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Abstract: With the rapid development of renewable energy generation, single-phase grid-connected
inverters have been widely applied in modern power systems. Since the power output of the
renewable sources is continuously changing, independent active/reactive power control and a rapid
current tracking performance is supposed to be achieved in a single-phase grid-connected inverter.
However, the poor orthogonal-axis-constructing strategy and the ineffective decoupling in some
widely-used controllers have severely weakened the dynamic performance of the single-phase
inverter. To deal with the challenges above, this study proposes a comprehensive control strategy for
current control in a single-phase grid-connected inverter. In the proposed control strategy, a virtual
closed-loop is constructed to improve the dynamic performance and realize independent power
control under a synchronous frame. Then, complex vector theory is used to model the virtual
closed-loop based single-phase inverter, and a novel digital controller is designed based on zero-pole
cancellation and minimum beat control to completely decouple the active/reactive components and
achieve a supreme current tracking performance. Experimental results are shown to validate the
feasibility of the proposed current controller.

Keywords: single-phase inverter; virtual closed-loop circuit; current decoupling control;
complex vector; discrete domain

1. Introduction

With the raising demand of high-efficiency and environmental-friendly electric power supply,
micro-grids have been widely applied as a new kind of distribution network structure, which
significantly facilitates access for renewable distributed generation (DG) such as photo-voltaic plants
and wind turbines [1–7]. Among various connecting methods, the single-phase grid-connected inverter
is one of the commonly used interfaces for DGs [8,9]. Due to the continuously-changing power output
of the renewable resources, a better control performance is expected for the single-phase grid-connected
inverter [10,11]. In particular, the single-phase grid-connected inverter should achieve independent
active/reactive power control, and has the rapid dynamic performance to track the changing output
power of the renewable sources.

In the past several decades, various control techniques have been proposed to improve the
performance of the single-phase inverter, among which Proportional-Integral (PI) control is most
widely applied in the single-phase inverter, due to its good steady and dynamic performance. To realize
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the independent control of the active/reactive powers and achieve the zero steady-state error, the dq
synchronous reference frame is applied in the single-phase inverter [12]. However, there are two main
problems to be addressed: one is constructing the orthogonal axis, and the other is the coupling with
the synchronous frame. A poor orthogonal-axis-constructing strategy and ineffective decoupling
would weaken the dynamic performance of the whole system.

Generally, the orthogonal axis is constructed by delaying the real axis by 90◦ to realize PI control
under the synchronous frame. However, any disturbance in the system may reflect in orthogonal axis
after 1/4 fundamental cycle, which has a severe effect on the dynamic response of the system [13].
In [14], the orthogonal axis is constructed by the Hilbert transform. However, the Hilbert transform
can only be applied to narrow-band signals, so in many situations, the actual signal cannot meet the
requirements of Hilbert transform because of the noise. In [15], an all-pass filter is applied to form
the orthogonal axis, but the design of the all-pass filter is very complicated considering the stability
problems, and it would waste significant computation consumption.

When the PI control is applied to the inverters in the synchronous reference frame, the current
coupling exists between d-axis and q-axis [16–20]. At present, many scholars have conducted research
to deal with the coupling issue. In [16], the current coupling effect was reduced, when applying
the large forward channel gain to the close-loop control. However, in practical application, the gain
of the controller cannot be set as a very large value, since a large gain would threaten the stability
of the system. The inductor current state feedback (ICSF) is the most commonly used method to
decouple the dq axis [17]. However, ICSF cannot eliminate the coupling caused by the digital delay.
A one-step predicting scheme (PRE-ICSF) was proposed to deal with the coupling issue caused by
the digital delay [18]. In this method, the predicted current is used to generate the decoupling term.
However, when parameter deviation occurs, the decoupling effect would be significantly influenced
in ICSF and PRE-ICSF. To overcome the shortcoming, a complex vector-based controller is proposed,
because it has a robust decoupling performance against the digital delay and inductance parameter
deviation [19,20]. However, the application of the complex vector into a single-phase situation has not
been discussed.

