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Abstract: Novel carbon materials, carbon nanotubes (CNTs) and porous graphene (PG),
were exploited and used as conductive additives to improve the rate performance of LiMn2O4

cathode for the rechargeable aqueous Zn/LiMn2O4 battery, namely the rechargeable hybrid aqueous
battery (ReHAB). Thanks to the long-range conductivity and stable conductive network provided by
CNTs, the rate and cycling performances of LiMn2O4 cathode in ReHAB are highly improved—up
to about 100 mAh·g−1 capacity is observed at 10 C (1 C = 120 mAh·g−1). Except for CNTs, porous
graphene (PG) with a high surface area, an abundant porous structure, and an excellent electrical
conductivity facilitates the transportation of Li ions and electrons, which can also obviously enhance
the rate capability of the ReHAB. This is important because the ReHAB could be charged/discharged
in a few minutes, and this leads to potential application of the ReHAB in automobile industry.

Keywords: carbon nanotube; graphene; LiMn2O4; rechargeable hybrid aqueous battery;
high rate capability

1. General Introduction of Aqueous Rechargeable Battery

Batteries are widely used as energy storage systems. Lithium ion batteries can operate at high
voltages due to the wide electrochemical stability range of the organic electrolytes (3–5 V vs. Li+/Li
electrode), resulting in high energy densities. Therefore, lithium ion batteries have been widely used
in electronic devices and they have been chosen as one of the most promising power sources for
electric vehicles (EVs). Unfortunately, these organic electrolytes show high flammability and low
ionic conductivity (about two orders of magnitude lower than those of aqueous electrolytes); besides,
the fabrication cost of lithium ion batteries is generally high. Aqueous electrolytes are electrochemically
stable just in a narrower voltage (1.23 V vs. SHE) than organic electrolytes; however, they are much
safer (inherently non-flammable and low toxic) and the fabrication cost of aqueous batteries is much
lower than lithium ion batteries, so aqueous batteries are more suitable for low cost and large-scale
energy storage [1–3]. Thus far, a variety of aqueous batteries, including alkaline Zn-MnO2, lead-acid,
Ni-Metal (e.g., zinc, cobalt, and iron), and Ni-metal hydride (Ni-MH) are used extensively or studied
widely [1,4–8]. However, these systems also have their own problems. Specifically, the alkaline
Zn/MnO2 is a primary battery, and its disposal causes plenty of pollution to the environment;
the poisoning metals of lead and cadmium utilized in lead-acid and Ni-Cd batteries, respectively,
may cause damage to the environment; Ni-MH (M = La, Ce, Nd, Gd, etc.) batteries utilize rare earth
elements, which makes them expensive; and Ni-Co (Fe, Zn) batteries have narrow voltage range.

Recently, a series of aqueous “rocking-chair” batteries based on the ion (e.g., Li+, Na+, K+,
and Zn2+) intercalation/de-intercalation processes have been developed [9–20]. In 1994, Dahn et al. first
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developed the aqueous LiMn2O4/VO2 battery [9], with LiNO3 solution (5 mol·L−1) as the electrolyte.
Then, various kinds of aqueous “rocking-chair” lithium ion batteries (e.g., LiFePO4/LiTi2(PO4)3,
LiMn2O4/LiTi2(PO4)3, and LiMn2O4/LiV3O8) have been reported; [9–12]. Besides, Cui et al. reported
a potassium ion battery, using carbon/polypyrrole hybrid and copper hexacyanoferrate as the anode
and the cathode. This battery exhibited an excellent rate capability [14]. Different from aqueous
lithium or potassium ion batteries, aqueous sodium ion batteries may be more promising to be
used as large-scale energy storage systems due to the rich sodium resources in nature. Whitacre’s
and Chiang’s groups both reported aqueous Na0.44MnO2/NaTi2(PO4)3 batteries [18,19]. However,
sodium-intercalated compounds for aqueous systems are limited. Unique Li/Na mixed ion batteries,
Na0.44MnO2/TiP2O7 and LiMn2O4/Na0.22MnO2, were developed by Xia’s group, which mainly
depend on the intercalation/de-intercalation of Na ions and Li ions, respectively. The specific energy
of these two batteries was 25 and 17 Wh·kg−1, respectively. It is worth mentioning that Li ions
and Na ions are separated in aqueous LiMn2O4/Na0.22MnO2 battery due to the special operating
mechanism of this system [21]. In addition, Cui et al. found that materials with the Prussian Blue
crystal structure (nickel hexacyanoferrate and copper) possess large interstitial sites, which allows for
the intercalation/de-intercalation of sodium (potassium) ions [20,22]. Their capacities are between 50
and 60 mAh·g−1.

