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Abstract: We present a hybrid electromagnetic generator (EMG) and triboelectric nanogenerator
(TENG) using a multi-impact approach for broad-bandwidth-frequency (10–45 Hz) energy harvesting.
The TENG and the EMG were located at the middle and the free end of the cantilever beam,
respectively. When the system was subjected to an external vibration, the cantilever beam would be in
a nonlinear response with multiple impacts from a low frequency oscillator. The mathematical model
included a TENG oscillator which can have multiple impacts on the cantilever, and the nonlinear
Lorenz force which comes from the motion of the coil in the electromagnetic field. Due to the strong
nonlinearity of the impacts from the TENG oscillator and the limited space for the free tip of the
cantilever, the dynamic response of the cantilever presented a much broader bandwidth, with a
frequency range from 10–45 Hz. We also found that the average generated power from TENG and
EMG can reach up to 30 µW/m2 and 53 µW, respectively. Moreover, the dynamic responses of the
hybrid EMG and TENG were carefully analyzed, and we found that the measured experimental
results and the numerical simulations results were in good agreement.

Keywords: electromagnetic and triboelectric harvester; multi-impact; PTFE film; frequency
up-conversion; nonlinear dynamic response

1. Introduction

Harvesting vibration energy to power low power electronics has attracted extensive interest in
the last decade. Compared with the obtained power from conventional chemistry batteries, energy
harvesting technology incorporated into a system has tremendous advantages in our everyday life due
to operation with much longer life times and an environmentally friendly nature. Vibration-to-electrical
transformation using piezoelectric, electrostatic, triboelectric, and electromagnetic principles has been
investigated for energy harvesting [1–8]. When compared with the principle using piezoelectric or
electrostatic in device, electromagnetic or triboelectric methods benefit from a simple structure and a
high electrical performance output. It was demonstrated that an electromagnetic or triboelectric device
can reach up to several milliwatts of power, whereas the piezoelectric or electrostatic method can only
generate several microwatts of power [9,10]. Typically, when the frequency of the external excitation
is close to the resonant frequency of the self-powered device, the self-powered device operates very
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well. Whereas the external frequency is beyond a narrow band of the resonant frequency, almost no
output power comes out from the self-powered device due to its limited response. Thus, operation at
a narrow bandwidth presents a major limitation because of the vibration environment in our daily
life more often wide range and low frequency of daily life [11–13]. Challa et al. [12] first conducted
impact vibration research, and they designed a resonant energy harvester involving the impact of a free
cantilever beam. After that, some other groups proposed using nonlinearity to broaden the frequency
bandwidth so that nonlinear bi-stable springs were able to harden or soften the suspensions for widen
the bandwidth of the harvesters [14–17]. Abed et al. introduced a multi-modal vibration energy
harvesting approach based on arrays of coupled levitated magnets and, by this method, harvested the
vibration energy in the operating frequency range of 4.6–14.5 Hz, with a bandwidth of 190% and a
normalized power [14]. Park et al. reported a dual Halbach array and a magnetic spring system for a
maximum average power of 1093 µW with a 44 Ω load, 11 Hz, and 0.5 g acceleration [18].

