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Abstract: In the working process of Double-Fed Wind Turbines (DFWT), it is very important
to monitor and predict the temperature of the high-speed output shaft of the gearbox timely and
effectively. Support vector machine has more advantages in the temperature prediction of wind
turbines. Least squares support vector machine is suitable for online prediction due to reducing
the computational complexity of support vector machine. In order to solve the sparsity of least
squares support vector machine, an improved least squares support vector machine based on pruning
algorithm is proposed in this paper to predict the temperature of the high-speed output shaft
of gearbox using the practical data of Double-Fed Wind Turbines. At the same time, in order
to improve the prediction accuracy and to solve the problem of few links between different feature
parameters in common normalization method, the paper uses the method of joint normalization
to preprocess the data. The principal component analysis is used to reduce the dimension of the
data. Particle swarm optimization algorithm is used to optimize the parameters of the pruning least
squares support vector machine. The proposed model that is established in this paper is a new
model to forecast the temperature of the high-speed output shaft. The results show that its prediction
accuracy is higher than that of other algorithms.

Keywords: temperature prediction; least squares support vector machine (LSSVM); pruning algorithm;
joint normalization; principal component analysis (PCA); particle swarm optimization (PSO)

1. Introduction

Wind energy is a kind of clean and renewable energy. Wind energy generation has a positive
significance to improving the diversity of energy supply and reducing environmental pollution [1].
At present, the large capacity variable speed constant frequency Double-Fed Wind Turbines (DFWT)
are mainly used in the wind farm [2]. The gearbox is one of the most important components of DFWT.
It is shown that the maintenance cost for the gearbox is very high when compared with the other higher
failure rate components, such as electric system and hydraulic system [3]. So, the timely monitoring
of the working state of the gearbox is very necessary. Now, using the temperature information
to monitor the abnormal operation of the gearbox is an effective method [4]. High-speed output shaft
is the core of DFWT gearbox, with high rigidity, high precision, low elastic deformation, and other
characteristics. However, the built-in structure of the gearbox makes heat dissipation worse, especially
under high-speed conditions. So, in the working process of DFWT, the high-speed output shaft of the
gearbox has a higher temperature because of the frictional losses due to gear meshing. The heat has
an important effect on the lubrication and cooling of the system. For example, a higher temperature
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can lead to adequate oil film thickness, resulting in the damage of contacting components. The metal of
tooth surface may contact bonded together, which will cause scuffing. It also has a great impact on the
working life of the key structural components, such as bearings [5]. Therefore, monitoring temperature
of high-speed output shaft of gearbox and predicting its changes in the latter according to the current
temperature is very important for improving the performance of the transmission system and realizing
the condition maintenance of wind turbines [6].

Many scholars have studied the temperature prediction of wind turbines. For example, Zhang Jian
and Li Yuxia used the method of orthogonal least squares and correlation coefficient to select the
input variables, used back propagation (BP) neural network to predict the temperature of the gearbox
of wind turbines [7]. In [8], a neural network (NN) based normal behavior model of generator
bearing temperature was developed to analyze bearing faults in WTs. A comparative analysis of
two NN-based models and a regression-based model was presented in [9] to detect the anomalies in
gearbox bearing temperature and generator stator temperature. Guo Peng et al. used the method of
temperature trend analysis to monitor the operation state of gearbox in wind turbines. They used
the method of nonlinear state estimation to establish the gearbox temperature model under normal
working condition and predict the temperature [10]. In [11], nonlinear state estimation was also
used to monitor the operation state of generator in wind turbines. In [12], the spindle temperature
model was established and was used to predict by the nonlinear state estimate technology under the
normal operating condition of the spindle. Zhang Xiaotian et al. studied the relationship between
the temperature of the gearbox and its potential faults by using the real-time monitoring data of
wind turbines. The linear regression method was used to predict the main bearing temperature [13].
In literature [14], the relation between gearbox fault and its temperature was discussed and the
prediction model for normal behavior of gearbox temperature was built up by regression analysis.
In literature [15], wind turbine fault prediction methodology is proposed by using the support vector
machine (SVM) method. Fang Ruiming and others used SVM to establish the prediction model of
temperature of gearbox. They analyzed the characteristics of gearbox in different states, and the
relative errors of the predicted values of the normal and abnormal states were sought [16]. Li Hui et al.
used the unequal interval grey model to predict the generator speed and temperature of the wind
turbines [17]. These introduced methods have their own characteristics. Table 1 summarizes the
advantages and disadvantages of these commonly used temperature prediction methods.

