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Abstract: The extended range electric vehicle (EREV) can store much clean energy from the electric
grid when it arrives at the charging station with lower battery energy. Consuming minimum gasoline
during the trip is a common goal for most energy management controllers. To achieve these objectives,
an intelligent energy management controller for EREV based on dynamic programming and neural
networks (IEMC_NN) is proposed. The power demand split ratio between the extender and battery
are optimized by DP, and the control objectives are presented as a cost function. The online controller
is trained by neural networks. Three trained controllers, constructing the controller library in
IEMC_NN, are obtained from training three typical lengths of the driving cycle. To determine
an appropriate NN controller for different driving distance purposes, the selection module in
IEMC_NN is developed based on the remaining battery energy and the driving distance to the
charging station. Three simulation conditions are adopted to validate the performance of IEMC_NN.
They are target driving distance information, known and unknown, changing the destination during
the trip. Simulation results using these simulation conditions show that the IEMC_NN had better
fuel economy than the charging deplete/charging sustain (CD/CS) algorithm. More significantly,
with known driving distance information, the battery SOC controlled by IEMC_NN can just reach
the lower bound as the EREV arrives at the charging station, which was also feasible when the driver
changed the destination during the trip.

Keywords: energy management strategy; extended range electric vehicle; dynamic programming;
neural network; state of charge

1. Introduction

Air pollution in large cities is predominantly caused by the exhaust emissions of gasoline
vehicles [1]. In order to achieve the goals of low-carbon green cities, it is necessary to transform
traditional fuel vehicles into new energy vehicles [2,3]. The electric vehicle plays an important role in
this transition, with its advantages of no pollution or emissions. However, technical limitations, such as
low battery power and short driving range, significantly affect the promotion of electric vehicles [4].
Extended range electric vehicles (EREVs) not only have the characteristics of low emissions and
pollution, but also extend the endurance mileage of vehicles [5].

In conventional hybrid electric vehicles (HEVs), the battery is treated as an energy buffer.
The battery state of charge (SOC) varies over a small range during the trip [6]. However, the EREV is a
type of plug-in HEV, and it has a large battery for storing electric power from a charging station [7,8].
A charging cycle, which constitutes the whole life of the EREV, can be considered as the EREV leaving
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a charging station with full battery energy and arriving at one charging station or another. If the EREV
finishes the trip and reaches the charging station with low battery energy, it can store more clean
energy from the grid. Then, the fuel consumption of the extender can be reduced on the next trip for
the same total energy demand [9,10].

In the past, two control strategies were used to realize the aforementioned control goals. They were
the charging deplete/charging sustain (CD/CS) strategy and the blended control strategy [11–13].
According to the former strategy, vehicles work in a pure electric mode within the all-electric range
(AER), and this stage is called the CD stage [14] Beyond the AER, the extender is turned on as the
main energy source to satisfy the average power demand from the traction motor (TM). The battery
works in coordination with the extender during higher power demands, such as fast acceleration
or on an upslope, and the battery SOC is maintained over a small range around the lower bound;
this stage is called the CS stage [15]. Banvait et al. proposed an intelligent CD/CS strategy for a plug-in
hybrid electric vehicles (HEVs) [16,17]. After restricting the engine working area under the CD and
CS modes, the velocity, power demand and current battery SOC were used as control variables to
determine the extender turn on/off time and output power value. However, the battery SOC dropped
to the low threshold before the vehicle arrived at the charging station, which meant that the battery
energy conversion efficiency was poor; therefore, this strategy was not an optimal control method.
Schacht et al. proposed an EREV energy management strategy in which the equivalent consumption
minimization strategy (ECMS) was applied during the CS mode [18]. The equivalent factor (EF), which
is the ratio of electric power and fuel consumption, has a significant influence on the working state
of the extender. Determining the appropriate EF for different driving cycles requires a considerable
amount of effort, which has limited the application of this strategy.

For the blended strategy, the extender works in coordination with the battery to provide electrical
energy for the TM from the beginning of the trip. The battery SOC drops slowly to the lower
bound [19]. Phillip et al. designed a blended strategy based on the rule-based control method [20].
This control strategy compares the power demand and the lower threshold of the engine output power
to determine the extender turn on/off and its output power range. Chen et al. proposed a multimode
control strategy in which control rules were extracted from dynamic programming (DP) optimization
results [21]. Since the EREV is a highly nonlinear system, sometimes the control rules cannot be extracted
conveniently for different vehicle performances and configuration parameters, and they are not suitable
for all HEV systems. In [22–24], an intelligent energy management system (EMS) was proposed based
on DP and NN. Since the proposed method trained the optimal setting for a settled driving cycle,
the generated controller was not applicable for driving cycles with other driving distances.

