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Abstract: The estimation of losses of distribution feeders plays a crucial guiding role for the planning,
design, and operation of a distribution system. This paper proposes a novel estimation method of
statistical line loss of distribution feeders using the feeder cluster technique and modified eXtreme
Gradient Boosting (XGBoost) algorithm that is based on the characteristic data of feeders that are
collected in the smart power distribution and utilization system. In order to enhance the applicability
and accuracy of the estimation model, k-medoids algorithm with weighting distance for clustering
distribution feeders is proposed. Meanwhile, a variable selection method for clustering distribution
feeders is discussed, considering the correlation and validity of variables. This paper next modifies
the XGBoost algorithm by adding a penalty function in consideration of the effect of the theoretical
value to the loss function for the estimation of statistical line loss of distribution feeders. The validity
of the proposed methodology is verified by 762 distribution feeders in the Shanghai distribution
system. The results show that the XGBoost method has higher accuracy than decision tree, neural
network, and random forests by comparison of Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE), and Absolute Percentage Error (APE) indexes. In particular, the theoretical
value can significantly improve the reasonability of estimated results.

Keywords: loss estimation; line loss; distribution system; eXtreme Gradient Boosting (XGBoost);
k-medoids; feeder cluster

1. Introduction

Line loss rate is a comprehensive technical and economic index, which reflects the level of
planning, design, and operation of power system. It plays a crucial guiding role for optimization of
power network structure and saving energy. The loss of 10 kV medium voltage distribution networks
accounted for 24.7% of total losses of the power grids, according to the measured result provided by
State Grid Corporation of China [1]. That is to say, the line loss of distribution feeders is the heaviest
loss layer in the power system. However, the estimation of the losses of distribution feeders becomes a
thorny and extensively concerned problem because of the enormous amount of feeders, complicated
and variable topologies, and inadequate measuring instruments in the distribution system.

The line loss of distribution system is almost determined by estimation methods that are based
on certain hypotheses. The earliest research on loss estimation of a distribution system primarily
concentrated on the methods based on load curves and load profile: percent loading [2], statistical
features of daily load curves (DLC) [3], and improved statistical representation of the influence of DLCs
on power flow of radial distribution networks using average node voltages [4]. The loss factor (LSF) has
been extensively applied to calculate the losses of distribution system [5–8]. Reference [5] estimated the
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energy losses of distribution system by calculating load variance and load means losses, respectively,
using the LSF. Reference [6] proposed loss coefficient (LSC) and equivalent hours of losses (EHL) to
replace the LSF and the equivalent hours (EH) for improving the accuracy of energy loss estimation and
the applicability of loss patterns. Two formulas of the LSF for calculating energy losses were improved,
based on the minimum load factor (MLF) and the load factor (LF) in [7]. Reference [8] proposed an
estimation method of technical losses that was based on the reference feeder (RF) of the medium
voltage distribution network characterized by LSF, load distribution (LD), feeder peak power demand
(PPD), and its length. In order to handle the problem of inadequate information of the distribution
system, a top-down/bottom-up method and its improved modus were presented in [9–11]. In addition,
the clustering technique [12,13], fuzzy logic [14], and decision trees [13] have been applied to improve
the accuracy and adaptability of the estimation method. Nevertheless, most of the aforementioned
methods have the inherent defects of excessively depending on structure and operation parameters
of the distribution system. Although several countermeasures have been proposed to deal with the
issue of less available data in distribution systems [9–14], it is substantially invalid for the estimation
problem of massive, complicated, and diverse distribution feeders. Fortunately, with the development
of smart power distribution and utilization system, the comprehensive data that describes the global
features of distribution feeders has been preserved, which makes it possible to estimate the statistical
line loss of distribution feeders by data mining and machine learning methods.

In this research, eXtreme Gradient Boosting (XGBoost) is selected as the estimation method of
statistical line loss of distribution feeders, since it is extensively used by scientific researchers and
engineers, and has remarkable performance in many fields, such as energy and remote sensing [15–18],
information technology and software engineering [19–22], biological and medical engineering [23–25],
economy, and finance [26,27]. Except for the precise and robust model that is established in
XGBoost [28], it is flexible to rewrite the objective function of XGBoost, which makes it possible to
estimate statistical line loss with reference to the theoretical value. Meanwhile, in order to improve the
applicability and accuracy of the XGBoost model, the thought of clustering distribution feeders [29–31]
is applied before the estimation procedure.