2. Introduction of Rechargeable Hybrid Aqueous Battery

New types of aqueous rechargeable batteries, including new electrode materials and chemistry,
are required to achieve high power as well as high safety and eco-friendliness. Herein, rechargeable
Zn/MnO2 batteries have been widely studied; however, the redox reactions on the cathode show poor
reversibility, which hinders its commercial applications. When electrolytes with pH ≥ 7, Zn(OH)2,
ZnO2

2−, and [Zn(OH)4]2− are formed depending on potential and pH value, while with pH < 7,
Zn− 2e− → Zn2+ [23]. Minakshi et al. found that replacing MnO2 by LiMn2O4 and changing the
electrolyte to aqueous LiOH/ZnSO4 solution could improve the reversibility; however, due to the high
pH value of the electrolyte, only a few amount of cathode material can be used during charge/discharge
processes [23]. Recently, Kang et al. developed a mild zinc ion battery, using α-MnO2 as cathode
and Zn as anode [15], which showed high capacities and a high rate capability. Additionally, a new
secondary aqueous Zn/LiMn2O4 battery system, namely the rechargeable hybrid aqueous battery
(ReHAB) has been developed by our group (Figure 1) [24]. The operation of this battery system is
based on two different kinds of redox reactions. At the anode, zinc ions are deposited on the zinc
sheet and then dissolved into a mild acidic aqueous solution, containing zinc ions, during charge and
discharge processes, respectively. At the cathode, Li ions are de-intercalated from and intercalated into
LiMn2O4 during charge and discharge processes. The advantages of this battery include the capability
of functioning at high rate when the cathode formulation is optimized, and the low cost. Most of the
materials used in this battery are commercially available. The battery can be assembled under the
atmospheric environment.

Table 1 shows the comparison of various types of major secondary aqueous batteries. Among
them, lead-acid batteries have the most widely applications [1]. Compared to lead-acid batteries,
our ReHAB (Zn/LiMn2O4 batteries) shows about doubled energy density and up to 10 times higher
cycle life; and is more environmentally friendly; besides, the cost of our ReHAB is almost the same as
lead-acid batteries. However, some technical problems must be solved before the commercialization of
the ReHAB. The first problem is the rate capability. The capacity of a standard 10 kg ReHAB battery
should be about 0.6 kWh. If it could discharge 100% of its capacity at 10 C rate (or 6 min), the power
would be high enough to crank a passenger vehicle [25]. To do this, the ReHAB is required to work
at 10 C with the specific discharge capacity of not less than ~100 mAh·g−1. This is accomplished via
applying novel carbon materials in the cathode formulation, which is the topic of this review paper.
The second problem is the maintenance issue, which we propose to solve by the design of novel
thixotropic gel electrolytes [26,27]. The remaining problems are the dendrite formation, corrosion,
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and hydrogen gas evolution on the zinc anode [28,29]. Intensive research efforts based on these
issues are under progress. With reasonable high energy density, high power, high safety, and low
cost, the ReHAB can be exploited as uninterruptible power supplies, large energy storage devices to
interface with the grid, and novel start-stop battery in automobile vehicles.
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Table 1. Comparison of various types of major secondary aqueous batteries [1,3,5,16,24].

