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Abstract: Design of efficient thin film photovoltaic (PV) cells require optical power absorption to
be computed inside a nano-scale structure of photovoltaics, dielectric and plasmonic materials.
Calculating power absorption requires Maxwell’s electromagnetic equations which are solved
using numerical methods, such as finite difference time domain (FDTD). The computational cost
of thin film PV cell design and optimization is therefore cumbersome, due to successive FDTD
simulations. This cost can be reduced using a surrogate-based optimization procedure. In this
study, we deploy neural networks (NNs) to model optical absorption in organic PV structures.
We use the corresponding surrogate-based optimization procedure to maximize light trapping
inside thin film organic cells infused with metallic particles. Metallic particles are known to induce
plasmonic effects at the metal–semiconductor interface, thus increasing absorption. However,
a rigorous design procedure is required to achieve the best performance within known design
guidelines. As a result of using NNs to model thin film solar absorption, the required time to
complete optimization is decreased by more than five times. The obtained NN model is found to
be very reliable. The optimization procedure results in absorption enhancement greater than 200%.
Furthermore, we demonstrate that once a reliable surrogate model such as the developed NN is
available, it can be used for alternative analyses on the proposed design, such as uncertainty analysis
(e.g., fabrication error).

Keywords: organic photovoltaics; plasmonics; neural networks; surrogate-based analysis and
optimization; uncertainty analysis

1. Introduction

Photovoltaic (PV) energy shares in electricity generation have continually grown since the
beginning of commercial silicon-based solar cells over 50 years ago [1]. It is also conveniently
predicted that PV energy will be the leading renewable energy source due to availability, price
decrease, and technology improvement [1,2]. In order to reach the future growth expectations, most
of the PV research has been dedicated to increasing the efficiency limits of PV cells and decreasing
manufacturing cost per unit of energy.

One of the ways to improve PV conversion efficiency is by modifying material properties.
A well-known affect called light trapping, which is mostly achieved by surface patterning of the
cell and inducing plasmonic effects, can significantly improve solar light absorption in silicon [3,4].
These techniques increase effective optical thickness without actually increasing the physical thickness
of PV material, thus avoiding undesirable carrier recombination [5]. Carrier recombination hinders
photocurrent conversion of absorbed photons, thus making the solar cell electrically undesirable.

Gaining physical insight into the dependency of optical performance of a thin film to shapes,
dimensions, material choices and other parameters of plasmonic nano-textures or nano-particles
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is critical in designing efficient cells. This has been the subject of extensive review in the field of
nano-technology in the past 15 years. The research has led us to several design guidelines. In general,
it is agreed that particle shape, dimension and position in the cell should be taken into account
for a rigorous design of a plasmonic photovoltaic device [6]. In addition, precise computational
simulators that model electromagnetic equations and material properties at nano-scale and solar optical
wavelenghts should be accompanied by powerful optimization algorithms for a feasible and efficient
design [7–13]. Optical modeling of thin film PV cells requires solving Maxwell’s electromagnetic
equations because interaction of light with subwavelength structures cannot be explained with simple
ray tracing models. On the other hand, solutions of Maxwell’s equations require spatial and temporal
discretization of the complex domains, often facilitated by computational solvers such as the Finite
Difference Time Domain (FDTD) method. These methods require extensive resources and time. When
one searches for the best optical properties in the design and optimization framework, many repeated
numerical FDTD simulations must be carried out for an entire wavelength range, which makes the
search process extremely burdensome. When more than a handful of parameters are aimed to be
optimized, the procedure becomes so time-consuming that even with the state-of-the-art numerical
optimization algorithms, a rigorous design is practically infeasible. The only remedy to such a challenge
is the use of “surrogate modeling”. This means replacing the black-box (FDTD) simulations with an
accurate regression model. Such a model can be used for both optimization and analysis, leading to the
concept of Surrogate-Based Optimization (SBO). Neural Networks (NN) are well-studied models in
machine learning with the ability to approximate functions of arbitrarily high nonlinearity. NNs have
been proven to be useful in many engineering problems [14–17] as a function approximator. However,
NNs—and more broadly any surrogate model—have never been used in optimization of photovoltaic
cells, and in particular optics equations at subwavelength scales. This paper aims to demonstrate this
capability for learning and optimization for the first time.

In this work, we propose using NN as a surrogate model to design a plasmonic organic
photovoltaic (OPV) device. The details of the physical model and advantages of OPV are presented in
Section 2. The rest of the paper is organized as follows: a brief explanation of NN-based optimization
is given in Section 3 and the results of the optimization are presented in Section 4. Sensitivity analysis
is also conducted to predict the dependence of the results on small changes in the inputs.