Although the CD/CS strategy is simple to implement for real-time control, its fuel economy is
poorer than that of the blended strategy [25]. This is because the extender provides the average power
demand for the TM in the CS mode, and the engine in the extender works in the low efficiency region.
Moreover, secondary energy conversion in the EREV dynamic system reduces the system’s efficiency.
Karbowski et al. pointed out that battery energy losses can be reduced when a lower SOC is achieved
only at the end of a trip [26]. Therefore, a controller capable of the following is necessary for the
EREV: (1) adjusting the battery SOC to the lower bound as the EREV arrives at a charging station;
(2) reducing the working duration when the battery is in the lower energy state; and (3) decreasing the
fuel consumption during the trip.

To achieve this goal, an intelligent energy management controller based on DP and NN
(IEMC_NN) is proposed in this study. The IEMC_NN consists of four parts: the NN controller
module library; the target battery SOC calculation module; electricity consumption per unit distance,
Eper, calculation module; and the NN controller selection module. The module library includes three
NN controllers to emulate the optimal results, which were optimized by the DP. The selection module
estimates the future optimal Eper consumed by the EREV and selects the appropriate NN controller,
which determines the extender turn on/off time and output power value. Three driving conditions
was applied to validate the performance of the IEMC_NN: unknown driving distance, atypical driving
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distance and target driving distance changes during the trip. It was shown that the proposed controller
could achieve the control objectives above and improve the fuel economy by 10–28% compared with
the CD/CS strategy.

The remainder of this paper is organized as follows. Section 2 shows the EREV energy
management optimization problem formulation and a comprehensive description of DP. The NN is
described in Section 3. Section 4 presents the IEMC_NN framework. Simulation results are shown in
Section 5. Finally, the conclusions are presented in Section 6.

2. Optimization Problem and Formulation

The energy management problem can be described as a dynamic optimization problem, which can
be generally expressed by the following equation [27]:

x(k + 1) = f (x(k), u(k)) (1)

where x(k) represents the state variable, such as vehicle velocity and battery SOC, and u(k) represents
the control variable, which can be represented by battery current and extender output power. When the
state of the EREV system is x(k) at step k, using the action of control variable u(k), the vehicle system
can be transformed to the next state x(k + 1) at step k + 1. The energy optimization of the EREV can
be formulated as follows:

min
u

J(x, u) subject to C(x, u) ≤ 0 (2)

where J(x, u) is the cost-to-go function and C(x, u) ≤ 0 are the constraints on the variables. The energy
optimization problem for the EREV is solved by the DP algorithm, and our goal is to minimize the
cost function over a given driving cycle. First, the vehicle powertrain and subsystem models were
constructed before applying the DP algorithm.

2.1. EREV Configuration

The EREV powertrain model considered in this study is schematically shown in Figure 1. The black
line represents the mechanical connection. The lines with arrows represent the electrical connection,
and the arrows point in the power flow direction. Pex,elec, Pm,elec and Pb,elec represent extender output
power, traction motor power and battery electric power, respectively. The parameters of the main
components are listed in Table 1. All the parameters are from an ongoing project.

 

   

ex,elecP

m,elecP

b,elecP

Figure 1. Extended range electric vehicle (EREV) powertrain configuration and power flow.
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Table 1. EREV component parameters.

Components Parameters Values

Engine
Displacement/L 0.9

Maximum power/kW 52
Maximum torque/Nm 90

Generator
Maximum power/kW 53
Maximum torque/Nm 155

Traction motor
Maximum power/kW 130
Maximum torque/Nm 480

Power Battery
Capacity/Ah 37

Voltage/V 360

Others

Final drive ratio 7.793
Curb mass/kg 1400
Front area/m2 2.9

Tire rolling radius/m 0.298
Transmission efficiency/% 92

2.2. EREV Subsystem Model

Considering that the DP process relies on the state transition equations of the EREV, a complex
vehicle model with a large number of states is not suitable, because a heavy computational load will
emerge. Thus, a simplified dynamic model for the vehicle, extender and battery was developed.

(1) Vehicle model:

In this study, the vehicle is modeled as a mass-point moving in the longitudinal direction.
The traction motor required power Preq , which can be determined through Equation (3) [28].