Index

Type
Ni-Cd Battery Ni-MH Battery

Aqueous Alkali-Metal
Ion Battery

Lead-Acid
Battery

Zn/LiMn2O4
Battery

Working Votage (V) 1.2 1.2 1.5 1.8–2.0 1.8
Energy Density (Wh·kg−1) 30–40 70–80 20–60 30–50 50–80
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3. Introduction of LiMn2O4

Compared with other cathode materials (e.g., LiCoO2 [30–32], LiNiO2 [33], LiFePO4 [34],
NaMnO2 [35] and KMnO2 [36]) in aqueous rechargeable batteries, spinel LiMn2O4 is the most
promising cathode material for aqueous rechargeable batteries due to its safety, eco-friendliness,
low cost, and excellent structural stability [37]. The crystal structure of spinel LiMn2O4, space group
Fd3m, is illustrated in Figure 2, in which the Li and Mn cations occupied the 8a tetrahedral and the
16d octahedral sites; Li ions transfer in the three-dimensional (3-D) interstitial space provided by the
Mn2O4 framework, which can be expressed by Equations (1) and (2) [38,39].

LiMn2O4
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Figure 2. The crystal structure of spinel LiMn2O4 (reprinted from Ref. [40] with permission
from Elsevier).

In 1994, it was reported that Li ion could de-intercalate/intercalate from/into LiMn2O4 in aqueous
electrolyte for the first time [9]. In the CV curve of the LiMn2O4 in the saturated Li2SO4 solution
(Figure 3), two pairs of redox peaks at 0.85/0.69 V and 0.98/0.82 V vs. standard calomel electrode
(SCE), respectively, represent the two-step de-intercalation/intercalation of Li ions from/into the
tunnels of LiMn2O4. Besides, the oxidation potentials are much lower than the oxygen generation
potential (~1.5 V vs. SCE), revealing the excellent stability of LiMn2O4 as the cathode for aqueous
rechargeable batteries [41].
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However, the dissolution of Mn3+ in acid electrolytes, Mn3+
(solid) →Mn4+

(solid)+ Mn2+
(liquid), and

the phase transition from cubic to tetragonal phase result in the capacity decay, which hindered its
practical application [42,43]. The dissolution of Mn3+ can be alleviated by surface modification and/or
cation doping [38,44–46].

Besides, the rate capability of the LiMn2O4 cathode is intrinsically low. Specifically, the diffusion of
Li ions and electrons in LiMn2O4 is slow, leading to the insufficient Li ion intercalation/de-intercalation
under high current density, which cannot satisfy the requirements for energy storage system that can
transfer (store or release) energy at high rates [47–49]. Thus, to make the ReHAB capable of working at
high rate capability, the development of cathode formulation is one of the most important keys. In this
review, we focus on using novel carbon materials, porous graphene and carbon nanotubes (CNTs),
as conductive additives to improve the electrical conductivity, thus improving the rate capability of
the battery.
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4. Increase the Electrical Conductivity of LiMn2O4 Cathode by Adding CNTs or Graphene as
Conductive Additive

4.1. Increase the Electrical Conductivity of LiMn2O4 Cathode by Adding CNTs as Conductive Additive

4.1.1. Structure, Properties and Synthesis of CNTs

Since being discovered by Sumio Iijima in 1991 [50], carbon nanotubes (CNTs) have aroused
great interest of researchers. CNTs can be envisaged as cylinders rolled by graphene layers (Figure 4).
The length of CNTs ranges from ~100 nm to a few centimeters, while the diameter of the hollow cores
changes from less than 1 nm to ~100 nm, resulting in a high length-to-diameter ratio, or aspect ratio.
Based on the number of graphene layers, CNTs can be distinguished into single-walled CNTs (SWNTs)
and multi-walled CNTs (MWNTs). SWNTs consist of a single rolled graphene layer, while MWNTs
consist of two or more rolled graphene layers [51].
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from Elsevier).