In order to enhance the dynamic active/reactive power tracking performance of the single-phase
grid-connected inverter, a novel current control strategy is proposed to deal with shortcomings of the
previous methods. For the proposed control strategy, two main functions are supposed to be realized.
An orthogonal axis constructing method, which has a rapid dynamic response to the disturbance in
the system, is brought out to achieve independent active/reactive power control in a single-phase
inverter. Additionally, the coupling issue in the single-phase inverter is discussed and an improved
complex-vector based controller, which is applied in the single-phase situation, is designed to realize
precise decoupling of the system.

The paper is organized as follows: in Section 2, a virtual closed-loop is constructed for the
single-phase inverter; in Section 3, the single-phase inverter with a virtual closed-loop is modeled
under complex vector theory; Section 4 further designs the complex vector-based controller in the
discrete domain; Section 5 illustrates the experimental results to verify the effectiveness of the proposed
controller; and conclusions are drawn in Section 6.

2. Virtual Closed-Loop Construction

The topology of a single-phase rectifier is shown as Figure 1. vgs refers to the AC voltage, is refers
to the AC current, L and r are the total value of the inductance and resistor at the AC side, and Vdc is
the voltage of the DC side.

The mathematic model of the single-phase inverter can be expressed as:

L
dis

dt
+ ris = vis − vgs (1)
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Figure 1. Single-phase grid-connected full bridge voltage source inverter. 
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Figure 1. Single-phase grid-connected full bridge voltage source inverter.

In order to achieve PI control in synchronous coordinates, a virtual circuit, which is realized in
the controller, is constructed as shown in Figure 2.
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Figure 2. Improved control diagram for a single-phase inverter.

In Figure 2, component is represents the AC current sampled in the real circuit, vis and vim are the
modulation signals generated from the current controller. The modulation signal of the orthogonal
axis vim is utilized to calculate the virtual AC current as:

im(s) =
vim − vgm

Ls + r
(2)

The values of the virtual inductor and virtual resistor are equal to the real ones (L and r). im is
orthogonal to is and can be used to form the virtual closed-loop. The introduction of the virtual
closed-loop can rapidly respond to the change of the real component and greatly improve the dynamic
performance of the single-phase inverter.

The introduction of the virtual closed-loop changes the transfer function of the controlled plant.
The mathematic model of the virtual circuit is described as:

L
dim
dt

+ rim = vim − vgm (3)

Transforming Equations (1) and (3) into the dq synchronous reference frame, the mathematical
model of the newly-constructed controlled plant can be deduced as:

L
did
dt

+ rid −ωLiq = vid − vgd (4)

L
diq
dt

+ riq + ωLid = viq − vgq (5)

Obviously, the introduction of the virtual closed-loop circuit makes the model of the single-phase
inverter the same as the three-phase inverter. They share the same dynamic characteristics, theoretically.
However, the virtual closed-loop also brings the coupling problem for the system, which will severely
influence the accurate tracking performance of the single-phase system. Therefore, the current
controller should be further improved to realize independent control of the active/reactive power.
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3. Discrete Model of the Inverter Considering the Influence of Delay Based on Complex Vectors

The mathematical model of the polyphasic system can be either expressed in scalar or complex
vector forms. Generally, the scalar is most commonly used for the system modeling as analyzed in the
last section, and the model of the single-phase inverter with the virtual closed-loop can be regarded
as a double-input dual-output second-order system. In order to further study the coupling issue,
a complex vector can be applied to reduce the order of the system. The complex vector is defined as:

fαβ = fα + j fβ (6)

where fα and fβ represent a pair of orthogonal quantities. Therefore, the virtual closed-loop based
inverter model will become a single-input single-output first-order system as:

iαβ(s) =
1

Ls + r
viαβ −

1
Ls + r

vgαβ (7)

where iαβ = is + jim, viαβ = vis + jvim, vgαβ = vgs + jvgm. Regarding the grid voltage as a perturbation,
the transfer function of the controlled-plant in the stationary coordinate system could be obtained by
rewriting Equation (7) in the form of the voltage input and current output:

Gαβ(s) =
iαβ(s)
viαβ(s)

