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Abstract: Due to its spatio-temporal variability, the mismatch between the weather and demand1

patterns challenges the design of highly renewable energy systems. A principal component analysis2

is applied to a simplified networked European electricity system with a high share of wind and solar3

power generation. It reveals a small number of important mismatch patterns, which explain most of4

the system’s required backup and transmission infrastructure. Whereas the first principal component5

is already able to reproduce most of the temporal mismatch variability for a solar dominated system,6

a few more principal components are needed for a wind dominated system. Due to its monopole7

structure the first principal component causes most of the system’s backup infrastructure. The next8

few principal components have a dipole structure and dominate the transmission infrastructure of9

the renewable electricity network.10

Keywords: renewable energy networks; principal component analysis; large-scale integration of11

renewables; wind power; solar power; super grid; energy system design12

1. Introduction13

The weather is the driving force in a highly renewable energy system. The planning for such14

systems requires an in-depth understanding of the variable mismatch between weather and demand15

patterns on multiple time and length scales [1,2]. The spectrum of prominent temporal fluctuations16

of wind and solar power generation ranges from seconds to years [3–6], and impacts the design and17

operation of power systems [7–13]. The planning of large-scale energy systems is also affected by the18

spatial variability of the weather. Wind power generation is correlated up to a length scale of about19

500km [4,14–16]. Approaches based on spatial correlations, like the optimal portfolio theory [17–19]20

and the copula method [20], are used for systemic resource assessments of renewables and for analysis21

of national and continental power grids.22

Weather-driven network modelling represents a more direct approach to obtain estimates on the23

required backup infrastructure of highly renewable large-scale energy systems [21–29]. Weather data24

covering multiple years are converted into prospective wind and solar power generation with good25

spatial and temporal resolution [21,22,30–32], and are then used as the driving force in networked26

electricty system models. This modelling approach has produced estimates on the required amount of27

conventional backup power plants, transmission lines and storage [22–28,33–38]. Also the optimization28

of levelized system cost of energy has been addressed and has led to new design concepts like the29

optimal heterogeneity and the benefit of cooperation [29,39–42].30

The weather-driven network modelling takes the high-dimensional weather and demand data31

"as is", and "computes everything away" by brute force. The resulting infrastructure estimates might32
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not depend on all of the mismatch data. To a large part they might only depend on a few dominant33

mismatch patterns. This is the central topic of this paper. The central question is: what are the34

dominant spatio-temporal mismatch patterns between the renewable power generation and the load35

which determine most of the required infrastructure of a highly renewable European electricity system?36

The central method to apply is a principal component analysis (PCA) [43].37

Spatio-temporal pattern analyses like the PCA are well known in meteorology. In [44] a PCA38

has been used to extract the main pattern of variability of wind power generation in Germany, and39

a wind power forecasting model has been implemented with this approach. In [45] a PCA has been40

applied to distributed wind power data from Irish wind farms and used as a multivariate dimension41

reduction scheme to obtain potential wind power production costing simulation efficiency gains, when42

compared to exhaustive multi-year time series load flow investigations.43

This paper has the following structure: Sect. 2 describes a simplified weather-driven European44

electricity system with a high share of wind and solar power generation, including several of its45

infrastructure measures. A short description of the PCA is also given. Sect. 3 presents the results on46

the dominating principal mismatch components and their dependence on the share between wind and47

solar power generation. Sect. 4 reveals how the principal components contribute to the backup and48

transmission infrastructure estimates. A conclusion and outlook is given in Sect. 5.49

2. Modelling and Methods50

2.1. Modelling of a simplified highly renewable European electricity network51

We follow the simplified approach introduced by [22,23,26,46] to model a highly renewable
European electricity system. The key variable is the mismatch

∆n(t) = GR
n (t)− Ln(t) (1)

between the renewable power generation GR
n (t) and the load Ln(t) at time t for country n in Europe.