CNTs possess unusual properties, including exceptionally high mechanical strength and high
electrical conductivity. The bonds of CNTs employ sp2-hybrid carbon atoms, which are stronger
than the sp3-hybrid carbon atoms found in diamond, resulting in amazing mechanical strength of
CNTs. The free electrons formed π-electron system, which determines the electronic property; and the
one-dimensional (1-D) tube structure facilities the transport of electrons, which contributes to the
high electrical conductivity of CNTs. These unique properties make CNTs be widely used in different
kinds of applications, such as nanotechnology, energy storage, electronics, gas storage, water filtration,
sensors, and so forth [51,52].

Based on the wide application of CNTs, mass production of CNTs with controlled structures
becomes urgent. The techniques usually used to prepare CNTs include arc-discharge [50,53],
laser ablation [54], gas-phase pyrolysis [55], and chemical vapor deposition (CVD) [56]. Among
these methods, CVD has been used to mass-produce CNTs at a low cost. Wei et al. could produce over
thousands of tons of CNTs per year by fluidized bed reactor-based CVD method, with the price of
MWNTs below US $100 kg−1 and that of SWNTs below US $2000 kg−1 [57].

4.1.2. LiMn2O4/CNT Nanocomposites

Recently, LiMn2O4/CNT composites have been prepared by the following methods: mechanical
alloying method [58], self-assembly process [59], in-situ hydrothermal method by using MnO2/CNT
and LiOH as reaction [60–62], microwave-assisted hydrothermal reactions [63,64], spray-deposition
method [65] and in-situ hydrothermal growth of binder-free flexible LiMn2O4/CNT composite [63].
These composites have been used in lithium ion batteries as cathode materials, where high
electrochemical performances of LiMn2O4 were attained.

Additionally, LiMn2O4/CNT composites have been used in aqueous rechargeable batteries.
Zhang et al. prepared LiMn2O4/MWNTs composite by a ball-milling process with a high temperature
treatment at 500 ◦C for 1 h [66], the morphology of the prepared LiMn2O4/MWNTs composite
is shown in Figure 5a The LiMn2O4/MWNTs cathode was investigated in 1 mol·L−1 Li2SO4 for
aqueous rechargeable batteries and it delivered higher discharge capacities than the LiMn2O4 cathode
at different current densities (Figure 5b). Moreover, the results from electrochemical impedance
spectroscopy (EIS) revealed that the transfer of Li ions in the LiMn2O4/MWNTs cathode is much
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faster than that in the LiMn2O4 cathode. This means that the MWNTs can obviously enhance the
capacity storing and the rate capability of the battery. Tang et al. prepared LiMn2O4/CNT composite
by a hydrothermal method with a heat treatment at 700 ◦C for 8 h, the morphology of the prepared
LiMn2O4/CNT composite is shown in Figure 5c The LiMn2O4/CNT cathode was investigated in
5 mol·L−1 LiNO3 aqueous electrolyte, and it delivered higher capacities than LiMn2O4/active carbon
(LiMn2O4/AC) electrode at different current densities (Figure 5d) [61].
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Figure 5. (a) SEM image of as-prepared LiMn2O4/MWNTs composite; (b) rate capability of LiMn2O4

and LiMn2O4/MWNTs in 1 mo·L−1 Li2SO4 solution; (c) TEM image of as-synthesized LiMn2O4/CNT
nanocomposite by hydrothermal reaction; and (d) rate capability for LiMn2O4/CNT and LiMn2O4/AC
composites heat treated at 700 ◦C for 8 h (modified from Ref. [61,66] with permission from Springer
and Elsevier).

Besides, Dillon’s group developed an aqueous paper battery, using LiMn2O4 as cathode, carbon
coated TiP2O7 as anode, and carbon nanotube coated paper as current collector in 5 mol·L−1 LiNO3

solution [67]. Coated by SWNTs not only reduced the resistance of the paper, but also facilitated the
penetration of anode and cathode materials into the conductive substrates, resulting in an improved
rate capability in comparison with the organic system.