Preq =
v
ηt

(
δM

3600
dv
dt

+
Mg f cos α

3600
+

CD A
76140

v2 +
Mg sin α

3600

)
(3)

where δ represents the mass factor that equivalently converts the rotational inertias of the rotating
components into translational mass; M represents the vehicle gross weight; v represents the vehicle
velocity; f represents the rolling resistance coefficient; ηt represents the transmission efficiency;
a represents the road gradient; CD represents the aerodynamic drag coefficient; and A represents the
vehicle frontal area.

(2) Extender model:

The extender is a system that consists of an engine and a generator. With no mechanical connection
to the traction motor, the extender can be operated independently at the maximum efficiency line,
which is formed by a series of points. The maximum efficiency line is obtained from the extender
efficiency map, which is a combination of the maps of the engine and generator. In this study,
the extender transient influence is eliminated, and the fuel consumption of the engine in the extender
is determined by its static operating points. The maximum efficiency line of the extender system is
shown in Figure 2. Once the extender’s output power is determined, the fuel consumption can be
obtained by the following equation:

ṁfuel = f (Pex) (4)

where ṁfuel represents the fuel consumption rate and Pex represents the electric power generated by
the extender. f (Pex) describes the relationship between the output power of the extender and the fuel
consumption rate.
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Figure 2. Extender output power vs. fuel consumption rate.

(3) Battery model:

The Rint model is adopted as the battery model, which is simplified as an equivalent circuit with
an open voltage source and a resistance. The rate of change of the SOC can be calculated by using the
following equation:

dSOC
dt

=
voc −

√
v2

oc − 4Rint(Preq − Pex)

2RintQb
(5)

where voc represents the battery open-circuit voltage and Rint represents the battery internal resistance,
which is obtained from two look-up tables (charging/discharging). Preq represents the power demand
of the TM motor, and it is positive when driving and negative when braking; and Qb represents the
battery capacity.

2.3. Dynamic Programming

One of the control objectives in this study is to consume minimum gasoline and electricity.
To achieve these goals, there are different control requirements for the battery and extender during the
trip, which are as follows:

For the battery: (1) the vehicle should avoid working for a long time when the battery is in the low
energy state, because the high internal resistance of the battery will result in a large heat loss; (2) the
more battery energy that is released as the EREV arrives at the charging station, the more electric
energy from the grid will be stored in the battery for the next trip.

For the extender: If the remaining driving distance from the charging station is beyond the AER,
the extender provides additional electric energy for TM with minimum gasoline consumption.

The control objectives above can be interpreted as a cost function or constraint in DP,
and appropriate variables are also necessary. The extender output power and battery SOC have
an inherent relationship based on Equation (5). Therefore, the battery SOC and the extender output
power were selected as the state variable and the control variable, respectively. To decrease the vehicle
working duration when the battery was in the low SOC state, the difference between the current
battery SOC and target SOC was presented in the cost function. The fuel consumption rate was also
included in the cost function, which is expressed as follows:

J =
N−1

∑
k=0

L(x(k), u(k))

L(x(k), u(k)) = α · ṁfuel(k) + β · |SOC(k)− SOCdes(k)|
(6)

where L(x(k), u(k)) represent the instantaneous cost function; SOC(k) is the current battery SOC;
and SOCdes(k) is the target battery SOC value, which can be defined as follows:

SOCdes(k) = (SOCinit − discur(k)
SOCinit − SOCfinal

disall
) (7)

where disall represents the target driving length. It describes the distance between the EREV starting
point and the charging station, where the EREV finishes its trip; discur(k) represents the current driving
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length; SOCinit represents the initial battery SOC when at the start of the trip; and SOCfinal represents
the final SOC as the EREV arrives at the charging station.

The battery SOC target curve is shown in Figure 3. The EREV stores a sufficient amount of electric
energy in the battery at the initial location. Three driving distances, named S1, S2 and S3, were assumed
to stand for different driving purposes or charging station locations. Each final battery SOC is the
lower bound according to the control objectives. Thus, the battery target SOC for each driving distance
is AB, AC and AD, based on Equation (7).

 

   

1S 2S 3S

A

C

S

DB

0

Figure 3. Battery target SOC for different target driving distances.