With a flipped sign the mismatch is often also denoted as the residual load. The renewable power
generation

GR
n (t) = GW

n (t) + GS
n(t) (2)

is composed of wind and solar power generation only; other forms of renewable power generation are
discarded. The average wind and solar power generation amount to

〈GW
n 〉 = αnγn〈Ln〉 , 〈GS

n〉 = (1− αn)γn〈Ln〉 , (3)

and define two design parameters, the renewable penetration γn with respect to the average load 〈Ln〉52

and the renewable mix αn between the average wind and solar power generation.53

Penetration parameters around one describe highly renewable electricity networks. We choose54

γn = 1 for all countries. This setting describes a self-sustainable renewable limit, where in each country55

the average renewable power generation 〈GR
n 〉 = 〈Ln〉 is equal to the average load. For simplicity, the56

renewable mixing parameter αn = α is also chosen to be the same for all countries. These homogeneous57

layouts have been first discussed in [22,23,33]. Recently also heterogeneous layouts with differing58

renewable penetration and mixing parameters between the countries have been investigated [41].59

The hourly time series GW
n (t), GS

n(t), Ln(t) for the country-aggregated wind power generation,60

solar power generation and load are taken from Refs. [22,23], where wind velocity and solar irradiation61

data from the private weather service provider WEPROG [47] with hourly temporal resolution and62

47×48km2 spatial resolution have been convoluted with country specific capacity layouts adapted63

from EuroStat; see also Refs. [30–32] for related approaches. The data cover the years 2000 - 200764

for all European countries. It is assumed that this data is also statistically representative for future65

years. The hourly load time series have been detrended such that the annual consumption of each66
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Figure 1. Simplified European electricity network, where countries are represented as nodes and linked
by interconnecting transmission lines. The nodal disc areas are proportional to the average loads of the
countries.

year matches that of 2007. A possible dependence of the load time series on efficiency improvements,67

de-industrialisation, electrification of heat and transport, and climate conditions [48,49] has not been68

considered.69

The average loads 〈Ln〉 are illustrated in Figure 1. Note that the average loads set the absolute70

scales for the simplified modelling of a highly renewable European electricity network. If future values71

should increase or decrease, but such that the relative load strengths between the countries remain72

unchanged, then the infrastructure measures (to be discussed in the next subsection) will linearly scale73

with changes of the average loads. Figure 1 also shows the interconnecting transmission lines between74

the countries.75

With the chosen setting γn = 1 the average mismatch is 〈∆n〉 = 0. However, most of the times
the actual mismatch ∆n(t) is non-zero. It is either positive when the wind and the solar radiation
are strong, or negative when they are weak. The overall electricity system needs to respond to these
mismatch fluctuations. In simplified form, the response can be written as

∆n(t) = Bn(t) + Pn(t) . (4)

The nodal balancing Bn(t) determines the backup power generation and the curtailment,

GB
n (t) = −min (Bn(t), 0) , Cn(t) = max (Bn(t), 0) . (5)

The nodal injection Pn(t) into the networked system describes the exports (Pn > 0) and imports
(Pn < 0), and has to fulfill ∑n Pn(t) = 0. The nodal injections determine the power flows

Fl(t) = ∑
n

HlnPn(t) (6)

on the interconnecting transmission lines l between the countries. The linear relationship between76

the flows and the injections is described by the matrix Hln of the power transfer distribution factors77

[50], which are constructed from the Moore-Penrose pseudo inverse of the graph Laplacian of the78



Version November 17, 2017 submitted to Energies 4 of 14

underlying electricity network topology [51]. In principle, more terms can be added to the right hand79

side of the nodal response equation (4), like for example storage, but for the present purpose we leave80

this equation as is.81

The response (4) allows for various schemes which divide differently between balancing and
injection. For sure the simplest scheme is Pn(t) = 0 for all nodes and all times, but has the disadvantage
that each node has to fully balance its mismatch alone without the benefits of importing and exporting
across the network. Market schemes could be used to settle the dispatch between renewable and
backup power generation, but due to the simplicity of the current modelling approach this would be
like shooting on pigeons with canons. We adopt the simple scheme of synchronised nodal balancing