A three-dimensional carbon nanotube/acetylene black (CNT/AB) network was fabricated and
used as conductive additive by our group to improve the rate capability of the LiMn2O4 cathode
of the rechargeable aqueous Zn/LiMn2O4 battery system, or ReHAB, using a simple mechanical
mixing approach [68]. Figure 6a shows the schematic structure of hierarchical CNT/AB/LiMn2O4

electrodes. The small black dots represent AB nanoparticles, the brown squares represent LiMn2O4

nanoparticles, and the blue lines represent CNTs. The morphology of the CNT/AB/LiMn2O4 electrode
can also be confirmed by SEM (Figure 6b) and TEM (Figure 6c) images. The CNTs, prepared by a
chemical vapor deposition method, show ~100 µm in length and ~11 nm in diameter, which can
provide long-range conductive pathways for fast electron transfer. Herein, the CNT/AB/LiMn2O4

electrode (CNT:AB = 1:2, wt %) shows an excellent rate capability (a specific capacity of 105 mAh·g−1

at 10 C, 1 C = 120 mAh·g−1, Figure 6d).
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Figure 6. (a) Schematic illustration of CNT/AB/LiMn2O4 electrode; (b) SEM; and (c) TEM images of
the 3.3 wt % CNT/AB/LiMn2O4 electrode; and (d) rate capability of the 3.3 wt % CNT/AB/LiMn2O4,
10 wt % CNT/LiMn2O4, and 10 wt % AB/LiMn2O4 electrodes (modified from Ref. [68] with permission
from Springer).

Additionally, a binder-free flexible LiMn2O4/CNT hybrid film was prepared by our group
(Figure 7a) and used as a high power cathode for the ReHAB [69]. LiMn2O4 particles and CNTs are
highly entangled together (Figure 7b) to form a free-standing hybrid film with a high mechanical
strength (Figure 7c,d) and a good conductivity which facilitate the transfer of electrons. Herein,
the LiMn2O4/CNT electrode exhibits an excellent rate capability (a specific capacity of 100 mAh·g−1 at
10 C, 1 C = 120 mAh·g−1, Figure 7e). While, the Van Der Waals forces between LiMn2O4 nanoparticles
and CNTs are weak and these bonding may get weaken during cycling, which results in the minor
decrease of capacity (Figure 7f) [70]. It is worth mentioning that this is the first demonstration of using
highly stable binder-free flexible LiMn2O4/CNT electrodes in aqueous rechargeable battery.
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Figure 7. (a) Schematic fabrication of binder-free flexible LiMn2O4/CNT network electrodes through
dispersion and vacuum filtration processes; (b) SEM image of the binder-free flexible LiMn2O4/CNT
electrode; optical photographs of the produced hybrid film under: (c) bending; and (d) twisting;
and comparison of: (e) rate; and (f) cycling performance of the binder-free LiMn2O4/CNT, 7 wt %
CNT/LiMn2O4, and 7 wt % AB/LiMn2O4 electrodes (modified from Ref. [69] with permission
from Elsevier).

4.2. Increase the Electrical Conductivity of LiMn2O4 Cathode by Adding Graphene as Conductive Additive

4.2.1. Structure, Properties and Synthesis of Graphene

Since being discovered by Geim in 2004, graphene has caused widespread concerns of scientists.
Graphene, a two-dimensional (2-D) monolayer graphite sheet of sp2 carbon atoms with a honeycomb
structure, has a large specific surface area of 2630 m2·g−1 [71,72]. It is considered as the fundamental
structural units, which can be wrapped into zero-dimensional (0-D) fullerene, rolled into 1-D CNTs,
and stacked into three-dimensional (3-D) graphite, as shown in Figure 8.
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Figure 8. Graphene is the fundamental structural units for other carbonaceous materials (0-D fullerenes,
1-D CNTs and 3-D graphite) (reprinted from Ref. [72] with permission from Nature Publishing Group).