Recently, hybrid nanogenerators combining several mechanisms, such as the use of piezoelectric
and triboelectric principles to convert mechanical energy into electricity, have been attracting an
increasing amount of attention, [10,18–30]. Mahmoudi et al. reported a multiphysics hybrid
piezoelectric–electromagnetic vibration energy harvester with a nonlinear equation of motion
for an enhancement power density up to 84% [20]. Zhang et al. introduced a water-proof
triboelectric–electromagnetic generator in a harsh environment, which can harvest enough power
to light LED light [21]. However, the low frequency constrained the power density out from
EMG in their design. Zhang et al. reported a hybrid piezoelectric and triboelectric mechanisms
harvester [22]. However, the output power from their device presented with a narrow bandwidth
which constrained the potential application. Guo et al. took advantage of the electromagnetic
induction and triboelectricity principles for a motion sensor. The goal of their research focused on the
self-powered motion sensing [10]. Zhang et al. reported a hybridized electromagnetic triboelectric
nanogenerator for wearable electronics [27]. Their designed prototype was driven by substantial
motion force, which was not suitable for low vibration energy harvesting. Here, we propose a hybrid
electromagnetic generator (EMG) and triboelectric nanogenerator (TENG) using multiple impacts for
broad-bandwidth-frequency (10–45 Hz) energy harvesting. Due to the nonlinearity of the impact and
the constraint space, the dynamic response of the cantilever presented a much broader bandwidth
with two peaks (20 Hz and 30 Hz) between its oscillator resonant frequencies and several times of the
oscillator resonant frequencies.

2. System and Design

As shown in Figure 1a,b, the hybrid system consists of a copper pick-up coil, a piece of copper
impact sheet located at the bottom of the polydimethylsiloxane (PDMS) blocks, an acrylic cantilever
beam, a polytetrafluoroethylene (PTFE)/carbon black (CB) film, and a circular shape permanent
magnetic. Five milliliters of silicone rubber (Smooth-On Ecoflex 00-30, Smooth-on company, Macungie,
PA, USA) and 5 mL of carbon black power (TIMCAL Super P® Conductive Carbon Black, TIMCAL
Graphite & Caron Company, Bodio, Switzerland) were added into a cup with the aid of mechanical
stirring for 30 min for a compound conductive CB film. The resonant frequency of the acrylic cantilever
was calculated around 74.5 Hz via FEM (COMSOL Multiphysics®, version 4.4, COMSOL company,
Burlington, MA, USA) (See Figure 1b). A circular permanent NdFeB magnet 1 cm in diameter was
placed 2 mm below the free tip of acrylic cantilever. The pick-up coil was made of 36 gauge copper
wire with an effective space area of 78.5 mm2. The cantilever clamped at one side, and the other side
was free to vibrate with a much higher frequency than the excitation frequency. The copper impact
mass had a weight of 2 g, and it was used to improve the momentum transfer to the high frequency
cantilever. The PDMS bar was designed to resonate at 8 Hz. The low frequency PDMS bar was able to
repeat triboelectric impacts to the PTFE/CB compound film onto the high frequency cantilever beam.
To clearly show the electrical performance of TENG, the oscillator and the cantilever had a close contact.
The repeated impacts starting with a low frequency enabled the frequency up-conversion to match
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a much higher frequency of the cantilever beam. Note that the PTFE film was corona charged (high
voltage polarization apparatus, Model ET-2673A, Entai company, Nanjing, China) at room temperature
for 5 min with the voltages of −6.50 kV. X-ray diffraction (XRD, X’pert powder brand, manufactory,
Panalytical company, Almelo, The Netherlands) shown in Figure 1c was used to demonstrate the PTFE
film material. The XRD pattern showed an intense peak centered at 2θ = 18.06◦, indicating a long-range
order in the (100) lattice plane and a typically PTFE crystalline structure. The peak at 2θ = 31.62◦ was
indexed to (100) reflection, which was associated with an in-plane structure. The Raman spectrum
of mixture composite (see Figure 1d) depicts a substantial peak at 743.5 cm−1, which demonstrated
PTFE materials. The surface morphology of the PTFE film was characterized by a SEM equipment
(Hitachi SU-8010, Hitachi company, Tokyo, Japan) shown in Figure 2. The goal of these two figures
was to describe the roughness of the PTFE tribo-contact surface.
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surface; (b) the surface with a relative smaller area.