Bn(t) =
〈Ln〉

∑m〈Lm〉∑
k

∆k(t) , (7)

which has been proposed in [46]. It distributes the actual overall mismatch onto all nodes in proportion82

to their average load. In view of the upcoming expression (11), this scheme also distributes the required83

overall backup capacities onto the nodes in the same way.84

2.2. Infrastructure measures85

If the mismatch (1) was zero for all times and all countries, the infrastructure response (4) would86

simply be zero, and no backup power plants and no transmission lines would be required. Of course,87

this is almost surely never the case. This sets the stage for the mismatch variance to become a first88

infrastructure measure:89

Var(~∆) =
N

∑
n=1

〈
(∆n − 〈∆n〉)2

〉
(8)

= Var(~B) + Var(~P) + 2 cov(~B, ~P) . (9)

The components of the mismatch / balancing / injection vectors are given by the nodal mismatches90

∆n / balancings Bn / injections Pn. The second step, which uses (4), relates the mismatch variance to91

the variances of the balancings and the injections as well as to their covariance. This emphasises that a92

small mismatch variance would require a small backup and transmission infrastructure, and a large93

variance would lead to a bigger infrastructure.94

The mismatch variance (8) represents only a rough infrastructure measure. More specific measures95

are given by the total backup energy, the total backup capacities and the total transmission capacities:96

EB =
N

∑
n=1

〈
GB

n

〉
, (10)

KB =
N

∑
n=1

maxq
t

(GB
n ) , (11)

KT =
L

∑
l=1

maxq
t

(|Fl |)dl . (12)

The backup capacities and the transmission capacities are defined via the q = 0.99 quantiles of the97

time-sampled distributions pn(GB
n ) and pl(|Fl |), respectively. N and L represent the number of nodes98

and links illustrated in Figure 1. The link length is denoted as dl and is approximated as the distance99

between country capitals.100
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2.3. Principal Component Analysis101

We follow the notation of Ref. [43] and sketch the main steps of the Principal Component Analysis
(PCA). The mismatch vector is rescaled to

~x(t) = c~∆(t) =
N

∑
n=1

c ∆n(t)~en , (13)

where the normalisation c is chosen such that 〈~x · ~x〉 = 1. This turns c = c(α) into a function of102

the mixing parameter α. Note that the new variable ~x is usually defined with the centred mismatch103

~∆− 〈~∆〉, but with our choice γ = 1 for the renewable penetration parameter the average mismatch104

is zero. The normalised mismatch vector (13) is represented in an N-dimensional coordinate system,105

where the axes with unit vectors~en correspond to the countries.106

The PCA changes this coordinate system by rotation. The normalised mismatch vector

~x(t) =
N

∑
k=1

ak(t)~pk . (14)

is then expressed in terms of the rotated unit vectors ~pk. Those are determined from the diagonalisation

R̂~pk = λk~pk (15)

of the covariance matrix
Rnm = 〈xnxm〉 . (16)

Since the covariance matrix is real and symmetric, the eigenvectors are orthonormal, i.e. ~pk · ~pl =107

δkl , and all eigenvalues λk ≥ 0 are real and positive. Furthermore, ∑N
k=1 λk = 1 because of the108

normalisation introduced in Eq. (13).109

The temporal amplitudes ak(t) = ~x(t) · ~pk have the properties 〈ak〉 = 0 and 〈akal〉 = λkδkl . The
total variance (8) of the mismatch can now be written as

Var(~∆) =
1
c2

N

∑
k=1
〈a2

k〉 =
1
c2

N

∑
k=1

λk . (17)

Given the ordering λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, the last equation reveals that the first eigenvector ~p1 with
the largest eigenvalue λ1 contributes most to the total variance. This implies that the mismatch can be
approximated by a truncation to the first K eigenvectors with the largest eigenvalues:

~∆(t) ≈ 1
c

K

∑
k=1

ak(t)~pk . (18)