The rest of this paper is organized as follows. Section 2 presents the full procedure of the
estimation of statistical line loss of distribution feeders, including k-medoids algorithm with weighting
distance that is used for clustering distribution feeders, and XGBoost model, which is modified by
theoretical value for the estimation of statistical line loss. Section 3 details the experimental results and
analysis based on real data of 762 feeders. The conclusion is described in Section 4.

2. Materials and Methods

2.1. Data Description and Preprocessing

The dataset selected for this study is from electricity production and operation data in Shanghai.
The statistical line loss of distribution feeders and its related data mainly comes from production
management system (PMS) and customer management system (CMS). By data extraction and
integration, the final dataset used in this study comprises 14 variables, as shown in Table 1. SLLR is
a statistical result representing the line loss status, which is calculated by the EES and ES as
follows. Correspondingly, the TLLR depicts the line loss by theoretical calculation. Among the
affecting factors of statistical line loss in Table 1, EES, ES, and ALRT reflect operation situation of
distribution feeders, while TNT, TNL, TRCT, TCLT, TULT, TLL, and PCF are the measures of feeder
structure. Meanwhile, ARTT and ARTL are the indirect presentations for operational efficiency of
electrical equipment.

SLLR =
EES− ES

EES
× 100% (1)
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Table 1. Description of the variables of the final dataset used in this study.

Variables Description Variables Description

SLLR Statistical Line Loss Rate of a Feeder TLLR Theoretical Line Loss Rate of a feeder

EES Electrical Energy Supply of a Feeder ES Electricity Sales Belonging to a Feeder

TNT Total Number of Transformers Belonging to
a Feeder TRCT Total Rated Capacity of Transformers Belonging to

a Feeder

TSLT Total Short Circuit Loss of Transformers Belonging
to a Feeder TULT Total Unload Loss of Transformers Belonging to

a Feeder

ALRT Average Load Rate of Transformers Belonging to
a Feeder ARTT Average Run Time of Transformers Belonging to

a Feeder

TNL Total Number of Lines Belonging to a Feeder TLL Total Length of Lines Belonging to a Feeder

PCF Proportion of Cable in a Feeder ARTL Average Run Time of Lines Belonging to a Feeder

The final dataset described in Table 1 is a statistical table of monthly line loss of distribution
feeders; moreover, the date of it ranges from August 2015 to September 2016. When considering that
the value of the variables of the final dataset fluctuate narrowly and has no significant difference
among months, the average value of all the available months are selected as the research data in this
study for simplification.

2.2. K-medoids Algorithm with Weighting Distance for Clustering Distribution Feeders

Due to the enormous quantity and various types of distribution feeders, there exists the
remarkable difference in topological structure and operation parameters among all of the feeders.
Consequently, clustering distribution feeders is proposed as a solution for enhancing the applicability
and accuracy of the estimation methodology of statistical line loss. The existing methods that are used
for clustering feeders are mainly k-means algorithm [29], k-medoids algorithm [30], and self-organized
maps (SOMs) [31]. When considering that there are often certain random perturbations or noise in the
line loss dataset of distribution feeders, the k-medoids algorithm is selected as the clustering method
for feeders for its insensitivity to the noise and outliers.

2.2.1. Selecting Variables for Clustering Distribution Feeders

Selecting variables for clustering distribution feeders is a process that extracts main factors, which
notably distinguish various feeders among multiple influencing factors. Correlation and validity of
variables for clustering distribution feeders act as the principle of selecting variables, as follows.

• Correlation of variables for clustering distribution feeders

The clustering result becomes more reasonable and accurate when the cluster variables that are
selected are independent of each other. Accordingly, the Pearson correlation coefficient of any two
variables is calculated according to the following formula:

rXY =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2
√

∑n
i=1 (yi − y)2

(2)

where rXY denotes the Pearson correlation coefficient of variable X = {x1, x2, · · · , xn} and variable
Y = {y1, y2, · · · , yn}, x and y are the average of variable X and variable Y, respectively.