In order to ensure safe and smooth operation of the extender and battery during the optimization
process, the following physical constraints need to be satisfied:

SOCmin ≤ SOC (k) ≤ SOCmax

Pchg,max ≤ Pb (k) ≤ Pdis,max

Pex,min ≤ Pex (k) ≤ Pex,max

Pdelt_ex,min ≤ Pdelt_ex (k) ≤ Pdelt_ex,max

Te,min ≤ Te (k) ≤ Te,max

ωex,min ≤ ωex (k) ≤ ωex,max

(8)

where SOCmin and SOCmax represent the lower and upper bounds of the battery SOC, respectively;
Pchg,max and Pdis,max represent the power limits for battery discharging and charging, respectively;
and Pex,min and Pex,max represent the lower and upper constraints of APU output power, respectively.
Pdelt_ex represents the change rate of the extender output power; Te,min and Te,max represent the lower
and upper bounds of the engine torque, respectively; and ωex,min and ωex,max represent the lower and
upper constraints of the extender speed, respectively.

Since the battery SOC changes slowly, the sampling time for the EREV control problem is
selected as 1 s. Based on Bellman’s principle, the DP algorithm is a multi-step decision process,
which decomposes the optimization problem into a sequence of smaller minimization problems that
can be solved recursively [29,30]. Subsequently, the algorithm finds the sequence of the optimal
extender output power Pex(k) values that minimize the cost function over the entire drive cycle while
satisfying all constraints, as shown in Equation (8).

The sub-problems for each step are expressed as follows:
For the N-th step (final time step):

J∗N (x(N)) = min
u(N)

[L (x (N) , u (N))] (9)

For the k-th (1 ≤ k ≤ N − 1) step:

J∗ (x(k)) = min
u(k)

[L (x (k) , u (k)) + J∗ (x(k + 1))] (10)
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Here, J∗(x(k)) represents the optimal cost-to-go function from state x(k) at time k to the final time
and L(x(k), u(k)) represents the one-step cost when the EREV system takes an action u(k) at the given
state x(k) that results in a future state x(k + 1).

With the nonlinear system of the extender and battery, the state variable SOC(k) does not fall
on the grid points precisely, and the cost-to-go value of J∗(x(k)) and L(x(k), u(k)) are determined
through linear interpolation [31].

3. Neural Network Learning Optimal Control

The DP optimization of the EREV system assumes that detailed trip information is known a
priori. However, the actual future driving speed can hardly be known in advance [32]. Moreover,
it also requires prohibitive computer memory and results in large computational time; thus, the DP
optimization approach cannot be applied directly to an online energy management problem [33].
The NN algorithm can effectively solve the nonlinear system problem. It can learn the optimized
results and generate an online controller for optimal energy distribution [34]. A multilayered multiclass
NN was developed, as shown in Figure 4. The input layer had six nodes representing power demand,
velocity, current SOC, target SOC, driving mode (including driving, braking and parking) and SOC
error. The output node represented extender output power. The trained controller could be used by
the vehicle control unit (VCU) to generate the extender’s turn on/off time and its output power.
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Figure 4. Neural network diagram.

The well-known back-propagation algorithm was adopted to train the NN. The training and test
data were obtained from the DP optimization results. The NN’s training performance was measured
by the method of mean squared errors (MSEs):

MSE =
1
N

N

∑
k=1

(output(k)− tar(k))2 (11)

where output(k) is the NN output and tar(k) are the target data. The training target MSE is 0.001.
Because several interpolations were used to calculate the cost function during DP, the generated

training and test data had a higher numerical precision. However, the data transmitted via the CAN
bus did not have the same level of precision. Before applying the NN framework to train the optimal
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setting, the precision of each node training data was adjusted according to transmission accuracy of
the CAN bus data, which is listed in Table 2.

Table 2. Training data accuracy settings.

Layer Parameters Accuracy

Power demand/kw 0.1
Velocity/km·h−1 0.01
Current SOC/% 0.1

Input layer Target SOC/% 0.1
SOC error/% 0.1
Driving trend 1

Output layer Extender output power/kw 0.1

The detailed design and application procedure used to train the controller based on DP and NN for
EREVs are illustrated in Figure 5. The process mainly consisted of five parts: standard driving cycles
were repeated several times to construct simulation driving cycles with different target driving distances;
the power demand array for the simulation driving cycle was generated from the powertrain model;
the DP algorithm was applied to iteratively optimize the power split ratio between the extender and
battery for the driving cycle; the NN was adopted to learn the distribution setting obtained from the DP
and to generate the NN controller; and the trained NN controller was used to build an online energy
management controller. The detailed operation for each part has been described in the previous sections.
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Figure 5. NN controller design diagram.