This approximation explains the naming of the PCA: the eigenvectors with the K largest eigenvalues110

are called the principal components and carry most of the overall variance. Typically, the truncation111

parameter K is determined by the requirement ∑K
k=1 λk ≈ 0.95, such that the K principal components112

carry about 95% of the overall mismatch variance. The K principal components represent the main113

degrees of freedom of the driving force resulting from the mismatch between the weather and load114

patterns, and cause most of the required backup and transmission infrastructure.115

3. Results: principal mismatch components116

The dependence of the mismatch variance (8) on the renewable mix α is shown as the thick117

black curve in Figure 2. The renewable penetration has been set to γ = 1 for all European countries.118

The variance takes a minimum at α = 0.7. It is slightly larger in the wind-only limit α = 1 and119

significantly larger in the solar-only limit α = 0. This can be seen as a rough indication that the120
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Figure 2. Mismatch variance Var(~∆) (thick black curve) as a function of the renewable mix α for the
renewable penetration γ = 1. The solar share increases towards α = 0, and the wind share increases
towards α = 1. The coloured parts illustrate its decomposition (9) into the variances of the balancing
(blue) and the injection (orange) as well as their covariance (green).

response infrastructure becomes smallest at intermediate renewable mixes, and agrees nicely with the121

results on the other infrastructure measures (10) - (12) obtained in [23,46].122

The eigenvalues resulting from the Principal Component Analysis reveal the dominant123

contributions explaining most of the mismatch variance. They are shown in Figure 3, again as a124

function of the renewable mix. In the solar-only limit α = 0 the largest eigenvalue is λ1 = 0.90. The125

three largest eigenvalues add up to 0.96, explaining 96% of the mismatch variance. Not much changes126

for renewable mixes up to about α ≈ 0.3. After this the largest eigenvalue decreases continuously, until127

it reaches a value λ1 = 0.45 at α = 0.8. It roughly remains at this value for even larger renewable mixes.128

As the first eigenvalue decreases, the next eigenvalues increase. At α = 0.8 the first six eigenvalues129

add up to 0.94, explaining then 94% of the mismatch variance.130

A threshold like ∑K
k=1 λk ≈ 0.95 for the first eigenvalues is often used as a criterium to define131

the number K of principal components. Together they explain 95% of the mismatch variance. For132

α = 0 this number is equal to K = 3. The corresponding eigenvectors are shown in Figure 4. The first133

principal component is a kind of monopole. All countries either have a positive mismatch together or134

a negative mismatch. Of course, this is easy to understand. Either the sun is shining for all countries135

during daytime, or it is dark for all countries during nighttime. The second principal component looks136

like a dipole in East-West direction. It is a consequence of morning sunrise in the East and of evening137

sunset in the West. These interpretations are clearly supported by the intraday amplitude profiles138

aintraday
k (t), which are shown in Figure 5a.139

Also the third principal component has a dipole structure, but with a North-South orientation.140

This is mostly a consequence of its seasonal amplitude profile aseasonal
3 (t), which is shown in Figure 5b.141

Figure 5b also reveals that the first principal component has a very pronounced seasonal amplitude142

profile, whereas no clear seasonal dependence is observed for the amplitude of the second principal143

component.144

Figure 6 depicts the K = 6 principal components for the renewable mix α = 0.8, which together145

explain 94% of the mismatch variance. The first principal component again looks like a monopole.146
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Figure 3. PCA eigenvalues as a function of the renewable mix α. The solar share increases towards
α = 0, and the wind share increases towards α = 1.

Figure 4. The three principal mismatch components for α = 0.
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Figure 5. (a, left) Intraday and (b, right) seasonal amplitude profiles of the three principal components
for α = 0. The intraday profiles aintraday

k (t) have been obtained by averaging the amplitudes over all
days of the underlying eight years while keeping the intraday hour fixed. For the seasonal profiles
aseasonal

k (t) the amplitudes have been first averaged over a day, and then over the eight years while
keeping the day of the year fixed.