=
1

Ls + r
(8)

Transforming Equation (8) into the synchronous coordinate system, in which the Laplace operator
s is replaced by s + jω, the mathematical model of the controlled plant in the dq synchronous reference
frame can be obtained:

Gdq(s) =
idq(s)
vidq(s)

=
1

Ls + r + jωL
(9)

To analyze the degree of system coupling, the symmetry degree of the closed-loop transfer
function around 0 Hz can be used as an index to measure the coupling degree of closed-loop system,
which can be mathematically expressed as:

|∆H| =
∣∣∣∣H(jω)− H∗(−jω)

2j

∣∣∣∣ (10)

For a fully-decoupled system, |∆H| is equal to 0 in the whole frequency range, i.e.,
H(jω) = H*(−jω). The frequency response characteristics of its closed-loop transfer function should be
strictly symmetric around 0 Hz (even symmetrical for the amplitude-frequency characteristics, odd
symmetry for the phase-frequency characteristics).

In the complex vector based model, the coupling item is represented as the imaginary term, which
makes the frequency characteristic of the controlled plants no longer symmetrical around 0 Hz, as in
the stationary reference frame (shown in Figure 3).

Generally, a synchronous frame PI regulator is chosen as the current controller and the block
diagram is shown as Figure 4. In the design of PI controller, Kp/Ki is typically selected equal to r/L,
which optimizes the performance of the system by introducing a zero point to cancel the pole of the
controlled plant and turning the closed-loop transfer function of the whole system into an inertia link.
The bandwidth of the controller is adjusted by tuning the value of Kp. ωL̂ denotes the decoupling item.
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Figure 4. Complex vector block diagram of the inverter with a cross-coupling decoupling synchronous
frame PI current controller, shown in the synchronous reference frame.

The closed-loop transfer function of the PI current control system in synchronous frame can be
deduced as:

Hclo(s) =
Kps + Ki

Ls2 + [Kp + r + jω(L− L̂)]s + Ki
(11)

where L̂ is the measured value of the AC inductor, and L̂ is used as the setting value in the controller.
When the sampling frequency is fs, the sampling period is Ts = 1/fs. Equation (11) can be discretized as:

Hclo(z) =
(Kp + KiTs)Tsz2 − KpTsz

Az2 − Bz + L
(12)

where:
A = L + (Kp + KiTs + r + jωL− jωL̂)Ts (13)

B = 2L + (KpTs + r + jωL− jωL̂)Ts (14)

According to Equation (12), the frequency characteristics with a current state feedback decouple
PI controller for variations in L̂ are shown in the synchronous reference frame. As can be seen from
Figure 5, the frequency response waveform becomes asymmetric when the inductor is measured
with errors. The waveform is distorted near 0 Hz (corresponds to the synchronous frequency in the
stationary reference frame) and the resonant peak appears. In this case, the decoupling of the system
will no longer be complete, which means the active current control and the reactive current control
interact with each other, and the system’s control performance deteriorates.
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4. Complex Vector-Based Controller

In order to achieve complete independent control of the active/reactive power, a discrete model
of the grid-connected inverter is established by using the complex vector, and the controller is
designed accordingly.

4.1. Discrete Model of the Complex Vector-Based Inverter

Since the modulating signals are updated at the beginning of every cycle, the controlled plant
could be discretized by using a zero-order holder as:

T(s) =
1− e−sTs

s
(15)

Thus, the complex vector based discrete model of the single-phase inverter with a virtual
closed-loop can be deduced as:

Gαβ(z) = Z(T(s)Gαβ(s)) =
1− e−

r
L T

(z− e−
r
L T)r

(16)

Equation (16) can also be expressed as a differential equation as:

iαβ(k + 1) = iαβ(k)e−
r
L Ts + vαβ(k)

1− e−
r
L Ts

r
(17)

According to the principle of coordinate transformation, the relationship between the stationary
coordinate system and the synchronous rotation coordinate system is given by:

fαβ(k)e−jθ(k) = fdq(k) (18)