Figure 6 shows the generated NN controller’s performance and regression during neural network
training, and it can be seen that the trained NN controller can emulate the optimal extender output
power from the DP results well. In order to confirm that the trained NN controller could achieve
the optimal energy allocation generated by DP further, a forward simulation platform was built in
MATLAB/Simulink, as can be seen in Figure 7. The simulation platform consisted of a driver model,
a vehicle control unit, an extender model, a traction model and a longitudinal vehicle dynamics model.
Since the RC model could express the battery dynamics with high accuracy, it was adopted as the
battery model. In addition, as the battery’s working behavior is considerably affected by temperature,
a thermal model was added to compensate for any such effects.
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Figure 6. Neural network training performance and regression. (a) Mean squared errors vs. epochs;
(b) the regression between training data and output.

 

   Figure 7. NN controller design diagram.

The New Europe Driving Cycle (NEDC) was used to construct a 120-km simulation driving cycle,
which is adopted to validate the trained NN controller performance. The DP optimization results and
the NN controller simulation results are compared in Figure 8. The battery SOC and extender output
power are shown in Figure 8a,b, respectively. Their differences are shown in Figure 8c,d. It can be
observed that the extender output power values generated from the NN controller were very close to
the DP results, indicating that the NN controller had a better performance in learning the DP behavior.
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Figure 8. Comparison between DP and NN controller results under the 120-km NEDC cycle. (a) Battery
SOC variation; (b) extender output power comparison; (c) battery SOC difference; (d) extender output
power difference.
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4. Intelligent Online Control

The NN controller in Section 3 was also applied to the NEDC driving cycle with lengths of 80-km
and 165-km. The simulation results are shown in Figure 9. For the 80-km driving cycle, the battery
SOC dropped to nearly 50% when the vehicle reached its destination. In this case, 20% of the available
electric energy was stored in the battery, which limited the recharge ability. For the 165-km driving
cycle, the battery SOC dropped to 30% as the EREV arrived at the 120-km mark, and then, the vehicle
was operated in a charge-sustaining mode until the end of the trip; this is the protection method
for the battery. It can be concluded that the NN controller trained from one driving cycle is not
suitable for cycles with other driving distances because the parameter target SOC in the cost-function
has an inherent relationship with the driving distance; in other words, there is only one target SOC
curve for a particular driving distance. Training NN controllers for each driving distance can solve
the problem; however, this will require additional effort. Moreover, it is not feasible to download
such a large number of trained controllers into the controller hardware. Therefore, an intelligent
energy management controller based on several NN controllers (IEMC_NN) was designed to solve
this problem.

 
Fig. 8. Battery SOC variations of 120-km NN controller under different driving distances 
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Figure 9. Battery SOC variations of the 120-km NN controller under different driving distances.

Figure 10 shows the proposed IEMC_NN operation flowchart. It contains four modules:
the NN controller module library; the target battery SOC calculation module based on Equation (7);
the electricity consumption per unit distance, Eper, calculation module; and the NN controller selection
module. The primary idea of IEMC_NN is to intelligently select an appropriate NN controller from
the controller module library for different driving distances. The detailed operation for each part will
discussed in the following sections.
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Figure 10. Detailed operation flowchart of intelligent energy management controller for EREV based
on dynamic programming and neural networks (IEMC_NN).
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4.1. Controller Module Library

The controller module library is built based on the generated NN controllers, which are trained
from typical driving distances. The typical driving distance can be determined through the analysis
that follows. According to the report in [35], the average daily driving distance for a driver in China is
approximately 40 km. Owing to the charging time cost and inadequate charging equipment nowadays,
a plug-in HEV driver may go to a charging station every couple of days. In this study, the driver goes
to charging station every three days with low battery energy. Under this assumption, the EREV leaves
the charging station with full battery energy, and after traveling approximately 120 km, the vehicle
reaches the charging station again. Thus, one of the typical driving distances is 120 km. In addition,
the extended range of the EREV under the NEDC cycle is 400 km, which is adopted as the typical
long driving distance. The length of the medium driving distance is set as 200 km. Therefore,
the typical driving distances in this study are 120 km, 200 km and 400 km. Then, three NN controllers
are generated from the training driving cycle with typical driving distances based on the method
described in Section 3; those controllers are named as NNC1, NNC2 and NNC3.

4.2. Intelligent Energy Management Controller

4.2.1. Electricity Consumption per Unit Distance Calculation Model

The extender can be turned on/off properly to adjust the battery SOC varying along the target
curve according to the available battery energy and remaining range. The electricity consumption per
unit distance, Eper, is defined to quantify the relationship between the available battery capacity and
the remaining range.