Roughly it means the wind power generation is above the load for all countries at the same time,147

or vice versa. Its eigenvalue is smaller than for the α = 0 case, and also its structure appears to be148

slightly different. The other five principal components represent different orthogonal spatial mismatch149

patterns. The second and third one look again like dipoles. The fourth to sixth principle components150

have a more complicated spatial structure.151

Again it is interesting to investigate the time dependence of their amplitudes ak(t). The intraday152

and seasonal profiles are shown in Figure 7 for the first three principal components. The intraday153

amplitude profile of the first principal component has two minima, one during the morning and154

another one during the evening hours. They are explained by the morning and evening peaks of the155

load. The maximum at noon traces back to the midday solar power generation, which on average still156

contributes 20% to the overall renewable power generation due to the setting α = 0.8 for the renewable157

mix. The k = 2 amplitude shows a similar intraday profile, although much weaker than for the k = 1158

amplitude. The seasonal amplitude profiles of the first three principal components all follow the same159

trend and are correlated to the seasonal wind power generation, which is larger in winter and smaller160

in summer. The fluctuations on the synoptic time scale of the order of a few days are also clearly161

visible.162

4. Discussion: contribution of principal mismatch patterns to the balancing and transmission163

infrastructures164

According to Eq. (9) the mismatch variance splits into the balancing variance, the injection variance165

and the covariance between balancing and injection. The three contributions are also shown in Figure166

2. For a small renewable mix α the balancing variance dominates, but for large mixes the injection167

variance becomes bigger. The covariance between the balancing and the injection response remains168

very small, independent of the wind / solar mix. It is now interesting to investigate how the different169

principal mismatch components contribute to the balancing and injection variances.170

The PCA eigenvalues can be split into the same three contributions. Making use of the results of171

Subsection 2.3 and of the response equation (4), the PCA amplitudes can be written as ak = c~∆ ·~pk =172
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Figure 6. The six principal mismatch components for α = 0.8.
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Figure 7. (a, left) Intraday and (b, right) seasonal amplitude profiles of the first three principal
components for α = 0.8. The seasonal amplitude profiles for k = 2 and k = 3 have been artificially
shifted by -0.5 and -1.0, respectively.
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Figure 8. Decomposed eigenvalues λB
k (from the bottom) and λP

k (from the top) as a function of the
renewable mix α. The solar share increases towards α = 0, and the wind share increases towards α = 1.
The white band in the middle represents ∑N

k=1 λBP
k .

c (~B + ~P) · ~pk = c (Bk + Pk). In the last step the abbreviations Bk = ~B · ~pk and Pk = ~P · ~pk have been173

introduced. This allows to write the eigenvalues as174

λk = 〈a2
k〉 = c2

(
〈B2

k〉+ 〈P
2
k 〉+ 2〈BkPk〉

)
= λB

k + λP
k + λBP

k . (19)

This decomposition reveals how much a principal component is contributing to the balancing and175

injection variances.176

Figure 8 illustrates this decomposition. The balancing eigenvalues λB
k are plotted from the bottom,177

and the injection eigenvalues λP
k are arranged from the top. The narrow white stripe in the middle178

represents the sum ∑N
k=1 λBP

k and is not specified further into the different k contributions. The first179

principal component dominates the balancing variance, independent of the renewable mix. This is180

because of its monopole-like structure. The other components do not contribute much, and only with181

a small margin for renewable mixes close to one. On the contrary, the first prinicipal component does182

not contribute much to the injection variance. Here the largest contributions come from the second and183

third principal component. Again this is intuitive due to their dipole character. For large renewable184

mixes also the next three principal components contribute to the injection variance to a larger extend.185

These results are also documented in Table 1 for the specific choice α = 0.8 of the renewable mix.186

The mismatch has been truncated according to (18). The full (K = 30) balancing variance Var(~B) is187

fully reproduced with the K = 6 principal components. A severe truncation to K = 1 is still able to188

reproduce 88% of the full balancing variance, emphasising again the dominant role of the first principal189

component for the mismatch-induced balancing. For the injection variance Var(~P) a different finding190

is observed. The first principal component alone, reflected by the K = 1 truncation, does play only a191

small role. The second and third principal component contribute the most, but are not able to explain192

all of the variance. The first K = 6 principal components taken together are able to explain 89% of the193
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Table 1. Various infrastructure measures as a function of the truncation parameter K used for the PCA
approximation (18).