Graphene possesses unique mechanical and thermal properties. The intrinsic tensile strength of
graphene is up to 130 GPa, which makes it the strongest material [73]. The thermal conductivity of
graphene is up to 5300 W·(m·K)−1, which is four times of the diamond [74]. Moreover, the highly
special electrical properties of graphene attract much more attentions of researchers: the giant intrinsic
mobility of which is up to 15,000 cm2·(V·s)−1 [75]; the velocity of electrons in which is three hundredth
of the speed of light, exceeding most of conductors [76]. All of these electrical properties contribute
to the best conductivity of graphene. Graphene is expected to be widely used in different kinds
of fields, such as energy storage, nanotechnology, electronic devices, biomedical materials, and so
forth [71,77,78].

Currently, there are usually six different methods to prepare graphene: mechanical exfoliation [79],
graphene oxide (GO) reduction [80], CVD [81,82], epitaxial growth [83], cutting carbon nanotubes [84],
direct sonication and chemical reduction [85]. Among these methods, only GO reduction method and
CVD method are suitable for large-scale graphene production.

Li et al. [86] reported the preparation of graphene through a GO reduction method, which includes
three steps as following (Figure 9): (1) oxidize graphite to hydrophilic GO with greater interlayer
distance by modified Hummers’ method; (2) disperse GO in water with ultra-sonication to form GO
colloids; (3) convert the insulated GO back to conducted graphene by chemical reduction, for example,
using hydrazine. The graphene prepared by the GO reduction method is named as reduced graphene
oxide (RGO). The graphene oxide reduction method has inevitable disadvantages: the structure of
graphene is destroyed by strong oxidant and reductant used in the preparation process, compromising
the electrochemical performance of RGO; besides, graphene oxide is easily accumulated in aqueous
solution due to the van der Waals force. However, this method is of low cost and is suitable to prepare
graphene derivatives, which expands the application of graphene.
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Figure 9. Schematic illustration of the synthesis of reduced graphene oxide dispersions. (1) Graphite
(black blocks) is oxidized to graphite oxide (lighter colored blocks) with greater interlayer distance
by a modified Hummers’ method; (2) Graphite oxide is dispersed in water with an ultra-sonication
agitation to form GO colloids; and (3) GO colloids are reduced to reduced graphene oxide (RGO) by
hydrazine (reprinted from Ref. [86] with permission from Nature Publishing Group).
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The CVD method provides a promising way to realize the controllable preparation of
graphene [82]. Graphene with different properties can be obtained by selecting different substrates and
carbonaceous sources, as well as controlling reaction temperature in the preparation process. Typically,
the substrate (including metal substrates such as Fe, Co, Ni, Cu, etc., and nonmetal substrates such
as CuO, NiO, etc.) is exposed to the volatile precursors (usually carbon sources such as acetylene,
ethylene, methane, etc.), which cracked at high temperature to form desired deposit on the surface
of the substrate. Generally, volatile by-products produced in the CVD process flow out through the
reactor. After the substrate is removed, the desired product is obtained.

The ability to form sp2 crystalline carbon from solid solutions of various transition metals (e.g.,
Fe, Co, Ni, and Cu) is determined by their carbon affinity [87]. In the case of Fe, the asymmetrical
distribution of electrons in the d-shell {[Ar]3d64s2} leads to mutual repulsion, which results in its
higher affinity towards carbon [88]; the high affinity between Fe and C makes it more favorable to form
carbide than graphitic carbon. Cu has the lowest affinity to carbon [89,90] and has very low carbon
solubility compared to Co and Ni (0.001–0.008 wt % at ~1084 ◦C for Cu [90,91], ~0.6 wt % for Ni at
~1326 ◦C, and ~0.9 wt % for Co at ~1320 ◦C) [92], which can owe to the fully filled 3d-electron shell
{[Ar]3d104s1} structure of Cu, the most stable configuration; hence, Cu can only form soft bonds with
carbon via charge transfer from the p electrons in the sp2 hybridized carbon to the empty 4s states
of Cu [88,93]. Therefore, the very low affinity between carbon and Cu along with the ability to form
intermediate soft bonds makes copper the most suitable catalyst for graphitic carbon formation.