In the k + 1th cycle, according to the equation e−j(θ(k+1)) = e−j(θ(k)+ωTs), the differential equation in
the synchronous reference frame can be calculated as:

iαβ(k + 1)e−j(θ(k+1)) = iαβ(k)e−
r
L Ts e−j(θ(k)+ωTs) + vαβ(k)

1− e−
r
L Ts

r
e−j(θ(k)+ωTs) (19)
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Using Equations (18) and (19), the discrete transfer function of the controlled plant in the
synchronous dq reference frame can be preliminarily obtained as:

Gdq(z) =
1− e−

r
L Ts

(zejωTs − e−
r
L Ts)r

(20)

Consider the intrinsic one-beat digital delay in the digital signal processor (DSP), where the
modulation quantities D(k) calculated in the kth cycle will not be immediately applied to control
the inverter until the beginning of the k + 1th cycle. The transfer function of the digital delay in the
stationary reference frame is z−1, and it can be rewritten in the synchronous dq reference frame as:

D(z) =
(

zejωTs
)−1

(21)

Equation (21) can be expressed in the form of the differential equation as:

uαβ(k) = uαβ(k− 1)(cos(ωTs)− j sin(ωTs)) (22)

Therefore, the discrete transfer function of the controlled plant in synchronous dq reference frame
can be ultimately obtained considering the one beat digital delay:

Gdq(z) = D(z)Gdq(z) =
1− e−

r
L Ts

zejωTs(zejωTs − e−
r
L Ts)r

(23)

According to Equation (23), the expression of the main pole is:

p1 = e−
r
L Ts−jωT = e−

r
L Ts(cos(ωTs)− j sin(ωTs)) (24)

Clearly, the main pole p1 changes with the sampling frequency, which is exhibited in Figure 6.
Due to the small value of the sampling period, these poles are close to the edge of the z-plane unit
circle, which may cause the system to oscillate. Additionally, the main pole will be farther away from
the real axis with the decreasing of the sampling frequency, and the dq axis current coupling becomes
more serious.
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According to Equation (23), the expression of the main pole is: 
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From Equation (23) and Figure 6, it can also be seen that the time delay of the control system
introduces an additional pole (p2) into the discrete model of the inverter. The time delay will worsen the
dq axis current cross-coupling, and further deteriorate the transient performance of the current loop.

4.2. Controller Design

In order to completely decouple the system, the controller can be designed by introducing the
complex zero to cancel the complex pole in the controlled plant. Additionally, since there exist no zeros
and poles outside of the unit circle in the discrete model of the controlled plant, the system satisfies the
designing requirement of minimum beat control. Therefore, the controller proposed in this paper is
expressed as Equation (25), whose block diagram is shown as Figure 7.

Cdq(z) =
KejωTs r(ejωTs − e−

r
L Ts z−1)

(1− e−
r
L Ts)(1− z−1)(1 + z−1)

(25)
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Figure 7. Complex vector block diagram of the inverter with the proposed control strategy, shown in
the synchronous reference frame.

If there is no deviation between the setting inductance value and the actual inductance value,
the closed-loop transfer function of the current control system in the synchronous dq reference frame
can be calculated as:

Hclo(z) =
Gdq(z)Cdq(z)

1 + Gdq(z)Cdq(z)
=

K
z2 + K− 1

(26)

It can be seen that the AC current will reach the given reference value after several finite steps.
Especially when K equals 1, Equation (26) can be simplified as Hclo(z) = z−2, which indicates that
it will take only two steps for the AC current to reach the given reference value without ripples,
theoretically. Although the dynamic response could not achieve such a fast response time in practice
for various factors, the proposed controller still indicates a better dynamic performance compared
with the traditional PI regulator.