• Validity of variables for clustering distribution feeders

The clustering effect of the same variable for different application cases may be significantly
different. For example, if the PCF of all the samples in a certain distribution system is close to 1 or
changes very little, the effectiveness of it to distinguish the characteristics of distribution feeders seems
not remarkable. On the contrary, PCF is supposed to be a crucial factor of clustering distribution
feeders when the PCF evidently differs among the entire samples. Based on this fact, the validity of
variables for clustering distribution feeders is proposed to quantify this property.
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In order to investigate the validity of variables for clustering distribution feeders, the sensitivity
of SLLR to every selected variable is calculated, that is, determining the sensitivity coefficient in the
Equation (3), as follows:

SLLR = α0 + ∑m
i=1 αiXi (3)

where Xi is the ith selected variable, αi is the sensitivity coefficient corresponding to Xi, α0 is the
constant term.

Subsequently, the range of each selected variable Ri is calculated by the following equation:

Ri = max{Xi} −min{Xi} (4)

Finally, the validity of variables for clustering distribution feeders is defined as the product of
sensitivity coefficient αi and range Ri of the selected variable as follows:

Vi = αiRi (5)

2.2.2. K-Medoids Algorithm with Weighting Distance

The measurement of the distance between the samples is the foundation of cluster analysis.
However, the value of the variables for clustering distribution feeders has significant differences
between each other. Moreover, oversimplified and crude normalization will neglect the feature
of each variable. Conversely, the aforementioned sensitivity coefficient is capable of reflecting the
characteristics of the variables. Consequently, the weighting Euclidean distance is defined as the metric
of distance between samples, as follows:

dist(Oi, Oj) =

√
∑m

k=1

[
αk(Xi,k − Xj,k)

]2
(6)

where dist(Oi, Oj) denotes the distance between the ith sample and the jth sample, Xi,k and Xj,k are
the kth variable of the ith sample and the jth sample respectively, αi is the sensitivity coefficient
corresponding to the kth variable.

Partitioning Around Medoids (PAM) algorithm is selected as the clustering algorithm for this
study, since it is the most common implementation of the k-medoids algorithm. The main steps of PAM
is as follows: (1) randomly select k representative objects as initial medoids of the clusters; (2) assign
all of the non-selected samples to the closest medoids of the clusters according to the distance function;
(3) calculate the total contributions [32] when a representative object is replaced by a non-selected
object; and, (4) search the minimal total contributions of all the pairs of representative object and
non-selected object; if the minimum is negative, swap the representative object with the non-selected
object corresponding to the minimum and the algorithm returns to step 2; otherwise, the algorithm
stops. The detailed content of PAM is described in Reference [32].

2.2.3. Determining the Optimal Number of Clusters

The most challenging step in cluster analysis is to determine the optimal number of clusters.
There are several theoretical or practical methods that are proposed to handle this problem.
Nevertheless, there is no modus that is widely acknowledged and available for entire clustering
problems so that a comprehensive strategy is presented by combing with the results of the following
four methods in this study.

The sum of squares error (SSE) [33,34] is one of the most common measurements of clustering
performance. Evidently, as the number of clusters increases, the size of each cluster becomes smaller
and the SSE decreases at the same time. However, it is not necessary to increase the number of clusters
when the SSE decreases slowly. Hence, the optimal number of clusters can be determined by observing
the relationship between the SSE and the number of clusters.
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The Calinski Harabasz index is a widely used cluster validity index to evaluate the partitioning
quality [35–38]. This index is defined as the ratio of the average distance between clusters and average
squares error within clusters. Accordingly, the optimal number of clusters can be determined by
maximizing the Calinski Harabasz index.

The average silhouette coefficient is a simple but useful index for measuring the result of clustering,
and has been applied to many practices [36–41]. The core idea of silhouette coefficient is to calculate
the difference value of the minimum average distance between a certain sample with samples in
other clusters and the average distance within the cluster. Evidently, the higher the average silhouette
coefficient, the better.