As shown in Figures 3a and 4a, when the system is subjected to a low frequency vibration, the low
frequency oscillator will vibrate with multiple impacts to the PTFE film on the cantilever, resulting
in voltage and current output from a single CB electrode. At the same time, the periodical multiple



Energies 2017, 10, 2024 4 of 11

impacts on the cantilever drive the pick-up coil to oscillate with a much high frequency vibration in
the electromagnetic field (see Figures 3b and 4b). The magnetic flux linkage in the coil and magnet
were obtained via a finite element analysis (FEA) simulation performed by COMSOL Multiphysics and
is illustrated in Figure 5. The change rate of the magnetic flux can be clearly observed in Figure 5a,b.
Thus, a current is generated because of the coil with relative motion in the magnetic field. We assume
that the weight of the cantilever m1 is concentrated at the free edge. We used x1 and x2 to denote the
tip displacement and the displacement of the triboelectric impact, respectively. Then we obtained

m1
..
x1 = −c1

.
x1 − m1 Aω2 sin(ωt) + F2 + F3 + Fele (1)

m2
..
x2 = −k2x2 − c2

.
x2 − m2 Aω2 sin(ωt) + F1 (2)

where c1 and c2 are the damping effect, and ω and A are the excitation vibration parameters. F1 is the
triboelectric contact force acting on the mass m2 by the cantilever. F2 and F3 are the acting tip force
from m2 and the constraint displacement force by magnetic position, respectively. Fele is the force on
the coil from the electromagnetic field. Supposing the bending moment is M, EI is the flexural rigidity
of the cantilever. Using engineering beam bending theory and the principle of superposition [31],
we can obtain

x1 = x2 + ∆3 + θab = x2 +

[
− (F1 + F2)a2

2EI
− F2ba

EI

]
b − F2b3

3EI
. (3)
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If the contact force is negative, mass m2 does not make contact with the cantilever beam. Therefore,
F1 = 0, and F2 = − 3EI

(a+b)3 x3. If x1 is smaller than −2 mm, F3 presents a substantial value, which indicates

an instantaneous bounce-back. The generated power Pem of the EMG is as follows:

Pem = RL(
Bd∑ Ac

.
x1

Rc + jωLc + RL
)

2

(4)

where Rc and Lc are the resistor and the total length of the coil, respectively. Ac is the effective area of
the coil. Bd is the magnetic flux coefficient in the vertical direction. Keep in mind that the magnetic flux
is nonlinear surrounding the pick-up coil. As for the TENG component, when contact occurs between
the copper electrode piece and the PTFE film, the voltage from the single CB electrode triboelectric is
given as [32]

Voc =
Qsc

C
=

2σx2

ε0
. (5)

The displacement of proof mass is found to be linear with the triboelectric output voltage. Thus,
the acceleration is linearly related to triboelectric output voltage based on Hook’s law. Thus, with a
fierce impact on the cantilever beam, a larger output voltage can be obtained from the TENG.

3. Results and Discussion

Figure 6 depicts the schematic of the experimental setup system for TENG and EMG based on
the cantilever beam. A shaker (VT-500, Dongguan Aisali Equipment Company, Dongguan, China),
a function generator (Stanford Research System DS345, Stanford company, Sunnyvale, CS, USA),
an oscilloscope, and an electrometer (Keithley 6514) were used for the electrical performance tests.
The system parameters are given in Table 1. The function generator was used to provide the input
power source, and the oscilloscope was used to measure the output voltage on the resistors of EMG.
The electrometer was adopted to measure the open-circuit voltage and external load impedance from
the TENG. When the hybrid TENG and EMG was subjected to a wideband low frequency vibration
from the shaker, the low-frequency oscillator responded first with motion at low frequencies. The thick
metallic copper piece then made triboelectric impact with the PTFE compound film, which resulted
in the power flowing along the single CB electrode. At the same time, the high frequency cantilever
would oscillate, resulting in an electrical current flowing through the coil in the electromagnetic field.
To estimate the response 3 db bandwidth, the system was characterized by an excitation frequency
from 10 Hz to 45 Hz under sinusoidal excitations with a constant acceleration (1 g and 2 g) across the
load resistor (40 Ω) for an excitation frequency. It was observed that the 3 db bandwidth of the EMG
was 12–35 Hz. The average of the power generated in the 3 db range was calculated with a number
value 38.1 µW/m2 with the 2 g vibration amplitude in EMG. With a higher frequency, it showed
weaker impacts in Figure 7a,b from TENG. The open-circuit voltage and short-circuit current at a 2 g
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amplitude was two times greater than those at a 1 g amplitude in this case. It is interesting that two
peaks (20 Hz and 30 Hz) in EMG occurred within 10–45 Hz at 1 g and 2 g (see Figure 7c). As shown in
Figure 7d, the measured power across the load resistor can reach up to maximum powers of 52 µW
and 37 µW at 20 Hz under excitations of 1 g and 2 g, respectively. Figure 8 depicts an approximately
quadratic relationship for vibration amplitude and the output voltage of TENG and EMG, respectively.
The average power across the external load resistor obtained from TENG is shown in Figure 9 with
a maximum power of 30 µW/m2. The force value of the impact was calculated by the numerical
simulation shown in Figure 10.