If the setting value of inductance L̂ is biased with the actual situation, the open-loop and
closed-loop transfer functions become:

Hopen(z) = (1− e−
r
L Ts )

(1− e
− r

L̂
Ts
)

(zejωTs − e
− r

L̂
Ts
)

(zejωTs − e−
r
L Ts )(z2 − 1)

= K′(zejωTs − e
− r

L̂
Ts
)

(zejωTs − e−
r
L Ts )(z2 − 1)

(27)

Hclo(z) =
K′(zejωTs − e−

r
L̂

Ts)

(zejωTs − e−
r
L Ts)(z2 − 1)[1 + K′(zejωTs − e

− r
L̂

Ts
)

(zejωTs − e−
r
L Ts )(z2 − 1)

]

(28)

From Equation (27), it seems that the inaccurate inductance value will also influence the
completeness of the zero-pole cancellation as well as the gain of the open-loop transfer function.
However, due to the small value of the switching period Ts and resistance r, the inductance bias
will have little influence on the decoupling effect. Figure 8 shows the frequency characteristics of
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the closed-loop transfer function when applying the proposed control scheme. It can be clearly seen
that when the parameter deviation occurs, the frequency response characteristics basically maintain
symmetry at 0 Hz. which indicates that the proposed controller can effectively decouple the dq axis
under the synchronous frequency when parameter deviation occurs. Furthermore, the amplitude at
0 Hz stays at 1 dB, which indicates that zero-steady-error will be achieved. Therefore, the proposed
control strategy can effectively eliminate the influence of the inaccurate inductance value and greatly
improve the tracking performance of the single-phase grid-connected inverter.
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5. Experimental Results

To verify the performance of the proposed current controller, laboratory experiments were carried
out on a single-phase grid-connected inverter as shown in Figure 9. The pertinent parameters related
to the inverter are shown in Table 1. The system is connected to the grid through a transformer.
The current probe is used to measure the AC current is. To study the dynamic process of the system in
a detailed manner, Id and Iq are converted to analog voltage signals by the digital-to-analog converter
(DAC) module and displayed on the oscilloscope.

Energies 2017, 10, 2068  9 of 14 

 

However, due to the small value of the switching period Ts and resistance r, the inductance bias will 

have little influence on the decoupling effect. Figure 8 shows the frequency characteristics of the 

closed-loop transfer function when applying the proposed control scheme. It can be clearly seen that 

when the parameter deviation occurs, the frequency response characteristics basically maintain 

symmetry at 0 Hz. which indicates that the proposed controller can effectively decouple the dq axis 

under the synchronous frequency when parameter deviation occurs. Furthermore, the amplitude at 

0 Hz stays at 1 dB, which indicates that zero-steady-error will be achieved. Therefore, the proposed 

control strategy can effectively eliminate the influence of the inaccurate inductance value and greatly 

improve the tracking performance of the single-phase grid-connected inverter. 

 

Figure 8. Complex vector FRF for variations in �̂� of the inverter with a cross-coupling decoupling 

synchronous frame PI current controller, shown in the synchronous reference frame. 

5. Experimental Results 

To verify the performance of the proposed current controller, laboratory experiments were 

carried out on a single-phase grid-connected inverter as shown in Figure 9. The pertinent parameters 

related to the inverter are shown in Table 1. The system is connected to the grid through a 

transformer. The current probe is used to measure the AC current is. To study the dynamic process 

of the system in a detailed manner, Id and Iq are converted to analog voltage signals by the digital-to-

analog converter (DAC) module and displayed on the oscilloscope. 

Inductor

Oscilloscope

Grid

DC Power Supply

DAC Module

Controller

Power Switches 
This is a sad story.

 

Figure 9. Photograph of the experimental setup. 

0dB

5dB ˆ 1.4L L　

ˆ 0.6L L　

L̂ L

Figure 9. Photograph of the experimental setup.



Energies 2017, 10, 2068 10 of 14

Table 1. Parameters and components of the grid-connected inverter.