The hierarchical clustering algorithm [42] is a classical clustering method and performs its
capability in lots of clustering problems. A hierarchical and nested clustering tree is constructed in the
algorithm by calculating the similarity between the different categories of samples. Consequently, the
optimal number of clusters can be determined by visualization of the result of hierarchical clustering.

2.3. XGBoost Algorithm Modified by Theoretical Value for the Estimation of Statistical Line Loss

The XGBoost algorithm [28] is a well-designed Gradient Boosted Decision Tree (GBDT)
algorithm [43], which demonstrates its state-of-the-art advantages in the scientific research of machine
learning and data mining problem. XGBoost algorithm not only has the advantages of high accuracy
of traditional boosting algorithms, but also can deal with sparse data efficiently and implement
distributed and parallel computing flexibly. Consequently, the XGBoost algorithm is adaptable to the
large-scale dataset.

The XGBoost algorithm achieves an estimate of the target variable by establishing a series of
decision trees and assigning each leaf node a quantized weight. The prediction function is as follows:

ŷi =
N

∑
k=1

fk(
⇀
x i) (7)

where ŷi is the predictive value of the ith target variable,
⇀
x i ∈ Rn is the input variable corresponding

to ŷi, N is the total number of the decision trees, fk is the prediction function corresponding to the kth
decision tree and is defined as follows:

fk(
⇀
x i) = ω

q(
⇀
x i)

, ω ∈ RT , q : Rn → {1, 2, · · · , T} (8)

where q(
⇀
x i) denotes the structure function of the kth decision tree that map

⇀
x i to the corresponding

leaf node, ω is the vector of the quantized weight of leaf nodes.
In the XGBoost algorithm, a regularization term is added to the loss function, taking into account

the accuracy and complexity of the model at the same time. The set of prediction functions in the
model are learned by minimizing the following total loss function:

Lt =
n

∑
i=1

l(yi, ŷi) +
N

∑
k=1

Ω( fk) (9)

where l denotes the loss function that represents the fitness of the model as a measurement of the
differences between the real and predictive values, Ω denotes the complexity of the model. The loss
function used in this study is the square loss: l(yi, ŷi) = (yi − ŷi)

2. Using Ω = γT + 1
2 λ∑T

j=1 ω2
j to

measure the complexity of the model where γ and λ are tuning parameters.
When considering the specialty of the estimation of statistical line loss in the power distribution

and utilization system that there exists a theoretical value corresponding to each statistical line loss,
the prediction of the statistical line loss can be modified by the theoretical line loss. To be specific,
the statistical line loss is generally a little bit larger than the theoretical line loss, according to the
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experience in the operation of the power system. Moreover, there should not be a significant difference
between statistical line loss and its theoretical value. Consequently, a penalty function is defined by
the utilization of this feature, as follows:

C(yi,T , ŷi)= c1ec2(ŷi−αyi,T)(ŷi−βyi,T), 0 < α < β, c1 > 0, c2 > 0 (10)

where yi,T is the theoretical line loss corresponding to the statistical line loss yi, α and β are the
parameters for setting the confidence interval of the estimated value, c1 and c2 are the coefficients to
regulate the effect of the penalty function.

According to the Equation (10), if αyi,T < ŷi < βyi,T , the value of ec2(ŷi−αyi,T)(ŷi−βyi,T) is less than 1.
Otherwise, the value of ec2(ŷi−αyi,T)(ŷi−βyi,T) will increase significantly when ŷi is far from the interval:
(αyi,T , βyi,T). Furthermore, by appropriately tuning the parameters c1 and c2, the value of C(yi,T , ŷi)

could be neglected when ŷi in the interval (αyi,T , βyi,T) and C(yi,T , ŷi) becomes extremely large while
ŷi out of the interval. Herein, we set α = 1 and β = 2 based on the relationship of statistical line loss
and theoretical line loss. Simultaneously, the selected value of c1 and c2 is 0.0001 and 2 respectively.
The modified loss function used in this study is as follows:

Lm =
n

∑
i=1

[l(yi, ŷi) + C(yi,T , ŷi)] +
N

∑
k=1

Ω( fk) (11)

2.4. The Full Procedure of the Estimation of Statistical Line Loss of Distribution Feeders

The full procedure of the proposed estimation methodology of statistical line loss of distribution
feeders is illustrated as follows and presented in Figure 1.

