressed with the cross-interference coefficient matrix A(n×n) = αij, where the matrix element αij
denotes the amount of exhaust heat from the outlet of node i to the inlet of node j. Therefore, the total
heat carried by the inlet airflow is expressed as

Qi
in =

n

∑
j=1

αjiQ
j
out + Qi

sup (6)

where Qi
in is the inlet heat of node i, ∑n

j=1 αjiQ
j
out is the total recirculation heat from all nodes to node i,

and Qsup is the supply heat from the CRAC to node i.
From Equations (4) and (5), we can derive the outlet heat Qi

out as follows:

Qi
out = Qi

in + Pi = KiTi
out (7)

According to the air recirculation among racks, as shown in Figure 2, the amount of air from the
CRAC drawn by the node i inlet per unit time is written as fi −∑n

j=1 αji f j, and consequently, we have

Qi
sup = ρ( fi −

n

∑
j=1

αji f j)CpTsup (8)
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where Tsup is the temperature of the supply air from the CRAC. Thus, Equation (7) is rewritten as

KiTi
out =

n

∑
j=1

αjiKjT
j
out + (Ki −

n

∑
j=1

αjiKj)Tsup + Pi (9)

In order to describe all the nodes in the data center, Equations (5) and (9) can be expressed in
terms of vectors: −→

T out =
−→
T in + K−1−→P (10)

K
−→
T out = ATK

−→
T out + (K−ATK)

−→
T sup +

−→
P (11)

where AT denotes the transpose of A, K is a diagonal matrix composed by Ki = ρ fiCP:

K =


K1 · · · 0
...

. . .
...

0 · · · Kn


and the outlet temperature, the supply temperature and the node power consumption are defined as−→
T out = [T1

out, · · · , Tn
out]

T,
−→
T sup = [Tsup, · · · , Tsup]T, and

−→
P = [P1, · · · , Pn]T, respectively.

Therefore, the inlet temperature is written as

−→
T in =

−→
T sup + [(K−ATK)−1 −K−1]

−→
P (12)

In order to simplify the expression of Equation (11), D is defined as D ≡ (K−ATK)−1 −K−1,
which is referred to as the heat distribution matrix. Thus we have

−→
T in =

−→
T sup + D

−→
P (13)

3.3. Equipment Thermal Resistance Model

In the air-cooled data center, all heat generation of node i is taken away by the airflow passing
through it. The convective heat transfer between the IT equipment and the cooling air can be described
by a thermal resistance model, which is expressed as

Pi =
Ti

chip − Ti
in

Ri
(14)

where Ti
chip is the chip temperature of node i; Ri is the thermal resistance of node i, which is used to

characterize the heat transfer capacity of the IT equipment. The value of the heat resistance depends
on the surface area and the surface air velocity. Equation (14) can be rewritten as

Ti
chip = Ti

in + RiPi (15)

For all nodes from 1 to n, the chip temperature can be written in vector form:

−→
T chip =

−→
T in + R

−→
P (16)

where the diagonal matrix R is defined as

R =


R1 · · · 0
...

. . .
...

0 · · · Rn
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and the column vector
−→
T chip is defined as

−→
T chip = [T1

chip, · · · , Tn
chip]

T.
Combining Equations (13) and (16), the chip temperature can be expressed as

−→
T chip =

−→
T sup + (D + R)

−→
P (17)

3.4. Total Power Consumption of Data Center

The cooling power in the data center depends on its heat load and performance efficiency. The COP
of the cooling system in the data center can be expressed as

COP =
PIT

PCRAC

where PIT is the IT equipment power in the data center, and PCRAC is the cooling power.
In the present study, we adopt a simplified model to estimate the cooling power of the CRAC [32].

This model is widely accepted by many researchers [10–14]. The relationship is expressed as

COP(Tsup) = 0.0068T2
sup + 0.0008Tsup + 0.458 (18)

The COP is related with the temperature of the supply air. In other words, increasing the
temperature of the supply air will lead a higher COP.

In our study, the holistic power consumption of the data center consists of cooling power and
IT equipment power, and the power consumed by ancillary facilities is not taken into account. Thus,
the holistic power consumption in the data center is expressed as

Ptot = PIT + PCRAC = (1 +
1

COP(Tsup)
)PIT (19)

where PIT is given by PIT = ∑n
i=1 Pi. Because the server power model has considered the effect of

leakage power, raising the supply temperature of the cooling system will increase the leakage power
while reducing the cooling power.