2. Description of the Physical Model

OPV provides ease of fabrication and inexpensive material choices for the active layer [18,19]
even though the power conversion efficiency (PCE) is relatively lower than the inorganic rivals.
There has been significant improvement in the PCE of these structures by using bulk heterojunction
(BHJ) blend compared to bilayer donor/acceptor design due to the large interfacial area between the
donor and acceptor of BHJ [20]. Recently, researchers have made several efforts at optimizing the
nanomorphology of OPV [21–25]. In general, the increase in the optical efficiency is accompanied
by increase in optical thickness, which increases recombination when the distance of the possible
electron–hole creation zone is farther away from the p–n junction than collection length [5]. Therefore,
even though the absorption efficiency is improved, increased recombination hinders photocurrent
generation. One of the methods to increase absorbed power without increasing absorption thickness
is to induce plasmonic effects by using metallic nanoparticles. Plasmonics deal with the behavior of
free electrons at the metal–dielectric or metal–semiconductor interface. When light hits a metallic
surface, free electrons are excited, and an electrical field is created. This excitation is called surface
plasmon polaritons (SPPs) and it enhances the created number of electron–hole pairs [26]. Specifically,
the mechanisms of SPPs are creating multiple light scatterings, creating electron–hole pairs by near
field effects and coupling light to surface plasmon polaritons [6].

A standard configuration of OPV with silver nanospheres is demonstrated in Figure 1.
Ag nanospheres are assumed to have radius r and are placed inside a poly(3-hexylthiophene):
(6,6)-phenyl-C61-butyric-acid-methyl ester (P3HT:PCBM) layer of thickness t1 at a vertical distance
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s from the bottom and are repeated at a period of P. The Ag-filled active layer is stacked by
poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) with thickness t2 and an
aluminum back reflector layer. The 3D view of the proposed OPV and the simplified 2D view are
presented in Figure 1a,b. The problem is reduced from 3D to 2D based on the premises of the study
by Moreno et al. [27]. In all the simulations of the present study, a plane wave source is propagated
from the top to the bottom at a specified wavelength λ and at incident angle θ = 0. Bloch and perfectly
matched layer (PML) boundary conditions are imposed for x and z coordinates, respectively. Real and
imaginary parts of the materials used in the simulations are taken from the literature [28–30].
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Figure 1. (a) 3D view of organic photovoltaic (OPV); (b) 2D Schematic of OPV with finite difference
time domain (FDTD) solution domain.

The enhancement in the absorbed power can be quantified by the absorption enhancement factor
(EF). This quantity is defined as the ratio of the number of photons absorbed by the active layer of the
plasmonic photovoltaic cell to the absorbed photons without plasmonic contribution (i.e., bare thin
film). One of the design criteria for the cell geometry is to maximize EF. In mathematical terms:

EF =

(∫
λαp(λ)I1.5AM(λ)dλ

)(∫
λαb(λ)I1.5AM(λ)dλ

)−1
, (1)

where αp and αb are the absorbed optical power by plasmonic (with nanoparticle) and bare (without
nanoparticle) photovoltaic cells, I1.5AM(λ) is the AM 1.5 standard terrestrial solar spectrum [31] and
integration is done over the wavelength range of interest.

The absorbed fraction of optical power can be obtained by solving underlying physical equations,
i.e., Maxwell’s electromagnetic equations. Maxwell’s equations are a set of partial differential equations
which describe the relationship between electric and magnetic fields and incident light. Maxwell’s
equations are generally solved numerically, except for a few simple cases where analytical solutions
exist. One of the most popular methods for solving these equations is the Finite Difference Time
Domain (FDTD) method which discretizes the spatial and temporal grid called Yee’s cell. In this study,
a commercial software [32] provided by Lumerical Inc. (Vancouver, Canada) is used to facilitate FDTD
simulations. EF is calculated for a photovoltaic cell structure in Figure 1 for t1 = 33 nm, t2 = 20 nm,
r = 5 nm, s = 11.5 nm and for different P. Computed EF values are compared with Finite Element
Method (FEM) simulations by Shen et al. [30] in Figure 2.
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Figure 2. Comparison of the results of Finite Element Method (FEM) [30] and FDTD for an OPV of
t1 = 33 nm, t2 = 20 nm, r = 5 nm, s = 11.5 nm with respect to periodicity (P).

Despite these powerful solution techniques and parallelization options, the numerical solution of
Maxwell’s equations for nano-structures is very time-consuming and can be an obstruction for direct
optimization. Surrogate modeling can be used to approximate the absorptivity as a function of the
inputs, namely OPV geometry and source properties. In the sequel, we explain the use of NNs as a
surrogate model and describe the procedures for training and validation data generation, model fitting
and validation along with necessary mathematical backgrounds.