As can be seen from Table 1, the use of SVM for temperature prediction has more advantages.
But in the standard SVM algorithm, complex quadratic programming (QP) problem is needed to
solve. In order to reduce the computational time, least squares support vector machine (LSSVM)
is proposed, which is an improved algorithm of SVM [29]. The quadratic programming problem
in SVM is transformed into solving a set of linear relations in LSSVM, which reduces the computational
complexity and is suitable for online prediction [30]. LSSVM has been used in many forecasting
problems currently. For example, in literature [31], one least square support vector machine (LSSVM)
model that was optimized with coupled simulated annealing (CSA) was developed for the prediction
of nanofluid viscosity based on 3144 data points. In literature [32], the ability of least squares support
vector machines (LSSVM) was assessed to estimate the solubility of SiO2 in the steam of boilers.
In literature [33], a novel soft computing method, based on LSSVM and an improved gravitational
search algorithm was proposed to forecast the heat rate of a 600 MW supercritical steamturbine unit.
In literature [34], a hybrid model based on wavelet transform (WT) and least squares support vector
machine was proposed to forecast short-term load.
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Table 1. Comparison of temperature prediction methods.

Method Characteristic Advantages Disadvantages

BP neural network

It is a nonlinear
regression method,
which has strong
nonlinear mapping
ability [18].

The adaptability is
strong. The forecasting
precision is high, and the
modeling process is
more convenient and
direct. It is not necessary
to specify the direct
relationship between
input and output.

It requires huge data
samples. Less samples
cannot get accurate results.

Nonlinear state estimation

A method for estimating
the internal state of a
dynamic system based
on measured data.

Non parametric
modeling method. Clear
physical meaning.

Low accuracy. Poor
implementation.

Linear regression method

The curve is fitted by
using various algorithms,
including stepwise
regression method
[19–22], piecewise fitting
method [23,24],
regression analysis
fitting [25], partial least
squares regression
[26,27], least squares
regression [28].

Operation is
more convenient.

The adaptability of the
prediction model is poor,
only in the proper scope it
has a good
prediction effect.

Support vector machine

It has many unique
advantages in solving a
few, nonlinear and high
dimensional samples.

The prediction precision
is high and the samples
are relatively a few.

The choice of parameters
affects the accuracy of the
model.

Gray model
Based on the generated
data, but not the
original data.

Do not need a lot of
samples. There is small
amount calculation.

It is better for predicting
data with definite trends.

But LSSVM algorithm is too sensitive for the noise data, and the sparse characteristic is lost [29].
In order to solve the sparsity of LSSVM, an improved LSSVM based on pruning algorithm is proposed
to predict the temperature of high-speed output shaft of the gearbox in this paper. What is more,
in the current prediction literature, common normalization methods, such as maximum-minimum
method, value method, and peak method were used. These kinds of normalization lack the connection
between different characteristic parameters. In order to solve the problem of few links between
different feature parameters in common normalization methods, the joint normalization method
is proposed to deal with the sample data in this paper. In order to reduce the correlation of the data,
the principal component analysis (PCA) is used to reduce the data dimension. Also, in order to reduce
the blindness of parameters selection, particle swarm optimization (PSO) algorithm is used to optimize
the parameters of the improved LSSVM. The proposed model established in this paper is a new model
that is used to forecast the temperature of the high-speed output shaft. The results show that it is
superior to other prediction algorithms.

2. The Related Theories

2.1. LSSVM and Pruning Algorithm

2.1.1. LSSVM Prediction Algorithm

In 1999, Suyken, a professor at University of Leuven in Belgium, introduced the least squares
estimation method to SVM, and proposed LSSVM [35]. LSSVM replaces the inequality constraints
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in traditional SVM with equality constraints. By solving a set of equations, the optimal classification
hyperplane is obtained. The specific content of LSSVM prediction algorithm is as follows.