3.5. Problem Statement and GA Optimization

In order to optimize the holistic power consumption of the data center, a constrained nonlinear
optimization problem is formulated with the aim of finding the optimal workload allocation scheme
and supply temperature. In the present study, the chip temperature is used to characterize the server’s
thermal state to prevent the server from overheating or overcooling. We assume a data center houses n
server chassis and each chassis contains the same number of identical servers. The server chassis are
considered as thermal nodes, as described in Section 3.2. For simplicity, the computing workload is
assigned among the servers in the same chassis uniformly. To keep the server running in a reliable
thermal state, the chip temperature needs to be maintained below the critical threshold (e.g., 75 to
90 ◦C [30,33]). In this study, we adopt Tchip = 80 ◦C as the upper threshold of the chip temperature.
Assuming the total amount of incoming workload is Utot and the server utilization rate is linearly
mapped to its workload, the optimization problem of minimizing the total power by the CTWA-MTP
is defined as follows:

min (1 +
1

COP(Tsup)
)PIT

subject to: ∑n
i=1 ui = Utot ui ∈ [0, 1] (20)

15 oC ≤ Tsup ≤ 35 ◦C (21)

Tchip ≤ 80 ◦C (22)
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Here,
COP(Tsup) = 0.0068T2

sup + 0.0008Tsup + 0.458

PIT =
n

∑
i=1

Pi

Pi = (a1 + uia2)(b1 + b2Ti
chip)

−→
T chip =

−→
T sup + (D + R)

−→
P

The minimization problem is based on two decision variables, the supply air temperature Tsup,
and the task allocation vector,−→u = [u1, u2, · · · , un]. Equation (20) enforces the total amount of running
workload. Equation (21) constraints the temperature of the supply air to be in the operating range of
the cooling system. Equation (22) guarantees that the servers are running in a reliable thermal state.

In the previous works, the GA approach [34] is widely used to solve the complex optimization
problem. Here, we apply an integer-coded GA to find a near-optimal workload scheduling and
supply air temperature. The chromosome of each solution is defined as a vector,

−→
S j = [Tsup,−→u ] =

[Tsup, u1, u2, · · · , un]. The holistic power consumption is used to characterize the fitness value of
the solution:

Fitness(Sj) = (1 +
1

COP(Tsup)
)

n

∑
i=1

Pi (23)

Thus, the goal is to find a solution that has the minimum holistic power consumption. We suppose
that each generation has 200 solutions. The initial populations are generated by allocating the workload
to each chassis node equally. The GA optimization approach performed in MATLAB is described in
Algorithm 1.

Algorithm 1: Minimizing the total power consumption using a genetic algorithm approach.
Input: A given data center workload Utot.
Output: The near-optimal workload scheduling and supply air temperature, denoted by S.

1 CurGen← Generate initial generation within the design space.
2 Calculate fitness table.
3 for Generation < MaxGeneration do
4 SelSubs← Generate a subset from CurGen using roulette wheel.
5 MutSubs← Generate a subset by mutation of solutions in SelSubs.
6 CroSubs← Generate a subset by crossover of solutions in SelSubs.
7 Calculate fitness table for SelSubs, MutSubs and CroSubs.
8 CurGen← Renew CurGen with the best fitness solutions within SelSubs, MutSubs and

CroSubs.
9 if the fitness convergence criteria is met then

10 S← The best fitness solution within CurGen.
11 return S
12 end
13 end
14 S← The best fitness solution within CurGen.
15 return S

For the purpose of achieving the global optimum by iteration, the best individual in the current
population is passed directly to the next generation.
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4. Case Study

4.1. Simulation and Parameter Setup

For the purpose of evaluating the performance of our method in reducing the holistic power
consumption of a data center for a given workload, we performed the optimization strategy at a
typical air-cooled data center built with the ANSYS CFX 14.5 software. The layout of the data center is
presented in Figure 3. The length and width were 8.1 and 6 m, respectively. The sample data center
adopted the raised floor structure, and the height of the plenum was 0.8 m. The ceiling was 3 m above
the top of the plenum. Twelve server racks were symmetrically arranged in two rows, forming a cold
aisle. The single CRAC was placed near the left wall. The height of the server rack and the CRAC
was 2 m. In the cold aisle, the perforated tiles were located under the intake faces of the server racks.
The side length of the perforated tile was 0.6 m. Both the cold aisle and the hot aisle adopted an open
structure. We assumed each rack included six identical server chassis. The required airflow rate of each
server chassis was 0.226 m3/s. The CRAC supplied a constant flow rate (16.24 m3/s) of cold air, and
the supply temperature was set at 15 ◦C. In order to supply the cold air uniformly in the data center,
each perforated tile was considered to be 25% open. The pressure drop (∆P) caused by perforated tile
could be estimated as below:

∆P = K(0.5ρV2) (24)

where V denotes the velocity of the airflow, ρ denotes the density of air and K is a gain factor that
characterizes the flow resistance of the perforated tiles. For the 25% open perforated tiles used in
present study, the flow resistance factor was given by K = 42.8. The geometry model of this data center
was constructed with Gambit 2.4.6 and was meshed with hexahedral volumes.