Figure 1. The flowchart of the estimation method of statistical line loss of distribution feeders.

1. Feeder cluster. Select variables for clustering distribution feeders by analyzing the correlation
and validity of variables, then cluster the input samples using k-medoids algorithm with
weighting distance.

2. Model training. Determine the model parameters for each cluster by training the XGBoost model
that is modified by theoretical value, taking the clustering result, statistical, and theoretical line
loss as input data.

3. Prediction and evaluation. Predict the statistical line loss in the test set using the aforementioned
model and evaluate the performance of the model.
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3. Results and Discussion

In our experiment, there are a total number of 762 feeders, including the variables that are
described in Table 1, and the software used in this study is R version 3.3.2. The following is the analysis
and evaluation of the aforementioned modus.

3.1. Distribution Feeder Cluster

3.1.1. Correlation of Variables for Clustering Distribution Feeders

Figure 2 shows the correlation of variables for clustering distribution feeders, according to the
Pearson correlation coefficient of any two variables. The lower triangle of Figure 2 (the cells below
the principal diagonal of the matrix in Figure 2) denotes the correlation of variables by colors and
hashing, where the blue color and the hashing with positive slope represents a positive correlation
of the two variables corresponding to the cell, while the red color and the hashing with negative
slope expresses the opposite meaning. Furthermore, the colors become darker and more saturated
when the value of the correlation is greater. The same information is shown in the upper triangle
of Figure 2 using pies. Herein, colors have same meanings, but the magnitude of the correlation is
represented by the proportion of the filled pie slice. Moreover, the pie starts at 12 o’clock and moves in
a clockwise direction when the correlation of the two variables is positive. Conversely, the pie is filled
in a counterclockwise direction indicating the negative correlation [44].

Figure 2. The Correlation graph of variables for clustering distribution feeders.

As shown in Figure 2, ARTT, PCF, and ARTL have a weak correlation with other variables.
The correlation between TLL and TNL is significantly strong, as is the correlation between EES and ES.
Meanwhile, TRCT is positively correlated with ALRT, TNT, TSLT, and TULT. When considering that
TLL and TRCT comprise more abundant information than other correlated variables, while EES is easy
to measure and more accurate compared with ES, the eliminated variables are TNL, ES, ALRT, TNT,
TSLT, and TULT based on correlation analysis.

3.1.2. Validity of Variables for Clustering Distribution Feeders

The sensitivity coefficients αi in Equation (3) are calculated with the least square method and the
range Ri of each selected variable is calculated by Equation (4). Then, the validity Vi of variables for
clustering distribution feeders is determined according to the Equation (5), and the result is shown in
Table 2. The validity of PCF and ARTL is significantly smaller than that of TRCT, EES, ARTT and TLL,
therefore, the variables ultimately selected for clustering distribution feeders are TRCT, EES, ARTT,
and TLL.
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Table 2. The result of validity of variables for clustering distribution feeders.

Indexes TRCT (kW) EES (kWh) ARTT (m) TLL (m) PCF ARTL (m)

αi 1.11 × 10−4 7.81 × 10−7 4.21 × 10−3 1.26 × 10−5 6.51 × 10−2 1.76 × 10−5

Ri 20,440.0 2,830,644.8 240.0 26,846.0 1.0 656.5
Vi 2.271 2.210 1.010 0.337 0.065 0.011

3.1.3. The Results of Distribution Feeders Cluster with Optimal Number of Clusters

In order to display the effect of weighting distance that is proposed in this study, the variables
that are selected for clustering distribution feeders are formatted by multiplying their sensitivity
coefficients, as shown in Table 3. There is no significant difference on the scale of all the variables.
Hence, the magnitude of a variable has no decisive effect on the measurement of the distance between
the two samples. However, the range of each variable is perceptibly different because of the distinct
importance of them.