Eper = ∆SOC/∆S = (SOCcur(k)− SOCfinal)/(disall − discur(k)), (12)

where ∆SOC represents the available battery capacity; ∆S represents the remaining range from the
current location to the end of the trip; SOCcur(k) is the current battery SOC; SOCfinal represents the
final battery SOC as the EREV arrives at the charging station (30% in this study).

The trained NN controller can control battery SOC variations along the target curve, and thus,
the current battery SOC, SOCcur(k), can be replaced by the target battery SOC, SOCdes(k). Combined
with Equation (7), Equation (12) can be modified as follows:

Eper = (SOCinit − SOCfinal)/disall (13)

In this study, the EREV leaves the charging station with full battery energy; when it arrives at the
charging station the next time, the battery energy is used up. Thus, the initial and final battery SOC
are constant values in Equation (13), and Eper is only related to the driving distance for an EREV.

4.2.2. NN_Controller Selection Module

Since a linear relationship exists between the target SOC and driving distance, the future Eper

value generated by an NN controller is fixed. Thus, an appropriate NN controller can be selected
based on estimating an ideal future Eper value consumed by the EREV to regulate the trajectory of the
battery SOC.

The Eper consumed by NNC1, NNC2 and NNC3 is defined as Eper_120, Eper_200 and Eper_400,
respectively. A diagram showing the operation of the controller selection module in IEMC_NN
is shown in Figure 11. The detailed control rules are described as follows:

(1) When the IEMC_NN cannot obtain driving distance information after the vehicle leaves the
charging station, it assumes that the EREV has arrived at the charging station after driving about
120 km. In this case, the IEMC_NN will adopt the NNC1 controller.
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(2) When the EREV with full battery energy leaves the charging station and the target driving
distance is shorter than AER, the EREV will be operated in the charging depleted mode

(3) When the target driving distance is a typical driving distance, i.e., 120, 200 or 400 km, NNC1,
NNC2 or NNC3 will be applied in the IEMC_NN for the corresponding driving distance.

(4) In most cases, the target driving distance is not the typical driving distance; such a distance is
called the untrained driving distance. In this case, the trained controller cannot be applied directly.
The selection module in the IEMC_NN can intelligently employ an appropriate NN controller.
Its operating method is illustrated in Figure 12. The destination location is set at 165 km in this
case, and the EREV is fully charged at the initial location.

First, the selection module determines that the target driving distance is between 120 km and
200 km. Then, the NNC2 controller is adopted in IEMC_NN at the beginning of the trip. The battery
SOC will vary along the target line AC, and the battery will not reach its low threshold as the EREV
arrives at Point E. This is because one NN controller leads to one Eper being consumed by the EREV.
Changing the NN controller during the trip can adjust the battery SOC trajectory. When the battery
SOC varies to Point B, the future Eper becomes Eper_120; NNC1 is employed instead of NNC2; and then,
the battery SOC varies along target curve BE.

(5) If the battery SOC reaches the low threshold before the vehicle arrives at the charging station,
the EREV will be operated in the charging sustain mode to protect the battery life.
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Figure 11. Flowchart of the operation of the controller selection module in IEMC_NN.
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5. Simulation Results and Analysis

According to the description of the IEMC_NN in Section 4, the IEMC_NN can intelligently
select an NN controller based on the target driving distance information. To validate the controller
performance, three categories of target driving distances were tested: unknown driving distance,
atypical driving distance and changing target driving distance during the trip.

5.1. Simulation with Unknown Driving Distance

Suppose that the IEMC_NN cannot obtain the target driving distance information after leaving
the charging station. The LA92 driving cycle was applied to validate the IEMC_NN performance with
unknown driving distance

The length of a single LA92 driving cycle was 15.8 km. It was repeated 10-times to construct a
simulation cycle with a total length of 158 km. The beginning SOC was 95%. The CD/CS controller
was also applied to this cycle as a comparison. The simulation results are shown in Figure 13.
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Figure 13. Battery SOC comparison for the condition of driving distance information unknown (LA92
cycle). CD/CS, charging deplete/charging sustain.

The IEMC_NN controller battery SOC slowly decreased to 30% as the EREV passed the 120-km
mark. The Eper consumed in this phase was close to Eper_120. Thus, it was inferred that NNC1 was
applied at the beginning of the route. Then, the battery SOC maintained a certain level until the EREV
reached its destination. For the CD/CS controller, the battery SOC reached 30% as the EREV achieved a
distance of 60 km, and then, the vehicle worked in CS mode until the end of the trip. The fuel economies
of these two control methods were compared and are shown in Table 3. The comparison shows that,
although the target driving distance information was not available, the IEMC_NN controller improved
fuel economy by 28.6% when compared to the CD/CS controller.