Parameter Variable Value

Grid Voltage vg 110 V
Grid Frequency f 0 50 Hz

Grid-Tie Inductor L 13.6 mH
Resistance of the inductor r 0.6 Ω

Switching Frequency fs 12 kHz
DC-Link Voltage Vdc 200 V

Components Part Number

IGBTs(S1–S4) IKW40T120
Digital Signal Controller TMS320F28335

DC power supply PSI81500-30
Current Probe CP150
Oscilloscope HDO4054

Figure 10 shows the block diagram of the proposed control strategy. The block with the buff
background is the current controller which is realized in DSP. The grid voltage vgs and the AC
current is are sampled into the DSP through the hall sensors. The virtual closed-loop is constructed
according to the digital calculation described in Section 2, and the orthogonal virtual grid voltage
vgm, as well as the virtual AC current im is then obtained. Then these four quantities are applied to
form the complex vector-based current loop. Finally, modulating signals are generated to control the
single-phase inverter.
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Figure 10. Block diagram of the grid-connected inverter with the proposed control strategy.

Figure 11 shows the dynamic waveform of current controller with the traditional 90◦-delay
method as introduced in [13]. The given current reference mutates at the middle of the figure, where
the d-axis current reference is changed from 5 A to 8 A, and the q-axis current reference remains at
5 A. Obviously, it takes a long time for the controller to react to the disturbance, and this method also



Energies 2017, 10, 2068 11 of 14

introduces a very large fluctuation to the system. Figures 12–14 show the dynamic waveform based on
the virtual closed-loop, and there is no large fluctuation when the current reference changes.Energies 2017, 10, 2068  11 of 14 
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Figure 11. Experimental results with the proposed control strategy while the virtual closed-loop circuit
is removed.
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when L̂ = 0.6L. (a) ICSF based PI control; and (b) the proposed complex vector based control.
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Figures 12–14 compare the decoupling effect of the traditional ICSF-based PI controller and the
proposed controller when parameter deviation occurs. The experimental results show that both of
the two control modes can achieve high steady accuracy and low distortion degrees of the output
waveform. Comparing Figure 12a, Figure 13a, and Figure 14a, it can be seen that the deviation of the
inductance will severely deteriorate the dynamic performance of the ICSF-based controller. For the
proposed controller (by comparing Figure 12b, Figure 13b, and Figure 14b), the parameter deviation
will have little influence on the decoupling effect. Additionally, according to Figure 12a,b, the proposed
method shows a better dynamic performance than the traditional ICSF-based PI controller.

Figure 15 shows the details of the step responses with the proposed control strategy. td is the
inherent time delay of the DAC module. t0 denotes the step response time of the d-axis current.
It can be seen that it takes several finite steps (t0 ≈ 583 µs) to reach the reference value, rather
than only a two-step response time, theoretically. These results all reveal that the proposed method
has low parameter sensitivity and improves the transient state performance of the current control.
Moreover, the computational cost of these two control strategies in the DSP (TMS320F28335, a member
of the TMS320C28x/Delfino™ DSC/MCU generation, is produced by Texas Instruments, Shanghai,
China) has been tested. The traditional control method costs 25.6 µs during one switching period,
while the new control method costs 26.8 µs during one switching period (with the DSP controller
clocked at 150 MHz). Therefore, the proposed control strategy would not add to the computational
consumption compared with traditional methods, and is also suitable for high-frequency applications.
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6. Conclusions

This paper proposes a comprehensive control scheme for a single-phase grid-connected inverter.
Two main procedures have been conducted to enhance the dynamic performance of the single-phase
inverter. Firstly, a virtual closed-loop is constructed to realize PI control under a synchronous dq
frame, which effectively achieves the independent control of active/reactive power, and significantly
improves the dynamic performance by converting a single-phase inverter into a three-phase inverter
model. Then, based on complex vector theory, a novel digital controller is designed to completely
decouple the active/reactive power and achieve an optimal dynamic performance. The proposed
control scheme is experimentally proved to have superior current tracking performance.
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Abbreviations

Vdc DC-link voltage
L Grid-tie inductor
r Resistance of the inductor
i Gird-connected current
vis Port voltage of the inverter
vgs Grid voltage of the AC side
im Virtual gird-connected current
vim Port voltage of the inverter in the virtual closed-loop circuit
vgm Virtual grid voltage of the AC side
L̂ The setting value of the inductance
ω Angular frequency of the grid voltage
Ts Sampling period
G(s) The transfer function of the controlled plant
C(s) The transfer function of the controller
H(s) The transfer function of the whole system
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