Table 3. The quantiles of formatted variables for clustering distribution feeders.

Quantiles TRCT EES ARTT TLL

Minimum 0.01109 0.00867 0.00414 0.00070
1st Quantile 0.17738 0.18435 0.27452 0.03647

Median 0.44345 0.31386 0.39634 0.05655
Mean 0.51787 0.39373 0.40414 0.06303

3rd Quantile 0.75247 0.53603 0.52078 0.08275
Maximum 2.27710 2.20318 0.99676 0.31182

The optimal number of clusters is determined as 2, according to Figure 3. The SSE decreases
slowly when the number of clusters is added up to 2 or 4. Furthermore, the Calinski Harabasz
index and average silhouette coefficient get maximal value when the number of clusters equals to 2.
Meanwhile, according to the dendrogram of hierarchical clustering, two clusters is a reasonable choice
for distribution feeders cluster.

The final result of distribution feeder cluster is obtained by the k-medoids algorithm, with
weighting distance shown in Table 4. And the sizes of cluster 1 and cluster 2 are 453 and
309, respectively.

Table 4. The medoids of distribution feeder cluster.

Medoids Cluster 1 Cluster 2

TRCT (kW) 2260 7454
EES (kWh) 336,377 549,426
ARTT (m) 92.4 91.3
TLL (m) 7814 5651
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Figure 3. Cont.
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Figure 3. The scheme of selecting an optimal number of clusters. (a) The sum of squares error
corresponding to the number of clusters; (b) The average silhouette coefficient corresponding to the
number of clusters; (c) The Calinski Harabasz index corresponding to the number of clusters; and,
(d) The result of hierarchical clustering.

3.2. Estimation of Statistical Line Loss of Distribution Feeders

3.2.1. The Evaluation of XGBoost Model for Estimation of Statistical Line Loss

The evaluation indexes used in this study is Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE), and Absolute Percentage Error (APE), as shown in Table 5.

Table 5. The evaluation indexes and their calculation formulae.

Index Calculation Formula

RMSE
√

∑n
i=1 (yi−ŷi)

2

n

MAPE 1
n

n
∑

i=1

|yi−ŷi |
yi

APE |yi−ŷi |
yi

In order to evaluate the performance of XGBoost model for the estimation of statistical line loss,
decision tree, neural network, and random forests are selected as a comparison. The implementation
of XGBoost, decision tree, neural network, and random forests is by means of R package: XGBoost,
rpart, nnet, randomForest, respectively. The dataset that was used in this study is randomly assigned
to the training set (80%) and the test set (20%), while the above models are trained using the training
set and the models are validated in the test set. The RMSE, MAPE of the estimation results in the test
set using aforementioned methods is shown in Table 6. Figures 4 and 5 show the distribution of APE
of each sample in the test set by histograms. Moreover, a rug plot [44], which represents the real data
values in one-dimensional is added to the plot between bar chart and axis of abscissa to display more
detailed information.
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Figure 4. The distribution of Absolute Percentage Error (APE) of each sample in the test set of cluster 1.
(a) The distribution of APE using eXtreme Gradient Boosting (XGBoost); (b) The distribution of APE
using decision tree; (c) The distribution of APE using neural network; and, (d) The distribution of APE
using random forests.
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Figure 5. The distribution of APE of each sample in the test set of cluster 2. (a) The distribution of
APE using XGBoost; (b) The distribution of APE using decision tree; (c) The distribution of APE using
neural network; and, (d) The distribution of APE using random forests.
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Table 6. The Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) of the
estimation results in the test set.