Figure 3. Data center layout used in our study.

For the Ansys CFX calculation of the computational domain, the fluid was assumed as an
incompressible ideal gas with the properties shown in Table 1. The buoyancy effect in the computational
domain was approximated with a Boussinesq model. The convergence criteria for the Ansys CFX
calculation were set to the maximum errors, which were less than 1× 10−6. To compromise between
the computing resource and the simulation accuracy, the optimum mesh contained 120,072 grid points
in this study.
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Table 1. Fluid properties used in computational fluid dynamics (CFD) simulation.

Property Value and Unit

Reference temperature 25 ◦C
Reference pressure 101,325 Pa

Specific heat capacity 1004.4 J/kg·K
Density 1.225 kg/m3

In order to use the cross-interference coefficients to characterize the heat recirculation ratio among
the server chassis, virtual tracers were introduced in the CFD simulation [35,36]. We added the virtual
tracers at the outlet of each server chassis. The air recirculation ratio could be calculated by measuring
the concentrations of these tracers at each server inlet. The cross-interference matrix A obtained by
CFD simulation is shown in Figure 4. Because the cross-interference coefficient among the server
chassis is determined by the geometry layout, the matrix A is calculated once for a data center.

Figure 4. Cross-interference matrix A obtained by computational fluid dynamics (CFD) simulations.

In this work, the servers were housed in 72 chassis in the data center to handle the incoming
workload. A typical server in idle state consumes nearly 50% of its nominal power [37]. According to
the field measurement data in [30], the power consumption of server Pserver (W) is given by the function
of utilization rate userver and chip temperature Tserver

chip (◦C):

Pserver = (60 + 60userver)(0.75 + 0.003125Tserver
chip ) (25)

We assume 30 servers in a chassis that run at the same utilization rate. For simplicity, the servers
in the same chassis are seen as a holistic node with the same chip temperature. Thus the power
consumption of node i is given by

Pi = 30× (60 + 60ui)(0.75 + 0.003125Ti
chip) = 1350 + 1350ui + 5.625Ti

chip + 5.625uiTi
chip (26)
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This implies that the server chassis has a peak power of 3.6 kW at the worst temperature
condition. For the server chassis that had a fixed airflow rate in this study, the thermal resistance
of the node was approximated as a constant. We assumed that the inlet temperature reached the
upper limit (Tin = 27 ◦C) of the guidelines provided by American Society of Heating Refrigeration
and Air-conditioning (ASHRAE) [2] and that the chip temperature reached the threshold of our
optimization problem (Tchip = 80 ◦C) when the server was running in the busy state (u = 100%);
thus the thermal resistance was set to Ri = 0.0147 K/W according to Equation (14). In the present study,
we assumed that the server chassis at the corresponding location in each row had the same amount
of workload. The utilization rate of the server was discretized as ui ∈ [0, 0.05, · · · , 1]. The supply
temperature of the CRAC was discretized as Tsup ∈ [15, 15.5, · · · , 35].

In order to evaluate the effectiveness of the CTWA-MTP algorithm, the optimization approach
was performed on the sample data center for different utilizations. The data center utilization rates in
the present study were equal to 50%, 60%, 70%, 80%, or 90%. For comparison, two other workload
scheduling algorithms were performed for the same utilization rate:

• Modified Uniform Task (MUT): MUT assigns an equal amount of workload to each node. The goal
of the MUT algorithm in this paper was to maximize the supply temperature while keeping the
peak chip temperature below the threshold (Tchip = 80 ◦C).

• Minimizing the Peak Inlet Temperature through Task Assignment (MPIT-TA): This is a proactive
scheduling algorithm that maximizes the supply temperature of teh cooling system through
optimizing the workload allocation among servers with respect to the inlet temperature constraint,
consequently achieving cooling energy saving. The threshold of the inlet temperature was set to
Tin = 27 ◦C according to the guidelines of ASHRAE [2].