Suppose that there are n samples for the training set {xk, yk}n
k=1. Where, xk ∈ Rn is the input.

yk ∈ R is the output. In the original space, the regression model has the following form:

y(x) = ωT ϕ(x) + b (1)

where, ω is weight vector; ϕ(x) is nonlinear mapping function; b is offset.
Construct the following optimization function:

minJ(ω, e) =
1
2

ωTω +
γ

2

n

∑
k=1

e2
k (2)

s.t.→ yk = ωT ϕ(xk) + b + ek

where, γ is penalty factor; ek is error at the sample point.
The optimal problem of (2) is transformed into dual space, and Lagrange function is introduced:

L(ω, b, e, α) = J(ω, e)−
n

∑
k=1

ak[ω
T ϕ(xk) + b + ek − yk] (3)

where, the Lagrange multiplier αk is called the support value.
The following partial differential equations are solved for each variable:



∂L
∂ω = 0,
∂L
∂b = 0,
∂L
∂ek

= 0,
∂L
∂αk

= 0,


→



ω =
n
∑

k=1
αk ϕ(xk),

n
∑

k=1
αk = 0,

αk = γek,

ωT ϕ(xk) + b + ek − yk = 0,


(4)

Eliminating ω, e, and getting:(
0 Iv

Iv Ω + I
γ

)[
b
α

]
=

[
0
y

]
(5)

where y = (y1, y2, · · · , yn)
T; Iv = (l, l, · · · , l)T; α = (α1, α2, · · · , αn)

T; Ω is a matrix,
Ωkh = ykyh ϕ(xk)

T ϕ(xh) = ykyhψ(xk, xh), h = 1, 2, · · · , n.
Therefore, LSSVM regression estimation model can be obtained:

y(x) =
n

∑
k=1

αkψ(x, xk) + b (6)

where, α, b are solutions of Equation (5); ψ(x, xk) is kernel function. In this paper, radial basis function
is the kernel function. Its expression is:

ψ(x, xk) = exp(−‖x− xk‖2)/σ2 (7)

where, σ is standardized parameter. It determines the width of the function around the center point.
The selection of the value will affect the distribution of sample data in feature space.
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2.1.2. LSSVM Pruning Algorithm

The standard SVM has sparse characteristic because many of the support vector values, ai,
are equal to zero, but this feature is lost in the LSSVM. This is because in LSSVM, support vector values
ai =
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algorithm and the required storage space are affected. In order to make better use of the advantages of
LSSVM, and make it sparse, in this paper, pruning algorithm is used to prune the support vector value
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(1) Setting n = ntot, which is the number of training samples.
(2) According to LSSVM algorithm, ak is calculated.
(3) The obtained ak is sorted according to its absolute value.
(4) According to the value of ak, m samples are deleted corresponding to the smaller ak (in general,
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(6) Return (2) to retrain the model using the reduced set of samples, until the generalization ability

of the classifier required by the user begins to drop.

2.2. Joint Normalization of Data

Commonly used normalization methods include the maximum-minimum method, value method,
and peak method [36]. The calculations are as follows:

(1) Maximum-minimum method:

x̂j = (xj − xjmin)/(xjmax − xjmin) (8)

(2) Value method:

x̂j =
xj

l
∑

j=1
xj

(9)

(3) Peak method:

x̂j =
xj

max(xj)
(10)

where j = 1, 2, . . . , l; l is the dimension of the sample.
These methods normalize the samples in column vectors in fact. These kinds of normalization lack

the connection between different characteristic parameters. In order to solve the problem of the few
links between different feature parameters in common normalization methods, the joint normalization
method is used to deal with the sample data in this paper. That is, the column vectors of the sample
space are normalized, and then the row vectors are normalized. When compared with the conventional
normalization methods only dealing with the same characteristic parameter, the joint normalization
deals with different parameters increasingly.

Assuming that the sample is xi
j (i = 1, 2, . . . , n), joint normalization can be done in two steps.