Method
Cluster 1 Cluster 2

RMSE MAPE RMSE MAPE

XGBoost 0.6979 0.9452 0.7840 0.4585
decision tree 0.7884 1.0434 0.8621 0.5321

neural network 0.7616 1.0605 0.8586 0.4912
random forests 0.7174 0.9990 0.8382 0.5027

In Table 6, the RMSE and MAPE of XGBoost in the test set of both cluster 1 and cluster 2 are
the smallest among the four methods. It is worth mentioning that the random forests algorithm has
a relatively nice performance since it is a kind of ensemble learning algorithm based on bagging.
According to Figure 4, the APE of the XGBoost and random forests algorithm in the test set of cluster
1 mainly concentrated in 0~0.5, while with the increase of APE, the number of samples significantly
decreases. However, the frequency of samples has a fluctuation when the APE of the decision tree and
neural network algorithm increases. The performance of the four mentioned methods is remarkably
different in the test set of cluster 2 when compared with that of cluster 1. As shown in Figure 5, the
APE of XGBoost algorithm and the frequency of samples are almost inversely proportional, while the
distribution of APE of the other three methods is dispersed and irregular. That is to say, the XGBoost
model is more precise and robust.

3.2.2. Estimation of Statistical Line Loss Using XGBoost Model Modified by Theoretical Value

According to Section 2.3, the XGBoost algorithm that is modified by theoretical value is
implemented to the estimation of statistical line loss of distribution feeders. Likewise, the dataset is
randomly assigned to the training set (80%) for training the model and the test set (20%) for model
validation. Figure 6 shows the estimated value, statistical value and theoretical value in the test set
by means of a histogram. The samples are numbered in the order of the relative difference between
statistical value and theoretical value: (yi − yi,T)/yi. As shown in Figure 6, when yi < yi,T or yi > 2yi,T ,
the estimated value is obtained based on both the statistical value and theoretical value. Moreover, the
estimated value is more dependent on the theoretical value when the statistical value becomes farther
from the reasonable scope.

Figure 6. Cont.
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Figure 6. The histogram of the estimated value, statistical value and theoretical value in the test
set. (a) The estimated value, statistical value and theoretical value in the test set of cluster 1; (b) The
estimated value, statistical value and theoretical value in the test set of cluster 2.

Our experiment is conducted on a computer with 2.40 GHz Intel(R) Core(TM) i5-2430 M CPU, 6 GB
RAM, and Microsoft Windows 7 Ultimate with Service Pack 1 (x64) operating system. The computation
time of the model training procedure in the original XGBoost algorithm for cluster 1 and cluster 2
are 226 ms and 151 ms, respectively. The time in the modified XGBoost algorithm are 270 ms and
186 ms for each cluster. Meanwhile, the computation time of the estimation procedure in both the
original XGBoost algorithm and the modified XGBoost algorithm is approximately 0.1 ms. That is, the
efficiency of the modified XGBoost is slightly lower than the original XGBoost so the nice performance
of XGBoost [28] is maintained in the modified method. In addition, the model training procedure is
based on a great amount of historical data so that it is usually performed by off-line computation and
is updated periodically. The estimation procedure meets the requirement of on-line computation, and
can be used for both on line and off line.

4. Conclusions

A novel estimation method of statistical line loss of distribution feeders using feeder cluster
technique and modified XGBoost algorithm is proposed. The principal novelty of the estimation model
proposed is to enhance the reasonability of estimated results of statistical line loss by considering the
auxiliary function of the theoretical line loss. According to the estimated result, as shown in Figure 6,
the theoretical value is capable of amending the estimated value when the statistical value is beyond
reasonable interval. Moreover, it is substantially common that the statistical line loss is incorrect in the
real data of distribution system. Accordingly, the estimation method that is proposed in this study is
applicable to the amendment of the lost data and abnormal data of statistical line loss of distribution
feeders. Except for that, the ideology of improving the performance of the numerical estimation model
by the application of professional knowledge can be extended to other fields.

The procedure of selecting variables for clustering distribution feeders is verified to be effective
in this study and can be applied to any other feeder classification problems according to the specific
application purpose. Meanwhile, the weighting distance based on the sensitivity coefficient is
better than the oversimplified and crude normalization for considering specific characteristics of
each variable.

The estimation method, as based on XGBoost, outperforms traditional machine learning
algorithms methods, such as decision tree, neural network, and random forests in terms of RMSE,
MAPE, and APE indexes. Nevertheless, the parameters of XGBoost model are manually and
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empirically tuned in this study. Therefore, better performance can be obtained by optimizing the
tuning parameters using Bayesian [27], genetic algorithms [45], and any other methods in future works.
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