γ = 1, α = 0.8 K = 30 K = 6 K = 5 K = 4 K = 3 K = 2 K = 1

Var(~∆) 0.0301 0.0281 0.0272 0.0258 0.0238 0.0195 0.0136

Var(~B) 0.0101 0.0101 0.0098 0.0098 0.0096 0.0095 0.0089
EB 0.1402 0.1388 0.1371 0.1368 0.1365 0.1348 0.1318
KB 0.686 0.682 0.659 0.656 0.650 0.643 0.613

Var(~P) 0.0184 0.0164 0.0154 0.0139 0.0119 0.0077 0.0020
Var(F) 0.0120 0.0101 0.0091 0.0074 0.0061 0.0040 0.0007
KT 1.812 1.486 1.372 1.250 1.156 0.904 0.356

full (K = 30) injection variance. Apparently, higher-order components with k ≥ 7 still play a small194

role.195

Table 1 lists also the other, more realistic infrastructure measures introduced in Subsection 2.2.
The balancing energy EB and the backup capacity KB are related to the balancing variance Var(~B).
Again, the first principal component dominates in both cases, and the K = 6 truncation is able to
explain 99% of the full K = 30 results. The flow variance

Var(F) =
L

∑
l=1
〈F2

l 〉 (20)

and the transmission capacity KT are related to the injection variance Var(~P). The findings for (20) are196

very similar to those for the injection variance. The K = 6 truncation is able to explain 84% of the full197

K = 30 flow variance. For the transmission capacity (12) the first principal component appears to play198

a slightly larger role. The K = 6 truncation is able to explain 82% of the full K = 30 result.199

5. Conclusions and Outlook200

A Principal Component Analysis has been applied to a simplified highly renewable European201

electricity system to learn about the most important mismatch patterns between the weather-driven202

renewable power generation and the load. For a solar dominated system three principal components203

are enough to explain most of the mismatch variance across the continent. For a wind dominated204

system six principal components are needed. The spatial structure of the first principal mismatch205

component resembles that of a monopole, and the respective temporal amplitude dynamics reveals206

strong fluctuations on the diurnal and seasonal time scales. It determines most of the required backup207

energy and backup capacity of the overall system. The second and third principal components have a208

dipole-like spatial structure; their temporal amplitude dynamics is dominated by diurnal, synoptic209

and seasonal time scales. Together with the fourth to sixth principal components they cause most210

of the required transmission infrastructure. These results demonstrate that the required backup and211

transmission infrastructure of a highly renewable European electricity system are to a large degree212

caused by only a small number of most important mismatch patterns between the weather-driven213

renewable power generation and the load.214

The model used for a highly renewable European electricity system had been quite simple.215

In particular, its spatial resolution has been scaled to country sizes. As a consequence, the216

covariance matrix underlying the Principal Component Analysis is dominated by the larger countries217

like Germany, France, United Kingdom, Spain and Italy. It is interesting to observe that in the218

most important principal components the smaller countries appear to be grouped into blocks like219

Scandinavia and East Europe. Nevertheless, the next step to take will be to apply the Principal220
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Component Analysis to larger, fine-grained continental electricity networks, with the additional221

inclusion of hydro power and storage. In view of the higher dimensionality, the resulting number of222

principal components is certainly going to increase, but per se it is not clear by how much and how the223

fine-grained spatial structure of the principal patterns is going to look like. In this respect it will also224

make sense to investigate related data-reduction approaches like Independent Component Analysis225

and Dynamic Mode Decomposition [52].226

Another future step to take will be the stochastic modelling of the amplitude times series related227

to the principal components. This can be used for the forecasting of power mismatches, and it will also228

allow to estimate the additional infrastructure due to the operational forcast uncertainties. An example229

would be line congestion in transmission systems under uncertainty [53]. Another playground for the230

application of the Principal Component Analysis could be the impact of climate change on the design231

of future energy systems, in particular smart energy systems including all cross-sector couplings [54].232
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