The MPIT-TA and MUT algorithms in this paper have taken into account the effects of
temperature-dependent leakage power.

4.2. Evaluation of Total Power Consumption

Figure 5 shows the power consumption profile of the data center with different utilizations.
We observe that the CTWA-MTP consistently had the minimal total power consumption and the
maximum supply temperature. In addition, MPIT-TA had the worst energy efficiency and the lowest
supply temperature under all of the utilizations. Figure 5 also shows that the supply temperatures of
the CTWA-MTP, MUT and MPIT-TA increased as the data center utilization decreased, but that the
supply temperature of MPIT-TA did not further increase when the data center utilization was below
70%. This was because the static power of the server made the MPIT-TA algorithm unable to further
minimize the peak inlet temperature when the data center was running at low utilization. Figure 5
shows that the workload allocation strategy achieved a lower total power consumption with higher IT
equipment power; this means the increment in the IT equipment power cannot counteract the saving
of cooling power. We observe that the total power of MUT was higher than for CTWA-MTP and
was lower than for MPIT-TA; this implies that the performance of the workload allocation methods
based on the chip temperature, such as MUT and the CTWA-MTP, is better than that of the workload
allocation methods based on the inlet temperature. Moreover, compared to MUT, the CTWA-MTP
further improves the energy efficiency of data centers by optimizing the workload distribution among
servers, particularly under high data center utilization.
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Figure 5. Power consumption under different utilizations.

4.3. Evaluation of Chip Temperature and Inlet Temperature

Figure 6 shows the chip temperature distributions achieved by different methods under 60%
and 80% utilizations. The server racks in each row were numbered from 1 to 6; a rack with a smaller
number was closer to the CRAC and that with a larger number was farther away from the CRAC.
In each rack, the server chassis were numbered from A to F; chassis A was at the bottom and chassis F
was at the top. Because the workload allocation was optimized with respect to the chip temperature,
we could intuitively observe that the chip temperatures of the CTWA-MTP were higher and more
uniform than those of MUT or MPIT-TA. For the chip temperature distribution of MUT as shown in
Figure 6c,d, the chip temperatures of columns 1 and 6 were higher than others because of the heat
recirculation. In comparison to the chip temperature distribution of the CTWA-MTP and MUT, the chip
temperature of MPIT-TA was lower, particularly at the bottom of columns 5 and 6. This was because
MPIT-TA tends to reduce the workload from the largest contributors of heat recirculation to keep the
peak inlet temperature below the threshold, although the low utilization of the server allows for a
higher inlet temperature.

Figure 7 shows the boxplot of the chip temperature distributions under all of the utilizations.
Boxplotting is a tool aimed at graphically illustrating some quantiles and the spread of a set of
variables. We observe that the chip temperatures of MPIT-TA were spread over a large range, and some
temperatures were far below the threshold, particularly in the case of high utilization (e.g., some chip
temperatures of MPIT-TA were below 50 ◦C, which means that the servers were overcooled). Compared
with MPIT-TA, the chip temperature distributions achieved by MUT were mainly concentrated from
65 to 75 ◦C, and the chip temperature distributions achieved by CTWA-MTP were concentrated from
75 to 80 ◦C. This means that the CTWA-MTP prevents the servers from overcooling and makes full use
of the cooling capacity of cold air. In addition, a higher chip temperature results in a higher leakage
power; thus CTWA-MTP, MUT and MPIT-TA have different IT equipment power under the same
utilization. The results contained in Figure 7 confirm the observation results shown in Figure 6.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Chip temperature distributions achieved by different methods. (a) Chip temperature
distribution of chip temperature-based workload allocation strategy (CTWA-MTP) with 60% utilization.
(b) Chip temperature distribution of CTWA-MTP with 80% utilization. (c) Chip temperature
distribution of modified uniform task (MUT) with 60% utilization. (d) Chip temperature distribution of
MUT with 80% utilization. (e) Chip temperature distribution of MPIT-TA with 60% utilization. (f) Chip
temperature distribution of minimizing the peak inlet temperature through task assignment (MPIT-TA)
with 80% utilization.
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Figure 7. Boxplot for chip temperature distributions with different data center utilizations.

In order to quantify the dispersion extent of chip temperatures, we have calculated the standard
deviation for each case by the following definition:

σ =

√
∑N

i=1(Xi − X)2

N − 1
(27)

where {X1, X2, · · · , XN} are the sample values, X is the mean of sample values, and N is the number
of samples.