Table 3. Fuel economy comparison for the unknown driving distance information condition (LA92 cycle).

Controller Duration/s Target Driving
Distance/km Fuel Consumption/L Final SOC/% Saving Rate/%

CD/CS 14360 158 6.36 30.5 -
IEMC_NN 14360 158 4.54 30.5 28.6

Figure 14 shows a comparison of the engine working point distribution corresponding to the
IEMC_NN and CD/CS controller. It can be seen that the engine operates close to the optimal efficiency
curve when the IEMC_NN controller is applied. In other words, the proposed controller realizes better
fuel economy than the CD/CS controller. For the IEMC_NN controller, since the extender working
point has been optimized by the DP algorithm, the engine was operated closer to the optimal efficiency
curve than that of the CD/CS controller. Since the CD/CS controller started extender, to follow the
power demand as battery SOC in the low energy state, the extender working point of the CD/CS
controller was distributed in the whole region of the engine consumption map. This way, it can prove
that the proposed IEMC_NN controller improved the fuel economy.
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Figure 14. Engine working point comparison. (a) IEMC_NN engine working points; (b) CD/CS engine
working points.

5.2. Simulation with a Normal Driving Distance

In most cases, the target driving distance was not a typical driving distance, and the IEMC_NN
was still feasible for these cases based on the existing trained NN controllers. To evaluate the controller
for this case, the NEDC driving cycle was used to construct a simulation cycle with a total distance
of 165 km. Three control methods, namely, IEMC_NN, NNC1 controller only and CD/CS controller,
were compared under this driving cycle. Their simulation results are shown in Figure 15.
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Figure 15. Battery SOC variation under a normal driving distance (NEDC, 165 km).

The simulation results show the battery SOC trajectory can be divided into two stages for the
IEMC_NN. In the first stage, the battery SOC changed slowly and decreased to 60.6% when the EREV
was driven for approximately 114 km. According to Equation (13), the Eper consumed in this stage was
very close to Eper_200; therefore, the NNC2 controller was applied during this stage. Then, the battery
SOC decreased quickly and reached a low threshold as the EREV completed the trip. The value of Eper

in the second stage was almost Eper_120. This result is attributed to the NNC1 controller. Unlike other
controllers, the proposed controller, IEMC_NN, can use up the battery energy exactly as the EREV
completes the trip.

Table 4 shows a comparison of the fuel economy values for the three controllers. The fuel
consumptions for the three controllers CD/CS, NNc1 only and IEMC_NN were 5.22 L, 4.87 L and 4.77 L,
respectively, and their final SOC values were 29.5%, 30.2% and 31.5%, respectively. However, the final
SOC of the IEMC_NN was slightly higher than the low threshold of 30%; hence, the equivalent fuel
consumption calculation method was adopted for fair comparison [36]. The IEMC_NN improved the
fuel saving rate by 10.2% when compared to the CD/CS controller and by 3.5% when compared to the
NNC1 controller.
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Thus, when the target driving distance was not a typical driving distance, the IEMC_NN controller
not only adjusted the battery SOC, reducing it to a low threshold as the EREV finished the trip, but also
increased fuel economy.

Table 4. Comparison of untrained driving distance fuel economy (NEDC cycle).

Controller Duration/s Target Driving
Distance/km Fuel Consumption/L Final SOC/% Saving Rate/%

CD/CS 17699 165 5.22 29.5 -
NNC1 only 17699 165 4.87 30.2 6.7
IEMC_NN 17699 165 4.77 31.5 10.2

5.3. Simulation with a Changing Target Driving Distance during the Trip

Sometimes, the target driving distance changes during the trip. If the VCU cannot adjust in
a timely manner, the battery SOC may not reduce to the low threshold as the EREV arrives at the
charging station. The HWFET driving cycle was repeated 10-times to construct a simulation cycle
with the length of 165 km. Now, consider that the first target driving distance of the driver is 120 km
when the EREV covers a distance of 25 km, but the driver then changes the target driving distance to
165 km. Three control methods were tested. In one method, the NNC1 controller remained unchanged;
in another, the IEMC_NN was applied to adjust the controller intelligently, and in the last method,
the CD/CS algorithm was applied. The simulation results are shown in Figure 16.