(1) Column vectors normalization. Maximum-minimum standardized method is selected to carry
out the column vectors normalization in this paper.

x̂i
j =

xi
j − xi

jmin

xi
jmax − xi

jmin
(11)
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(2) Row vectors normalization. Maximum-minimum standardized method is also selected to carry
out the row vectors normalization in this paper.

xi
j =

x̂i
j − x̂imin

j

x̂imax
j − x̂imin

j
(12)

2.3. PCA Dimension Reduction Processing

SVM has no limit on the dimension of input data. But in fact, high-dimensional inputs will
greatly increase the calculation of the inner kernel function and introduce noise. When the temperature
of the high-speed output shaft of the gearbox is predicted, nacelle vibration x, nacelle vibration y,
wind speed, rotor speed, gearbox temperature input shaft, gearbox temperature output shaft, gearbox
oil temperature, grid power, and main bearing gearbox side temperature will be selected as input
information. Perhaps there are correlations between this information. Some redundant information
may be in existence. So, before using LSSVM to predict, the dimension of input data is reduced by
PCA algorithm in this paper.

PCA is a commonly used method of dimension reduction. Its idea is: Suppose m indicators X
= (X1, X2, . . . , Xm)’, through linear transformation, they can be transformed into a new integrated
variable Y. The composition Y1, Y2, . . . , Ys are called, respectively, the first principal component, the
second principal component, . . . , the sth principal component of the original variable index X1, X2,
. . . , Xm. Among them, the variance of Y1 is the largest proportion of the total variance. The variance
proportions of Y2, Y3, ..., Ys decrease, in turn [37].

2.4. PSO Algorithm

It is known from Equation (2), when using LSSVM, penalty parameter affects the performance of
LSSVM. If the selected value is too large, then the training time becomes longer. If the selected value is
too small, the prediction accuracy will be reduced. Therefore, in this paper, the intelligent optimization
algorithm—PSO—is used to optimize the penalty parameter Y and the kernel function parameter σ.

PSO is a swarm intelligence optimization algorithm besides ant colony algorithm and fish swarm
algorithm. The principle of the algorithm is as follows [38].

Assuming in a d dimensional search space that there are m particles. i particle is represented
as a vector of d dimensions xi = (xi1, xi2, · · · xid), i = 1, 2, · · ·m. The flight velocity of i particle
is vi = (vi1, vi2, · · · , vid). The optimal location for i particle so far is pi = (pi1, pi2, · · · , pid). The optimal
location for the whole population so far is pg = (pg1, pg2, · · · , pgd).

The updated formulas of PSO algorithm for velocity and position of the particle are:

vid = ωvid + c1r1(pid − xid) + c2r2(pgd − xid) (13)

xid = xid + vid (14)

where, ω is inertia weight coefficient. c1 and c2 are nonnegative constants. They are known as the
acceleration constant. When c1 is larger, then the particles will pace up and down in the local range.
When c2 is larger, the particles will converge to local minima prematurely. r1 and r2 are random
number among 0~1 [39].

2.5. Forecasting Evaluation Index

In this paper, mean absolute percentage error (MAPE), mean squared error (MSE), and T-test are
selected as the forecasting evaluation indexes. The equations are as follows [40].

MAPE:

δ =
1
n

n

∑
i=1

(
|xi − x̂i|

xi
) (15)
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MSE:

d =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (16)

T-test:

T =
x− x̂√

(n−1)s2+(n−1)ŝ2

2n−2 ( 1
n + 1

n )
=

x− x̂√
s2+ŝ2

n

(17)

where, xi is the actual temperature data; x̂i is the predicted temperature data; n is the sample number;
x is the actual average temperature; x̂ is the predicted average temperature; s2 is the actual temperature
variance; and, ŝ2 is the predicted temperature variance.

3. Temperature Prediction of High-Speed Output Shaft Based on Pruning LSSVM

3.1. The Proposed Prediction Model

The proposed prediction model based on the improved LSSVM and joint normalization can be
built according to Figure 1.
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Figure 1. Schematic of the model.

3.2. Predictive Example

According to the real-time monitoring of a 1.5 MW wind turbine, when considering the factors
that are related to temperature, the inputs of the model are determined as: nacelle vibration x,
nacelle vibration y, wind speed, rotor speed, gearbox temperature input shaft, gearbox temperature
output shaft, gearbox oil temperature, grid power, and main bearing gearbox side temperature.
The output is the next temperature of the output shaft of the gearbox. From the actual operation data
of 1 September 2016 to 1 November 2016, 1000 groups were randomly selected as the sample data.
Table 2 is part of the sample data.
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Table 2. Part of original sample data.