3. Surrogate-Based Modeling and Optimization

Surrogate modeling starts with a proper sampling scheme (also known as design of experiments).
After sampling points in the input space are collected, they are used in the forward problem to obtain
an input–output set of data for training. This set is used for determining the corresponding parameters
of the surrogate model [33]. This procedure is called model training (fitting). An additional set of
input–output pairs (validation set) is used to validate the trained surrogate model. Cross validation
(CV) [33] is often used as a reliable technique due to the intuitive solution and unbiased estimation.
In CV, data is divided into N folds, and training is repeated N times, where (N − 1) of the folds are
used as training and one fold is left out and used for validation each time. The training-validation set
can be sampled in various ways such as Uniform Sampling (US), Latin Hypercube Sampling (LHS)
and Orthogonal Arrays (OA) [33]. The purpose of sampling is to represent the input space in the best
way, while making sure that the number of sample points is kept at a minimum, in order to reduce the
computational forward problem cost.

3.1. Neural Network Model of Absorptivity

NN is a well-established regression tool which can approximate almost every function regardless
of the degree of nonlinearity [34,35]. NN represents the relationship between input and output as a
series of functions evaluated at the artificial neurons. The output of the NN model is

yi = fi(Wiyi−1), ∀1 ≤ i ≤ L,

y0 =
[
t1, t2 , r, s, P, θ, λ, 1

]T
.

(2)

where yi is the normalized output vector and Wi is the coefficient matrix of the ith layer
and L is the number of layers. y0 is the input vector normalized to [−1 1] range by z1 =

2(z1 − z1,min)/(z1,max − z1,min)− 1. The output is then renormalized to [0 1] to obtain NN absorptivity,
αNN = fNN(x, θ, λ) and x = [t1, r, s, P, t2]

T .
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Wi is found as a result of NN training by minimizing the error between NN output and target.
The details of NN training are not included here for the sake of brevity, but are presented in Appendix A.
The interested readers are referred to [34,35] for further details. One of the advantages provided by the
present NN model is modeling both plasmonic and bare structures in the same model, thus avoiding
the additional computational cost.

3.2. Objective Function

The objective of the present optimization problem is to maximize EF by modifying the cell
geometry. One of the reasons for choosing EF as the objective function is that the algorithm tends
to minimize the active layer thickness when the aim is to maximize EF, thus the possibility of
recombination is also decreased although photocurrent is not considered as the objective.

Therefore, the present optimization problem can be formulated as

max
x

EF(x) = (
∫

λ fNN(x, λ, θ)I(λ)dλ)(
∫

λ fNN(xb, λ, θ)I(λ)dλ)
−1

Subject to : x(U) < x < x(U).
(3)

where x is the geometry vector with Ag nanoparticles and xb is the bare geometry without the
nanoparticles, i.e., xb = [t1, 0, 0, 1, t2]

T , and the lower and upper limits for the geometry vector are
x(L) = [10 , 0 , 5 , 5, 5]T nm and x(U) = [100 , t1/2 , t1/2− r , 200, 100 ]T nm. The bounds are the
same as the bounds of training and validation sets except the lower bound of s. sL = 5 nm in order to
avoid short-circuit possibility due to Ag–Al contact. EF(x) is then calculated as the ratio of the integrals
in the numerator and denominator of (16) which are calculated by using the trapezoidal method by
evaluating the output of the surrogate model fNN(x, λ, θ) and fNN(xb, λ, θ) for each wavelength
increment (1 nm). The cost function in the optimization problem, however, is set to the inverse of EF
and penalty terms are added [36] in order to obtain an unconstrained minimization problem:

min
x

C(x) =
1

EF(x)
+ ϕ1

R0

∑
j=1

max
(

xj − xU
j , 0
)
+ ϕ2

R0

∑
j=1

max
(

xL
j − xj, 0

)
. (4)

3.3. Optimization Algorithms

Numerical optimization methods can be classified as stochastic and deterministic [37].
In stochastic optimization, the next candidate search point is selected randomly based on a current
selection distribution, while in deterministic search no randomness is involved. The most notable
deterministic search methods are gradient-based algorithms, which rely on first and/or second
order derivatives (i.e., gradient and Hessian) and use a line search approach based on those. Some
examples of stochastic methods are nature-inspired algorithms, such as artificial bee colony [38],
genetic algorithms [39], Tabu search [40] and Simulated Annealing [41]. Examples of Gradient-based
optimization algorithms include Conjugate Gradient, Levenberg Marquardt and Quasi Newton
methods [36]. We choose to work with a mixture of global Simulated Annealing (SA) and Quasi
Newton (QN) techniques in the current work. The details of these algorithms can be found in
reference [36,41]. For objective functions linked to NNs, the gradient can be computed directly using a
back-propagation sensitivity quantity, which is elaborated in Appendix A.

4. Results and Discussion

4.1. Data Generation

In total, 6000 data points are generated using uniform random sampling from the ranges given in
Table 1.
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Table 1. Lower (LB) and upper (UB) bounds of the input data for random data generation.