The instantaneous short-circuit current from TENG with different excitations shown in Figure 11
can be used to demonstrate the nonlinear dynamic impact phenomena. Figure 11a–c describe a
measured short-circuit current (Isc) with increasing frequency and the same amplitude. The bouncing
state of the TENG showed complicated phenomena. The top sharp curve meant the oscillator impact,
and the bottom sharp curve meant the impact of the free tip. Compared with Figure 11b,d, we found
that the larger the amplitude was, the fiercer the bouncing was. Figure 12 depicts the dynamic response
of EMG. Note that the bottom sharp curve meant the strong nonlinear impact from the magnetic. After
each impact, the free tip of the cantilever would vibrate with a much higher frequency, which was
close to the oscillator’s resonant frequency. The bottom sharp shape indicated a strong impact between
the tip cantilever and the magnetic stopper.

Table 1. System parameters.

Modeling Parameters Symbols System Unit

Cantilever Beam Length L 6 cm
Cantilever Beam Width W 2 cm

Cantilever Beam Thickness H 1 mm
Young’s Module E 3 GPa

Oscillator Resonant Frequency f 1 8 Hz
Cantilever Resonant Frequency f 2 74.5 Hz

Coil Turns N 100 1
Coil Mass m 2.1 g

Coil Resistance Rc 40 Ω
Load Resistance Rl 40 Ω
Oscillator Mass m1 1.9 g
Magnetic Flux B 0.695 T

Magnetic Flux Coefficient on y cm 0.0175 T/mm
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To validate the measurement results, the numerical simulation using MATLAB based on the equations
mentioned above was analyzed. Note that the first and second panels shown in Figure 13 represent the
displacement of the TENG oscillators and tip cantilever, respectively. It is obvious that the nonlinearity
was caused by the intermittent TENG contact and the tip constrained space from magnet. Compared with
the measurement voltage results (see Figure 14b) and the numerical simulation results (see Figure 14b),
we found that the voltage output was in good agreement under an excitation of 18 Hz and 1 g.
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4. Conclusions

We have demonstrated the feasibility of a hybrid EMG and TENG system using a multi-impact
approach for broad-bandwidth-frequency (10–45 Hz) energy harvesting. The mathematical model
included an oscillator that can have impacts on the cantilever and the nonlinear Lorenz force that
comes from the motion of the coil in the electromagnetic field. Due to the nonlinearity of the impact
and the constraint space, the dynamic response of the cantilever had a much broader bandwidth,
with two peaks (20 Hz and 30 Hz) between its oscillator resonant frequencies and several times of the
oscillator resonant frequencies. Moreover, the dynamic responses in the hybrid EMG and TENG were
analyzed, and we found that the experimental results and the numerical simulation results were in
good agreement.
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