Nacelle
Vibration x

(mm)

Nacelle
Vibration y

(mm)

Wind
Speed
(m/s)

Rotor
Speed
(r/min)

Gearbox
Tempera-Ture
Input Shaft

(◦C)

Gearbox
Tempera-Ture
Output Shaft

(◦C)

Gearbox Oil
Tempera-Ture

(◦C)

Grid
Power
(KW)

Main Bearing
Gearbox Side
Temperature

(◦C)

−0.00779748 −0.002426243 9.285114 12.84335 62.9 64.9 56.8 316.8 40.5
−0.004867697 0.007827997 9.329819 12.84534 62.1 64 55.8 318.6 40.3
−0.001937914 −0.000473023 9.821562 12.92032 61.2 63.3 55 316.8 40.1
−0.000961351 0.004898214 8.916306 12.98766 60.3 62.7 54.6 316.8 39.9
−0.000961351 −0.003402805 10.03391 13.04737 59.6 62.1 54.1 315.6 39.7
−0.003891087 0.00148015 11.45326 12.95979 59.1 61.6 53.6 314.4 39.5
−0.002914524 −0.002914524 8.234571 13.04737 58.7 61.1 53 316.2 39.4
−0.001937914 0.008316278 11.17386 13.01453 58.5 60.6 51.8 315.6 39.3
0.00050354 −0.007309198 11.49796 12.9369 58.6 60.1 50.3 319.2 39.1
−0.000473023 −0.001937914 11.59855 13.09713 59.4 61.2 53.6 325.2 39

After joint normalization, the initial data lies between 0 and 1, as shown in Table 3.

Table 3. Part of data after joint normalization.

Nacelle
Vibration

x

Nacelle
Vibration

y

Wind
Speed

Rotor
Speed

Gearbox
Tempera-Ture
Input Shaft

Gearbox
Tempera-Ture
Output Shaft

Gearbox Oil
Tempera-Ture

Grid
Power

Main Bearing
Gearbox Side
Tempera-Ture

0.282 0.049 0.601 0.469 0.55 0.491 0.510 0.591 0.898
0.128 0.575 0.608 0.469 0.505 0.448 0.439 0.589 0.864
0.02 0.150 0.693 0.478 0.455 0.414 0.382 0.591 0.830
0.025 0.425 0.537 0.486 0.405 0.386 0.354 0.591 0.796
0.076 1.279 0.730 0.492 0.366 0.357 0.319 0.593 0.762
0.076 0.250 0.974 0.482 0.338 0.333 0.283 0.594 0.728
0.076 0.025 0.419 0.492 0.316 0.309 0.241 0.592 0.711
0.025 0.599 0.926 0.489 0.305 0.285 0.156 0.593 0.694
0.025 0.199 0.982 0.480 0.311 0.261 0.049 0.588 0.661
0.153 0.075 1 0.498 0.355 0.314 0.283 0.580 0.644

In order to show the advantages of joint normalization, the same data is also normalized by the
maximum-minimum method, peak method and value method for latter use.

In this paper, the main ingredients of influencing factors are extracted from the original
9-dimensional input vectors by PCA. The contribution rate of each component is shown in Table 4.
Select the components (in the paper, there are five components), whose cumulative contribution rate
are more than 95%, to be the input parameters of LSSVM, instead of the original nine factors.

Table 4. Principal components and their contribution rate.

Serial Number Characteristic Value Contribution Rate Cumulative Contribution Rate

1 4.938 54.861% 54.861%
2 1.350 15.004% 69.865%
3 1.198 13.312% 83.178%
4 0.681 7.563% 90.740%
5 0.617 6.859% 97.599%
6 0.186 2.065% 99.664%
7 0.016 0.178% 99.841%
8 0.010 0.116% 99.957%
9 0.004 0.116% 100%

When the temperature of the high-speed output shaft of the gearbox is predicted, in order
to optimize the parameters of LSSVM, Y and σ are considered as two particles, γ ∈ [0.1, 100],
σ ∈ [0, 10]. Particle number m is 20. The maximum number of iterations Tmax is 300. The range
of inertia weight coefficient ω is chosen as [0.4, 0.9]. The formula of the objective function is:
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minFitness(t) = 1
2n

n
∑

t=1
[ŷ(t)− y(t)]2. ŷ(t) is the predicted temperature. y(t) is the actual temperature.

n is sample number.
Through simulation, when c1 and c2 are, respectively, 1.5 and 1.7, the optimized parameters are

Y = 65.6085, σ = 5.9767. Figure 2 is the change of fitness curve during optimization.
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In this paper, 10% training samples are deleted each time. 600 sets of data are for training. 400 sets
of data are for testing.