Input Name t1 r s P t2 ` ˘

Lower Bound 10 5 0 2r 5 0 300
Upper Bound 100 t1/2 t1 − 2r 200 100 89 900

Once the random set of input data is generated, FDTD simulations are done to gather input–output
pairs. Output values are normalized before being used in NN training. Details of normalization and
training are outlined in the Appendix. Average duration for a single simulation (at a single wavelength)
is 5 min. If EF in Equation (1) was desired to be evaluated using FDTD, 72 simulations were required
using the solar spectrum of 300–650 nm with 10 nm increments (the absorbed power in P3HT: PCBM
is almost zero at wavelengths larger than 650 nm). Therefore, 6000 simulations are equivalent to
83 iterations of direct simulations. This means that any efficient direct optimization should take
less than 83 iterations to find a solution better than an optimization based on the surrogate model,
which is practically impossible. All simulations in this study were performed using 20 cores on a
17,340-core IBM/Lenovo supercomputer provided by the Texas A&M High Performance Research
Computing Center.

4.2. Results of Optimization

The optimized geometry obtained by the NN-based optimization procedure with QN and SA
methods is presented in Table 2 for two different initial guesses. NN-SA-QN refers to the hybrid
optimization algorithm in which QN is used after the SA algorithm to find the global optimum in the
vicinity of the SA solution.

Table 2. Optimized geometry of plasmonic OPV and corresponding enhancement factor (EF) values.

Method [t1, r, s, P, t2]
T

init. [t1, r, s, P, t2]
T

opt EF

NN–QN [50 , 20 , 5 , 100 , 50]T [46 , 20 , 5 , 99 , 50]T 1.26
NN–SA [50 , 20 , 5 , 100 , 50]T [24 , 9 , 6 , 51 , 87 ]T 2.21

NN–SA–QN [50 , 20 , 5 , 100 , 50]T [24 , 9 , 6 , 51 , 87 ]T 2.21
NN–QN [40 , 11 , 15 , 80 , 20]T [33, 10 , 16 , 82 , 14]T 1.25
NN–SA [40 , 11 , 15 , 80 , 20]T [26 , 10 , 6 , 51 , 87 ]T 2.14

NN–SA–QN [40 , 11 , 15 , 80 , 20]T [24 , 9 , 6 , 51 , 89 ]T 2.22

Note that the SA algorithm has a better performance for finding the global optimum and is less
likely to get trapped in local optima, unlike QN. In Figure 3, the variation of EF during iterations is
presented for these three algorithms and for the two different initial guesses.

Energies 2017, 10, 1981  6 of 11 

 

Table 1. Lower (LB) and upper (UB) bounds of the input data for random data generation. 

Input Name  
Lower Bound 10 5 0 2  5 0 300 
Upper Bound 100 /2 − 2 200 100 89 900 

Once the random set of input data is generated, FDTD simulations are done to gather input–
output pairs. Output values are normalized before being used in NN training. Details of 
normalization and training are outlined in the Appendix. Average duration for a single simulation 
(at a single wavelength) is 5 min. If EF in Equation (1) was desired to be evaluated using FDTD, 72 
simulations were required using the solar spectrum of 300–650 nm with 10 nm increments (the 
absorbed power in P3HT: PCBM is almost zero at wavelengths larger than 650 nm). Therefore, 6000 
simulations are equivalent to 83 iterations of direct simulations. This means that any efficient direct 
optimization should take less than 83 iterations to find a solution better than an optimization based 
on the surrogate model, which is practically impossible. All simulations in this study were performed 
using 20 cores on a 17,340-core IBM/Lenovo supercomputer provided by the Texas A&M High 
Performance Research Computing Center. 

4.2. Results of Optimization 

The optimized geometry obtained by the NN-based optimization procedure with QN and SA 
methods is presented in Table 2 for two different initial guesses. NN-SA-QN refers to the hybrid 
optimization algorithm in which QN is used after the SA algorithm to find the global optimum in the 
vicinity of the SA solution. 

Table 2. Optimized geometry of plasmonic OPV and corresponding enhancement factor (EF) values. 

Method , , , , . , , , ,  EF 

NN–QN 50	, 20 , 5 , 100 , 50  46 , 20 , 5 , 99 , 50 1.26 

NN–SA 50	, 20 , 5 , 100 , 50  24 , 9 , 6 , 51 , 87  2.21 

NN–SA–QN 50	, 20 , 5 , 100 , 50  24 , 9 , 6 , 51 , 87  2.21 

NN–QN 40	, 11 , 15 , 80 , 20  33, 10 , 16 , 82 , 14  1.25 

NN–SA 40	, 11 , 15 , 80 , 20  26 , 10 , 6 , 51 , 87  2.14 

NN–SA–QN 40	, 11 , 15 , 80 , 20  24 , 9 , 6 , 51 , 89  2.22 

Note that the SA algorithm has a better performance for finding the global optimum and is less 
likely to get trapped in local optima, unlike QN. In Figure 3, the variation of EF during iterations is 
presented for these three algorithms and for the two different initial guesses. 