The standard deviations of the chip temperature distributions are listed in Table 2. For all of
the utilizations, CTWA-MTP had the minimum standard deviation, which indicates that the chip
temperatures of CTWA-MTP were concentrated in a small range, while MPIT-TA had the maximum
standard deviation, which means the chip temperatures of MPIT-TA were distributed over a larger
range. The analysis of the standard deviation confirms the observation results obtained from Figure 7.

Table 2. The standard deviation of chip temperature.

Data Center
Utilization

Standard Deviation
CTWA-MTP MUT MPIT-TA

90% 2.28 3.31 5.05
80% 1.94 3.12 9.52
70% 2.14 2.92 9.01
60% 1.70 2.73 7.30
50% 2.01 2.54 5.58

Figure 8 presents the inlet temperature distributions of the CTWA-MTP, MUT and MPIT-TA
under 60% and 80% utilizations. We can observe that both CTWA-MTP and MUT allowed the inlet
temperatures to exceed the threshold (Tin = 27 ◦C) while keeping the servers running in a reliable
thermal state (Tchip ≤ 80 ◦C). Figure 8 shows that the peak inlet temperatures of the CTWA-MTP under
a 60% and 80% workload were 42.8 and 38.3 ◦C, respectively. This means that the inlet temperature
does not properly characterize the server’s thermal state and leads to an inefficient workload allocation
strategy, as shown in Figures 6 and 7.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Inlet temperature distribution achieved by different methods. (a) Inlet temperature
distribution of chip temperature-based workload allocation strategy (CTWA-MTP) with 60% utilization.
(b) Inlet temperature distribution of CTWA-MTP with 80% utilization. (c) Inlet temperature distribution
of modified uniform task (MUT) with 60% utilization. (d) Inlet temperature distribution of MUT with
80% utilization. (e) Inlet temperature distribution of minimizing the peak inlet temperature through
task assignment (MPIT-TA) with 60% utilization. (f) Inlet temperature distribution of MPIT-TA with
80% utilization.

4.4. Evaluation of Workload Allocation

The task allocations of the CTWA-MTP and MPIT-TA under 60% to 80% utilizations are shown in
Figure 9. We observe that the workload allocation strategies of CTWA-MTP and MPIT-TA showed
different characteristics. As shown in Figure 9b,d,f, MPIT-TA tended to reduce the workload from
the largest contributors of heat recirculation, which were located at the end of row and the bottom
of rack. In particular, the servers located at the bottom of columns 5 and 6 were running in idle state
when the data center utilization was below 80%. In contrast, MPIT-TA achieved a more uniform
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workload distribution, and it tended to reduce the workload from both the largest contributors of
heat recirculation (e.g., the server located at the bottom of each rack) and the servers within the worst
thermal environment (e.g., the server located at the top of column 6). The reason is that the CTWA-MTP
takes into account the effect of both the inlet temperature and the workload on the thermal state of
the server when optimizing the workload distribution. The server with the higher inlet temperature
can maintain a reliable thermal state by reducing its workload directly, rather than by reducing its
inlet temperature.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Workload allocation results for different data center utilizations. (a) Allocation
result of chip temperature-based workload allocation strategy (CTWA-MTP) with 60% utilization.
(b) Allocation result of minimizing the peak inlet temperature through task assignment (MPIT-TA)
with 60% utilization. (c) Allocation result of CTWA-MTP with 70% utilization. (d) Allocation result of
MPIT-TA with 70% utilization. (e) Allocation result of CTWA-MTP with 80% utilization. (f) Allocation
result of MPIT-TA with 80% utilization.
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5. Conclusions

Currently, the existing knowledge of thermal management in data centers is mainly performed
with respect to the server inlet temperature. In this paper, we present a chip temperature-based
workload allocation strategy to minimize the holistic power consumption of the IT equipment and
cooling system. Our method adopts an abstract heat-flow model and a thermal resistance model to
predict the thermal environment in data centers. The temperature-dependent leakage power is also
considered in our study. The workload allocation strategy is described as a constrained nonlinear
optimization problem constrained by the thresholds of chip temperature, server utilization and the
CRAC supply temperature. The proposed method was applied to a sample data center built with
Ansys CFX software. To evaluate the effectiveness of our method, we compare the optimization results
with those of MPIT-TA and MUT. The result of this work shows that the chip temperature-based
workload allocation strategy achieves a significant amount of energy saving and prevents the servers
from overheating or overcooling.

In our work, we assumed that the server chassis and CRAC had a fixed airflow rate. One way
this work can be extended is to take into account the effects of a variable airflow rate of the server
and CRAC.
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