According to the above-mentioned assumption, when the battery SOC decreases up to Point A
(25 km, 79%), the driver changes the target driving distance to 165 km instead of 120 km. In the first
control method, the NNC1 controller was applied without any adjustments, and the descending trend
of the battery SOC remained unchanged before the vehicle reached point C (120 km, 30%). However,
the EREV had not finished the trip yet, and the vehicle worked in the charging sustain mode, in which
the SOC was varied around 30% until the vehicle completed the trip. For the IEMC_NN, the initial
target driving distance was 120 km; therefore, the NNC1 controller was selected, and the trajectory of
the battery SOC coincided exactly with that of the first control method. When the battery SOC reached
Point B (47.1 km, 67.3%), the trajectory trend changed, and Point D (165 km, 30%) was attained, as the
EREV arrived at the end point of the trip. The SOC trajectory BD is parallel to the NNC2 target curve.
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Figure 16. Battery SOC comparison when the target driving distance changes during the trip (HWFET cycle).

A comparison of the fuel economies of the two control methods is presented in Table 5. It can
be seen that the proposed controller can adjust the NN controller in time as the driver changes the
destination and improve the fuel economy by approximately 13.3%. Further, it is seen that reducing
the EREV working time as the battery enters the low energy state can improve fuel economy.

The equivalent economy improvements for the IEMC_NN and CD/CS controller are shown in
Figure 17. All the improvement results were determined through the equivalent fuel consumption
calculation method. The results indicate that the proposed controller, IEMC_NN, improved the
economy by about 10–28% when compared to the CD/CS controller.
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Table 5. Fuel economy comparison when the target driving distance changes during the trip (HWFET cycle).

Controller Duration/s Target Driving
Distance/km Fuel Consumption/L Final SOC/% Saving Rate/%

CD/CS 7660 165 km 7.29 30.5 -
NNC1 only 7660 165 km 6.86 30.5 5.9
IEMC_NN 7660 165 km 6.32 30.0 13.3
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Figure 17. Fuel economy improvements for the IEMC_NN controller compared to the CD/CS controller.

6. Conclusions

This study focuses on designing an energy management controller, which can control battery
SOC close to the lower bound as the EREV arrives at the charging station and which can improve
the EREV’s storage of more clean energy from the electric grid. Meanwhile, consuming minimum
gasoline during the trip is another design target. An intelligent energy management controller for
EREV, namely, IEMC_NN, was proposed to achieve the goals above. The control objectives were
presented as cost function, and DP was applied to obtain the optimal split ratio between the extender
and battery. A neural network has been designed and trained to generate the NN controller, which was
adopted to control battery SOC variation by emulating the optimal extender power. Simulation results
show that the error between the SOC controlled by the trained NN controller and target SOC is within
3%. Three typical driving distance were selected based on the driving statistics, and the corresponding
trained NN controllers, named as NNC1, NN C2 and NN C3, constructed the controller module in
IEMC_NN. The other components in IEMCS were the electricity consumption per unit distance (Eper)
calculation module, the target battery SOC calculation module and the NN controller selection module.

Three conditions were simulated to validate the performance of the IEMC_NN: unknown driving
distance, atypical driving distance and target driving distance changing during the trip. Comparing the
simulation results between IEMC_NN and the CD/CS controller, the following conclusions could be
drawn:

(1) If the driving distance to the charging station is known, the IEMC_NN can intelligently select
the NN controller depending on the remaining battery energy and the driving distance to the charging
station. The battery SOC can just drop to the lower bound as the EREV reaches the charging station,
and the vehicle’s working duration as the battery is in a low energy state can be minimized. Simulation
results show that IEMC_NN improves the fuel saving rate by 10.2% compared to the CD/CS controller
under the NEDC cycle. Even if the target driving distance changes during the trip, the IEMC_NN can
still be feasible, and the fuel economy can be improved by 13.3% under the HWFET cycle.

(2) If the driving distance is unknown, the IEMC_NN adjusts the battery SOC varying along
the default target curves and the terminal SOC close to the lower bound. Compared to the CD/CS
controller, the IEMC_NN can improve fuel economy by approximately 28.6% under the LA92 cycle.

In this study, the IEMC_NN performance has been only validated by simulation. The slope of the
road, which can influence the driveline power, is not considered in IEMC_NN. Moreover, the service life
of the battery and extender are also neglected. A more comprehensive work, considering the influence
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factors above, will be carried out to improve the performance of IEMC_NN, and an experiment by a
real application will be adopted to validate the controller.
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