(a) (b)

Figure 3. Evolution of EF during iterations of SA, QN and hybrid SA–QN for the initial guess
(a) [50 , 20 , 5 , 100 , 50]T ; (b) [40 , 11 , 15 , 80 , 20]T .



Energies 2017, 10, 1981 7 of 11

4.3. Uncertainty Analysis

In order to quantify the uncertainty (sensitivity) of the optimized solution, an error vector ε

is added to the optimized geometry, xopt = [24 , 9 , 6 , 51 , 89 ]T , and the performance probability
distribution is measured by means of Monte Carlo method. In the optimized geometry, the Ag
nanosphere is in contact with PEDOT:PSS and this condition (s + 2r = t1) is also preserved in the
uncertainty analysis. Therefore, the error vector is ε = [εt1 , εr, εP, εt2 ]

T . The error vector is modeled as
independent zero mean Gaussian elements with standard deviation equal to 10% of the corresponding
geometry element.

x = xopt + εεi = N (0 , 0.1xi) (5)

The variations of spectral absorptivity and EF are presented for 1000 randomly generated samples
in Figure 4. According to the results, 90% of the samples result in EF between 1.9–2.4.
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5. Conclusions

We demonstrated that design optimization of the plasmonic organic thin film photovoltaic cells
can be efficiently done using a surrogate model, instead of solving costly Maxwell’s electromagnetic
equations. The NN-based surrogate model replaced the optical absorptivity in the absorber
layer. Consequently, the plasmonic contribution to the PV cell which can be quantified by optical
enhancement factor can be efficiently estimated. We demonstrated that the model can be reliably used
for an extremely fast optimization. The resulting enhancement factor is more than 200%. The required
time to complete NN-based optimization is 5–10 times less than direct simulation optimization. We
also demonstrated that NN can also be used to evaluate the uncertainty of the results to small changes
in the inputs, which is another a computational burden with direct computations.
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Nomenclature

C cost function
ε Error vector
EF Enhancement factor
I solar spectrum
L number of layers
r Ag radius
s vertical distance of Ag from bottom
s Marquardt sensitivity
t1 P3HT:PCBM thickness
t2 PEDOT:PSS thickness
W coefficient matrix
x geometry vector
v Coefficient vector
y0, yi normalized NN input and outputs

Greek Letters

α, β regularization parameter

λ Wavelength
ϕ1, ϕ2 Lagrange multipliers
θ incidence angle

Subscripts

b Bare
p Plasmonic

Superscripts

k Iteration
L, U Lower/upper limit

Appendix A. Explicit Computation of Gradient in Neural Networks for QN Optimization

Gradient-based optimization algorithms require approximate gradient formulations when used
for simulation-based optimization problems. On the other hand, the explicit function in Equation (2)
(response surface) enables us to calculate the gradient of the output by another means of approximation.
Therefore, the gradient of Equation (2) can be utilized in gradient-based methods. The Quasi Newton
(QN) method evaluates the next step as

∆xk = −gk
[
Hk
]−1

, (A1)

where gk is the gradient of the cost function (Equation (4)).

gk = ∇C
(

xk
)
= ∇

(
1

EF(xk)

)
=(∫

λ∇ fNN

(
xk

b, λ, θ
)

I(λ)dλ− C
(

xk
) ∫

λ∇ fNN

(
xk, λ, θ

)
I(λ)dλ

)(∫
λ fNN

(
xk, λ, θ

)
I(λ)dλ

)−1
.

∇ fNN can be calculated by
∂ fNN
∂xn

= [W1]
Tsi. (A2)

where si is the Marquardt sensitivity [34],

sL = f ′L(WL yL−1),
si = f ′i (Wi yi−1)[Wm+1]

Tsi+1 ∀1 ≤ i ≤ L− 1.
(A3)
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Hessian in Equation (A1) is updated using the Broyden–Fletcher–Goldfarb-Shanno (BFGS)
formula [36].

In addition to the QN–BFGS algorithm, the Simulated Annealing (SA) method is used due to its
high possibility of finding global optima. SA accepts the candidate solution by utilizing the Metropolis
criterion [41]. The candidate optimal point xcand = xk + ∆xk is drawn from a multivariate Cauchy
distribution [42].

