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Abstract: In the smart home environment, efficient energy management is a challenging task.
Solutions are needed to achieve a high occupant comfort level with minimum energy consumption.
User comfort is measured in terms of three fundamental parameters: (a) thermal comfort, (b) visual
comfort and (c) air quality. Temperature, illumination and CO2 sensors are used to collect indoor
contextual information. In this paper, we have proposed an improved optimization function to
achieve maximum user comfort in the building environment with minimum energy consumption.
A comprehensive formulation is done for energy optimization with detailed analysis. The Kalman
filter algorithm is used to remove noise in sensor readings by predicting actual parameter values.
For optimization, we have used genetic algorithm (GA) and particle swarm optimization (PSO)
algorithms and performed comparative analysis with a baseline scheme on real data collected for a
one-month duration in our lab’s indoor environment. Experimental results show that the proposed
optimization function has achieved a 27.32% and a 31.42% reduction in energy consumption with
PSO and GA, respectively. The user comfort index was also improved by 10% i.e., from 0.86 to 0.96.
GA-based optimization results were better than PSO, as it has achieved almost the same user comfort
with 4.19% reduced energy consumption. Results show that the proposed optimization function
gives better results than the baseline scheme in terms of user comfort and the amount of consumed
energy. The proposed system can help with collecting the data about user preferences and energy
consumption for long-term analysis and better decision making in the future for efficient resource
utilization and overall profit maximization.

Keywords: smart homes; energy optimization; user comfort; genetic algorithm (GA); particle swarm
optimization (PSO); Kalman filter

1. Introduction

Energy is one of the most precious resources, and its demand is increasing day-by-day. There are
two possible solutions to meet the growing demand of energy: (1) produce more energy and explore
alternate sources of energy production and (2) efficiently use existing resources to save maximum
energy for other usages. The latter approach is more favorable, cost-effective and, thus, highly desirable.
Inefficient utilization of energy leads to wastage of power. In order to complement efforts for new
energy production, there is a strong need for efficient resource utilization. Various technologies and
algorithms are harnessed to develop efficient solutions for optimal energy utilization.

The advent of Internet of Things (IoT) has revolutionized every aspect of human life. It offers
many applications in various domains, e.g., health, security, transportation, manufacturing, etc. Smart
homes with intelligent devices not only help with remote monitoring and control, but also help with
optimal utilization of energy resources. Through IoT devices, we can collect data regarding the indoor
environment, building occupancy and predict energy utilization using intelligent solutions. In a
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research survey conducted in South Korea [1], energy management was considered as the second most
popular application area for IoT. Contextual information can easily be collected by IoT devices, and
then, intelligent algorithms can be applied for optimal utilization of resources for maximizing user
comfort with the minimum energy requirement. As per the statistics of Korean Energy Economic
Institute shown in Figure 1, residential and commercial buildings in South Korea contribute towards
40% of total energy consumption [2]. Therefore, minor achievement in energy efficiency will result in
significant reduction in monthly billings as energy cost contributes heavily to the home user expenses.
Hence, there is a strong need to build smart and intelligent energy management solutions that can
accommodate environmental factor and user preferences together for optimal energy utilization.
Various approaches are proposed in the literature based on artificial intelligence (AI) algorithms and
mathematical models.

Figure 1. Sector-wise energy consumption in South Korea [2].

In the recent past, energy efficiency in smart buildings has attracted the attention of many
researchers working in this field. Besides energy efficiency, user comfort is also an important concern,
which is measured in terms of three fundamental parameters: (a) thermal comfort, (b) visual comfort
and (c) air quality [3]. Smart home users describe their preference range for each individual parameter.
At any time instant, values of these three parameters determine occupant comfort level while staying
inside the building environment. Temperature level is used to indicate the thermal comfort in a
building. An auxiliary heating or cooling system is applied to preserve the temperature in a comfortable
range as specified by the user. The illumination level is used to indicate the visual comfort of occupants.
The electrical lighting system is used to manage visual comfort [4]. CO2 concentration is used as an
index to measure air quality in the building environment [5]. Electric fans are used for ventilation to
control air freshness and maintain desired air quality.

Several efforts are made to propose a solution that shall result in less energy consumption without
compromising the user comfort index [4,6,7]. They have adapted a customized user comfort formula
in a way that shall result in minimum energy consumption. In other words, they do not consider
energy consumption as an integral part of their optimization objective function. In this paper, we have
proposed an improved optimization function for efficient energy consumption with maximum user
comfort in smart homes. We have developed a conceptual model for a smart energy management
system that provides a base for our simulation model for indoor environment. Experiments are
performed with real data in our indoor lab environment for a one-month duration, i.e., from 4 February
to 6 March 2017 (31 days). For the implementation, we have used both genetic algorithm (GA) and
particle swarm optimization (PSO) to evaluate the performance of our proposed optimization function.
Experimental results with GA are better than PSO, and optimization results presented in this paper
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refer to GA results if not explicitly stated otherwise. Same experiments are also repeated without using
the optimization scheme to realize the difference.

The rest of the paper is organized as follows. Section 1 presents a brief introduction to the subject
matter of the paper. Related work is discussed in Section 2. In Section 3, we present the architecture of
our proposed smart energy management system and its design. Problem formulation for the proposed
optimization function is given is Section 4. A detailed discussion of the collected data, experimental
setup, performance evaluation results and comparative analysis is presented in Section 5. Finally, we
conclude this paper in Section 6 with an outlook toward our future work.