Ning et al. prepared a kind of porous graphene, or PG, by CVD method, using porous MgO
as substrates. Figure 10 shows the two-step preparation process of PG, synthesis of porous MgO
layers and template growth of PG [82]. Firstly, MgO powder was mixed with deionized water under
super-ultrasonic stirring. The mixture was boiled in a reflux apparatus for 24 h. After filtration, drying,
and calcination at 500 ◦C for 30 min, porous MgO layers were obtained. Then, PG was prepared by
a one-step CVD process, in which CH4 was cracked at 875 ◦C to create carbon deposits on the MgO
templates, after removing MgO by an acid washing process and drying at 80 ◦C for 12 h, PG was
finally obtained.
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4.2.2. LiMn2O4/Graphene Nanocomposites

Except for CNTs, graphene, a 2-D single layer of carbon atoms, possesses unique properties
such as high surface area and superior electrical conductivity [94]. The high surface area can increase
the interfacial contact between electrode and electrolyte, resulting in a fast transportation of Li ions;
the superior electrical conductivity contributes to a fast electron transport. Therefore, graphene can
also be used as an ideal conductive additive to improve the electrochemical performance of LiMn2O4

cathode [59,95,96]. Recently, LiMn2O4/graphene [97,98] and LiMn2O4/RGO [99,100] composites have
been prepared and studied as the cathodes of lithium ion batteries, resulting into highly improved
rate capabilities.
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Additionally, there are a few reports about using graphene in aqueous rechargeable
battery [97,101–103]. Jiang et al. used reduced graphene oxide (RGO) nanosheets (inserted figure
of Figure 11a) as conductive additive to improve the rate capability of the LiMn2O4 cathode.
The electrochemical measurements were conducted in 5 mol·L−1 LiNO3 aqueous electrolyte.
When RGO nanosheets and acetylene black (AB) nanoparticles co-existed with the weight ratio
of 1:2 (the content of RGO is 5 wt %, Figure 11a) in the electrode, the rate performance of the LiMn2O4

electrode was highly enhanced (Figure 11b). The effective conducting pathways formed by RGO
nanosheets and acetylene black nanoparticles contribute to the high rate capability [97].
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Figure 11. (a) SEM image of the LiMn2O4-RGO (5 wt %), inserted figure shows the TEM image of the
RGO; and (b) galvanostatic charge/discharge curves of LiMn2O4-RGO (5 wt %) at various C-rates
(modified from Ref. [97] with permission from Royal Society of Chemistry).

Besides, PG was prepared and directly used in our ReHAB as conductive additive in the LiMn2O4

cathode [104]. The PG can provide facile access for the electrolyte and high electrical conductivity
for the cathode. When mixed with AB with the weight ratio of 1:2 (the content of PG is 3.3 wt %)
in the electrode, it also shows a higher rate capability (a specific capacity of 94 mAh·g−1 at 10 C,
1 C = 120 mAh·g−1), which is comparable to the results of Jiang et al.

4.3. Comparison of Different Conductive Additives in LiMn2O4 Cathodes in Aqueous Batteries

The electrochemical performances of LiMn2O4 cathodes with different conductive additives in
aqueous batteries are listed in Table 2. It shows that better rate capability can be achieved by using
CNTs as conductive additive than graphene. Among which, the 3.3 wt % CNT/AB/LiMn2O4 and
binder-free flexible LiMn2O4/CNT electrodes prepared by our group both exhibit high rate capability,
which attributes to the long-range conductivity provided by CNTs. Although LiMn2O4/CNT
composite [61] prepared by a hydrothermal method shows a higher capacity than our electrodes,
its content of conductive additive is as high as ~33 wt %, including ~13 wt % CNTs and 20 wt %
acetylene black, while, for our electrodes, the content of conductive additive is only 10 wt %, especially
for the 3.3 wt % CNT/AB/LiMn2O4 electrode, only 3.3 wt % CNTs was used. Besides, the 3.3 wt %
CNT/AB/LiMn2O4 electrode was prepared by a simple mechanical mixing method, which is very
simple and feasible to large scale industry applications. Compared to the 3.3 wt % CNT/AB/LiMn2O4