Appendix B. Neural Network Training and Validation

The NN architecture is developed by minimizing in-sample error,

E(v) = β̇SSE + αSSW = β eTe + αvTv. (A4)

where SSE = eTe is the sum of squared error, e = t− y. t and y are the target and NN output respectively.
SSW = vTv is the penalty term for a smoother network response. v is the coefficient vector in NN. α and
β are Bayesian regularization parameters [34]. The input values are first normalized by the max–min
ranges of Table 1, so that the values are in 0–1 before feeding to the NN.

The validation error is also monitored using CV. The data set is divided to four folds and
corresponding training and validation errors are recorded. Then, the number of neurons in the hidden
layer is determined based on these errors. In this study, R1 is determined as 30 which provides a good
balance between simplicity and accuracy according to the results in Figure A1.

Energies 2017, 10, 1981  9 of 11 

 

Hessian in Equation (A1) is updated using the Broyden–Fletcher–Goldfarb-Shanno (BFGS) formula 
[36]. 

In addition to the QN–BFGS algorithm, the Simulated Annealing (SA) method is used due to its 
high possibility of finding global optima. SA accepts the candidate solution by utilizing the 
Metropolis criterion [41]. The candidate optimal point = + Δ  is drawn from a 
multivariate Cauchy distribution [42]. 

Appendix B. Neural Network Training and Validation 

The NN architecture is developed by minimizing in-sample error, ( ) = + = + . (A4) 

where =  is the sum of squared error, = − .  and  are the target and NN output 
respectively. =  is the penalty term for a smoother network response.  is the coefficient 
vector in NN.  and  are Bayesian regularization parameters [34]. The input values are first 
normalized by the max–min ranges of Table 1, so that the values are in 0–1 before feeding to the NN. 

The validation error is also monitored using CV. The data set is divided to four folds and 
corresponding training and validation errors are recorded. Then, the number of neurons in the 
hidden layer is determined based on these errors. In this study,  is determined as 30 which 
provides a good balance between simplicity and accuracy according to the results in Figure A1. 

 
Figure A1. Normalized mean sum of squared error (SSE) with respect to the number of neurons in 
the hidden layer (R1). 

References 

1. National Renewable Energy Laboratory Renewable Electricity Generation and Storage Technologies 
Futures Study. Available online: https://www.nrel.gov/docs/fy12osti/52409-2.pdf (accessed on 25 October 
2017). 

2. Fu, R.; Chung, D.; Lowder, T.; Feldman, D.; Ardani, K.; Fu, R.; Chung, D.; Lowder, T.; Feldman, D.; Ardani, 
K. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2016. Available online: 
https://www.nrel.gov/docs/fy16osti/66532.pdf (accessed on 20 October 2017). 

3. Sai, H.; Kanamori, Y.; Arafune, K.; Ohshita, Y.; Yamaguchi, M. Light Trapping Effect of Submicron Surface 
Textures in Crystalline Si Solar Cells. Prog. Photovolt. Res. Appl. 2007, 15, 415–423. 

4. Ferry, V.E.; Verschuuren, M.A.; Li, H.B.; Verhagen, E.; Walters, R.J.; Schropp, R.E.; Atwater, H.A.; Polman, 
A. Light trapping in ultrathin plasmonic solar cells. Opt. Express 2010, 18, A237–A245. 

5. Catchpole, K. R.; Polman, A. Plasmonic solar cells. Opt. Express 2008, 16, 21793–21800, 
doi:10.1364/OE.16.021793. 

5 10 15 20 25 30 35 40 45 50 55

R
1

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Training

Validation

Figure A1. Normalized mean sum of squared error (SSE) with respect to the number of neurons in the
hidden layer (R1).

References

1. National Renewable Energy Laboratory Renewable Electricity Generation and Storage Technologies Futures
Study. Available online: https://www.nrel.gov/docs/fy12osti/52409-2.pdf (accessed on 25 October 2017).

2. Fu, R.; Chung, D.; Lowder, T.; Feldman, D.; Ardani, K.; Fu, R.; Chung, D.; Lowder, T.; Feldman, D.; Ardani, K.
U.S. Solar Photovoltaic System Cost Benchmark: Q1 2016. Available online: https://www.nrel.gov/docs/
fy16osti/66532.pdf (accessed on 20 October 2017).

3. Sai, H.; Kanamori, Y.; Arafune, K.; Ohshita, Y.; Yamaguchi, M. Light Trapping Effect of Submicron Surface
Textures in Crystalline Si Solar Cells. Prog. Photovolt. Res. Appl. 2007, 15, 415–423. [CrossRef]

4. Ferry, V.E.; Verschuuren, M.A.; Li, H.B.; Verhagen, E.; Walters, R.J.; Schropp, R.E.; Atwater, H.A.; Polman, A.
Light trapping in ultrathin plasmonic solar cells. Opt. Express 2010, 18, A237–A245. [CrossRef] [PubMed]

https://www.nrel.gov/docs/fy12osti/52409-2.pdf
https://www.nrel.gov/docs/fy16osti/66532.pdf
https://www.nrel.gov/docs/fy16osti/66532.pdf
http://dx.doi.org/10.1002/pip.754
http://dx.doi.org/10.1364/OE.18.00A237
http://www.ncbi.nlm.nih.gov/pubmed/20588593


Energies 2017, 10, 1981 10 of 11

5. Catchpole, K.R.; Polman, A. Plasmonic solar cells. Opt. Express 2008, 16, 21793–21800. [CrossRef] [PubMed]
6. Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.