3.3. Comparative Analysis of Prediction Results

The comparison between the actual data and the predicted data using the proposed pruning
PSO-LSSVM model is shown in Figure 3. In order to illustrate the superiority of the model, several
other prediction methods are also used to predict temperature. The comparison results are shown
in Table 5.
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Table 5. Comparison of various algorithm results.

Method Time(s) t-Test
Accuracy of
Error within

±5 ◦C

Accuracy of
Error within

±10 ◦C

Mean Absolute
Percentage

Error (MAPE)

Mean
Squared

Error (MSE)

LSSVM
(normalized with

maximum-
minimum method)

4.958 0.0037 75% 78% 7.3% 7.6%

LSSVM
(normalized with

peak method)
4.957 0.0045 76% 79% 7.4% 7.5%

LSSVM
(normalized with

value method)
4.976 0.0054 78% 80% 7.2% 7.1%

LSSVM
(joint normalization) 3.675 0.0056 80% 82% 6.5% 6.8%

PCA-LSSVM
(normalized with

maximum-
minimum method)

3.567 0.0067 78% 79% 6.5% 6.5%

PCA-LSSVM
(normalized with

peak method)
3.987 0.0034 79% 80% 6.4% 6.4%

PCA-LSSVM
(normalized with

value method)
3.765 0.0045 81% 82% 6.3% 6.2%

PCA-LSSVM
(joint normalization) 2.345 0.0056 83% 84% 5.6% 5.8%

PSO-PCA-LSSVM
(normalized with

maximum-
minimum method)

3.125 0.0034 81% 84% 5.6% 5.7%

PSO-PCA-LSSVM
(normalized with

peak method)
3.135 0.0065 83% 86% 5.4% 5.9%

PSO-PCA-LSSVM
(normalized with

value method)
3.173 0.0075 82% 85% 5.2% 5.1%

PSO-PCA-LSSVM
(joint normalization) 2.473 0.0064 85% 87% 4.7% 4.9%

Pruning
PSO-PCA-LSSVM
(normalized with

maximum-
minimum method)

2.348 0.0036 84% 91% 4.6% 4.4%

Pruning
PSO-PCA-LSSVM
(normalized with

peak method)

2.475 0.0065 83% 92% 4.7% 4.5%

Pruning
PSO-PCA-LSSVM
(normalized with

value method)

2.725 0.0076 85% 92% 4.3% 4.2%

Pruning
PSO-PCA-LSSVM

(joint normalization)
2.124 0.0045 90% 93% 3.7% 3.8%

SVM 6.453 0.1576 70% 85% 5.8% 8.9%
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It can be seen from Table 5, when using the same algorithm, different normalization methods
are used to predict the temperature. The results of joint normalization are better than the other three
methods. For different algorithms, it is obvious that the prediction accuracy of pruning PSO-LSSVM
(joint normalization), as proposed by this paper, is the highest, and the prediction time is the shortest.
For testing data, the running time is 2.124 s, the correct rate of error within ±5 ◦C is about 90%,
the correct rate of error within±10 ◦C is about 93%, the MAPE is 3.7%, and the MSE is 3.8%. The speeds
and accuracy of the other algorithms are worse than that of the proposed algorithm. The superiority
of the proposed model is proved.

4. Conclusions

In this paper, a pruning algorithm improved LSSVM model is put forward. The temperature
of the high-speed output shaft of gearbox is predicted. Joint normalization is used to consider the
characteristic of the same and different parameters. In order to reduce the correlation and redundancy
of the data, PCA is adopted. In order to reduce the blindness of parameter selection, the PSO algorithm
is used to optimize the parameters in the model. The experimental results show that the proposed
method has shorter training time and higher prediction accuracy than other methods. It is valuable
in real-time forecasting.
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