electrode, the 3.3 wt % PG/AB/LiMn2O4 electrode prepared by the same mechanical mixing method
shows a much better cycling performance (17% higher capacity retention after 300 cycles at 4 C).

Table 3 compares the properties of different conductive additives, AB, CNTs, and PG, used in the
formulation of the LiMn2O4 cathode in the ReHAB. Compared to AB, CNTs can provide long-range
conductivity; PG with a large surface area can provide a large conducting contact area between
LiMn2O4 and conducting pathways. However, for CNTs, the reaction between CNTs and Li ions
during cycling processes makes them more fragile, so they may break into shorter lengths with the
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volume changes of the active materials, resulting in the destroy of the long-range conductivity, thus
the decrease of capacity [51]; for the PG, the high cost hinders its large-scale application.

Table 2. Comparison of different conductive additives in LiMn2O4 cathodes in aqueous batteries.

Cathode Specific Capacity
at 4 C (mAh·g−1)

Specific Capacity
at 10 C (mAh·g−1)

Cycling
Performance Reference

LiMn2O4/MWNTs 110 90 1000 (93%) [66]
LiMn2O4/CNT 136 130 2000 (72%) [61]

3.3 wt % CNT/AB/LiMn2O4 125 105 300 (70%) [68]
Binder-free flexible LiMn2O4/CNT 120 100 300 (80%) [69]

LiMn2O4-RGO (5 wt %) 107 105 100 (88%) [97]
3.3 wt % PG/AB/LiMn2O4 110 94 300 (87%) [104]

NOTE: MWNTs: Multi-walled Carbon Nanotubes; AB: Acetylene Black; CNTs: Carbon Nanotubes; PG: Porous
Graphene; RGO: Reduced Graphene Oxide.

Table 3. Comparison of different conductive additives in LiMn2O4 cathode of the ReHAB [104].

Conductive
Additive

Specific Surface Area
(m2·g−1) Conducting Mode Price (US: $·kg−1)

AB 50–70 Point-to-point 30
CNTs 200–300 Point-to-line 100

PG 1100–1200 Point-to-plane 3000

NOTE: AB: Acetylene Black; CNTs: Carbon Nanotubes; PG: Porous Graphene.

5. Conclusions

This paper gives a review of exploiting CNTs and porous graphene as conductive additives to
improve the rate capability of LiMn2O4 cathode in the rechargeable aqueous Zn/LiMn2O4 battery,
namely the ReHAB. CNTs can provide stable and long-range conducting network, so they can be used
as an ideal conductive additive to improve electrical conductivity of battery electrodes. In addition
to CNTs, porous graphene with an abundant porous structure, a high surface area, and an excellent
electrical conductivity, was used as a conductive additive to the LiMn2O4 cathode for the first time,
resulting in highly improved electrochemical performance of the LiMn2O4 cathode.

CNTs and graphene can highly improve the rate capability of the ReHAB by simple mechanical
mixing. Compared to CNTs, LiMn2O4 cathode with porous graphene as conductive additive shows
much better cycling stability; however, mass production of porous graphene with high quality at a
much lower price is still the main problem that hinders its large-scale application; besides, systematic
studies of deposition/dissolution rate of zinc at the anode are needed to eliminate its influence on the
Li ion diffusion.

Although many obstacles still need to be overcome before the commercialization of the ReHAB,
major advances in both performance enhancement and mechanism elucidation of the ReHAB have
been reported. It is believed that further investigation will eventually lead to the practical application
of the ReHAB in the near future.
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