[CrossRef]
7. Hajimirza, S.; El Hitti, G.; Heltzel, A.; Howell, J. Using inverse analysis to find optimum nano-scale radiative

surface patterns to enhance solar cell performance. Int. J. Therm. Sci. 2012, 62, 93–102. [CrossRef]
8. Hajimirza, S. Expedited Quasi-Updated Gradient Based Optimization Techniques for Energy Conversion

Nano-Materials. J. Nanoelectron. Optoelectron. 2015, 10, 140–146. [CrossRef]
9. Hajimirza, S.; Howell, J.R. Flexible Nanotexture Structures for Thin Film PV Cells Using Wavelet Functions.

IEEE Trans. Nanotechnol. 2015, 14, 904–910. [CrossRef]
10. Hajimirza, S. A novel machine-learning aided optimization technique for material design: Application

in thin film solar cells. In Proceedings of the ASME 2016 HT/FEDSM/ICNMM Summer Heat Transfer
Conference, Washington, DC, USA, 10–14 July 2016.

11. Hajimirza, S.; Howell, J.R. Design and analysis of spectrally selective patterned thin-film cells.
Int. J. Thermophys. 2013, 34, 1930–1952. [CrossRef]

12. Hajimirza, S.; Howell, J.R. Statistical Analysis of Surface Nanopatterned Thin Film Solar Cells Obtained by
Inverse Optimization. J. Heat Transf. 2013, 135, 91501. [CrossRef]

13. Das, N.; Islam, S. Design and analysis of nano-structured gratings for conversion efficiency improvement in
GaAs solar cells. Energies 2016, 9, 690. [CrossRef]

14. Nguyen, A.T.; Reiter, S.; Rigo, P. A review on simulation-based optimization methods applied to building
performance analysis. Appl. Energy 2014, 113, 1043–1058. [CrossRef]

15. Yan, S.; Minsker, B. Optimal groundwater remediation design using an Adaptive Neural Network Genetic
Algorithm. Water Resour. Res. 2006, 42, 1–14. [CrossRef]

16. Salah, C.B.; Ouali, M. Comparison of fuzzy logic and neural network in maximum power point tracker for
PV systems. Electr. Power Syst. Res. 2011, 81, 43–50. [CrossRef]

17. Heidari, E.; Sobati, M.A.; Movahedirad, S. Accurate prediction of nanofluid viscosity using a multilayer
perceptron artificial neural network (MLP-ANN). Chemom. Intell. Lab. Syst. 2016, 155, 73–85. [CrossRef]

18. Krebs, F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques.
Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [CrossRef]

19. Ameri, T.; Dennler, G.; Lungenschmied, C.; Brabec, C.J. Organic tandem solar cells: A review.
Energy Environ. Sci. 2009, 2, 347–363. [CrossRef]

20. Gunes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007,
107, 1324–1338. [CrossRef] [PubMed]

21. Scharber, M.C. On the Efficiency Limit of Conjugated Polymer: Fullerene-Based Bulk Heterojunction Solar
Cells. Adv. Mater. 2016, 28, 1994–2001. [CrossRef] [PubMed]

22. Min, J.; Bronnbauer, C.; Zhang, Z.G.; Cui, C.; Luponosov, Y.N.; Ata, I.; Schweizer, P.; Przybilla, T.; Guo, F.;
Ameri, T.; et al. Fully Solution-Processed Small Molecule Semitransparent Solar Cells: Optimization of
Transparent Cathode Architecture and Four Absorbing Layers. Adv. Funct. Mater. 2016, 26, 4543–4550.
[CrossRef]

23. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular Optimization Enables over 13%
Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [CrossRef] [PubMed]

24. Sciuto, G.L.; Capizzi, G.; Salvatore, C.O.C.O.; Shikler, R. Geometric shape optimization of organic solar
cells for efficiency enhancement by neural networks. In Advances on Mechanics, Design Engineering and
Manufacturing; Springer: Berlin, Germany, 2017; pp. 789–796.

25. Zhao, D.W.; Tan, S.T.; Ke, L.; Liu, P.; Kyaw, A.K.K.; Sun, X.W.; Lo, G.Q.; Kwong, D.L. Optimization of an
inverted organic solar cell. Sol. Energy Mater. Sol. Cells 2010, 94, 984–991. [CrossRef]

26. Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005,
408, 131–314. [CrossRef]

27. Moreno, F.; García-Cámara, B.; Saiz, J.M.; González, F. Interaction of nanoparticles with substrates: Effects
on the dipolar behaviour of the particles. Opt. Express 2008, 16, 12487–12504. [CrossRef] [PubMed]

28. Palik, E.D. Handbook of Optical Constants of Solids; Academic press: New York, NY, USA, 1998; Volume 3.
29. Rand, B.P.; Peumans, P.; Forrest, S.R. Long-range absorption enhancement in organic tandem thin-film solar

cells containing silver nanoclusters. J. Appl. Phys. 2004, 96, 7519–7526. [CrossRef]

http://dx.doi.org/10.1364/OE.16.021793
http://www.ncbi.nlm.nih.gov/pubmed/19104612
http://dx.doi.org/10.1038/nmat2866
http://dx.doi.org/10.1016/j.ijthermalsci.2011.12.011
http://dx.doi.org/10.1166/jno.2015.1717
http://dx.doi.org/10.1109/TNANO.2015.2462078
http://dx.doi.org/10.1007/s10765-013-1495-y
http://dx.doi.org/10.1115/1.4024464
http://dx.doi.org/10.3390/en9090690
http://dx.doi.org/10.1016/j.apenergy.2013.08.061
http://dx.doi.org/10.1029/2005WR004303
http://dx.doi.org/10.1016/j.epsr.2010.07.005
http://dx.doi.org/10.1016/j.chemolab.2016.03.031
http://dx.doi.org/10.1016/j.solmat.2008.10.004
http://dx.doi.org/10.1039/b817952b
http://dx.doi.org/10.1021/cr050149z
http://www.ncbi.nlm.nih.gov/pubmed/17428026
http://dx.doi.org/10.1002/adma.201504914
http://www.ncbi.nlm.nih.gov/pubmed/26757236
http://dx.doi.org/10.1002/adfm.201505411
http://dx.doi.org/10.1021/jacs.7b02677
http://www.ncbi.nlm.nih.gov/pubmed/28513158
http://dx.doi.org/10.1016/j.solmat.2010.02.010
http://dx.doi.org/10.1016/j.physrep.2004.11.001
http://dx.doi.org/10.1364/OE.16.012487
http://www.ncbi.nlm.nih.gov/pubmed/18711485
http://dx.doi.org/10.1063/1.1812589


Energies 2017, 10, 1981 11 of 11

30. Shen, H.; Bienstman, P.; Maes, B. Plasmonic absorption enhancement in organic solar cells with thin active
layers. J. Appl. Phys. 2009, 106, 073109. [CrossRef]

31. American Society for Testing and Materials. ASTM Standard Tables for Reference Solar Spectral Irradiances.
2003. Available online: http:www.astm.org (accessed on 20 September 2017).

32. Lumerical Inc. Available online: https://www.lumerical.com/ (accessed on 15 June 2017).
33. Queipo, N.V.; Haftka, R.T.; Shyy, W.; Goel, T.; Vaidyanathan, R.; Tucker, P.K. Surrogate-based analysis and

optimization. Prog. Aerosp. Sci. 2005, 41, 1–28. [CrossRef]
34. Hagan, M. T.; Demuth, H. B.; Beale, M. H.; De Jesus, O. Neural Network Design; PWS Publishing Company:

Boston, MA, USA, 2014; ISBN 9780971732117.
35. Foresee, F.D.; Hagan, M.T. Gauss-Newton approximation to Bayesian regularization. In Proceedings of the

1997 International Joint Conference on Neural Networks, Houston, TX, USA, 9–12 June 1997; pp. 1930–1935.
36. Fletcher, R. Practical Methods of Optimization, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2000.
37. Cavazzuti, M. Optimization Methods: From Theory to Design; Springer Science & Business Media: Berlin,

Germany, 2013.
38. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial

bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
39. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]
40. Glover, F. Tabu search—Part I. ORSA J. Comput. 1989, 1, 190–206. [CrossRef]
41. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680.

[CrossRef] [PubMed]
42. Ingber, L. Very fast simulated re-annealing. Math. Comput. Model. 1989, 12, 967–973. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.3243163
http:www.astm.org
https://www.lumerical.com/
http://dx.doi.org/10.1016/j.paerosci.2005.02.001
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1016/0895-7177(89)90202-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Description of the Physical Model 
	Surrogate-Based Modeling and Optimization 
	Neural Network Model of Absorptivity 
	Objective Function 
	Optimization Algorithms 

	Results and Discussion 
	Data Generation 
	Results of Optimization 
	Uncertainty Analysis 

	Conclusions 
	Explicit Computation of Gradient in Neural Networks for QN Optimization 
	Neural Network Training and Validation 