2. Related Work

Energy is one of the most precious and costly resources. Savings in energy utilization are desirable
for both consumers and the energy service provider. Home users are interested in solutions for
reduction in their monthly energy consumption to get savings in monthly electricity bills, but such a
solution shall have low/no impact on their comfort. Energy service providers also feel pressure to meet
the growing demands for more energy from users and industry. Similarly, green energy solutions are
also explored all over the globe for maintaining a safe and healthy climate on Earth for all living beings.

Many solutions are developed for energy saving and optimal utilization in the literature [8–10].
One of the major issues with conventional solutions for energy optimization includes the problem
of overshooting. which results in wastage of resources. The work in [11] presents an optimal fuzzy
proportional integral derivative (PID) controller in order to overcome the overshoot of temperature.
Other conventional controllers proposed in the literature included optimal control and adaptive
control. However, these conventional controllers have their own disadvantages. They require an
accurate model of the building, which is not possible in reality. Furthermore, such solutions are not
user friendly, and there are many difficulties in monitoring and controlling the parameters caused by
nonlinear features. A fuzzy controller optimized with the genetic algorithm for indoor environmental
control is presented in [12]. They have divided the building into zones, and a central control system
performs zone-level environmental monitoring using smart card units, which hold the default values
for control variables.

Trivial systems do not consider environmental factors, which results in poor energy utilization.
To overcome this limitation, predictive control approaches are proposed in [13,14]. For optimal
heating/cooling, a data-driven approach based on neural networks (NN) has been proposed in [13]
for steam load prediction in buildings. Based on the formulated model and weather forecasting
data, future steam consumption is estimated. To improve the performance of electric water heating
systems in smart homes, Bo Lin et al. have developed a model based on nonlinear autoregressive
network with external input (NARX) using a neural network for electric water heaters to achieve
the comfort requirement with minimum energy consumption [15]. A study on energy savings in
building heating systems is presented in [14] by using the model predictive control (MPC) approach.
They tried to model future building behavior in terms of the selected operation strategy together with
weather and occupancy forecasts. The objective is to design a control strategy that minimizes the energy
consumption while guaranteeing that all comfort requirements are met. Similarly, a multi-agent control
system with intelligent optimization is presented in [16] for indoor energy and comfort management
based on information fusion using weighted aggregation in order to achieve a high-level comfort index
value with minimum power consumption.

There are two commonly-used modeling approaches for building energy systems, i.e., forward
and inverse [17]. Forward modeling utilizes input data such as weather information, building material,
size and structure in order to produce the operating schedule with estimated energy consumption.
Numerous software packages are available based on forward modeling including the two most popular
tools: DOE-2 [18] and EnergyPlus [19]. DOE-2 is a computer simulation program that can estimate
energy usage and cost for both commercial and residential building given design and operational
parameters information. A comprehensive performance analysis of DOE-2 and EnergyPlus can be
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found in [20]. On the other hand, the inverse modeling approach is based on a known mathematical
relationship between the inputs (e.g., weather conditions, building structure, occupancy information)
and output, i.e., energy consumption. The mathematical relation between inputs and outputs is
generally derived using domain knowledge. With the advent of sensing technology, a new data-driven
modeling approach is introduced based on various sensing data collections regarding indoor and
outdoor environments. This approach can be viewed as a hybrid energy modeling where the forward
component of the system is encoded in sensor data and the inverse component is statistically derived
through various machine learning techniques. Generally, sensor-based energy modeling is preferred
over traditional forward and inverse modeling. Many sensor-based studies can be found in the
literature focusing on predicting current and future energy consumption using various machine
learning techniques. Various statistical procedures are used to improve the prediction results of neural
networks in building energy consumption [21]. To further improve the performance of traditional
neural networks, a hybrid system based on genetic algorithms and an adaptive neuro-fuzzy system
(GA-ANFIS) is proposed in [22]. User comfort is subjective, and it varies from person to person,
depending on various domestic, geographic and environmental factors. A study is presented in [23]
to understand the complex relationship among various factors contributing towards perceived user
comfort in indoor environments. Achieving a high level of comfort causes an increase in energy
demand. A simple methodology for the classification of indoor environmental quality is presented
in [24] based on two indexes, i.e., the Environment Quality Index (EQI) and the Building Quality Index
(BQI). Based on these two indexes, they classify the indoor environment on a scale of seven values.
To meet the growing demands, alternate sources of energy productions are explored to promote green
energy solutions, e.g., solar, wind, hydrogen etc. However, these renewable energy sources cannot
fulfill the total energy demand. A hybrid energy management system based on an artificial neural
network controller is presented in [25] for automated switching from renewable energy sources to
conventional energy production depending on the energy demands.

Energy management in a building is an optimization problem. Several evolutionary algorithms
are actively used for energy optimization in the building environment. For instance, the genetic
algorithm (GA) and particle swarm optimization (PSO) are applied in many different ways to optimize
energy consumption [26,27]. GA is used in [28] to optimize the controller parameters of the heating,
ventilation, and air conditioning (HVAC) system to achieve optimal performance. This method has
also been applied to the control problems of energy systems consisting of fuel cells, thermal storage and
heat pumps [29]. The multi-objective genetic algorithm (MOGA) is used in [26] for the identification
of the optimum pay-off characteristic between the occupant thermal discomfort and the energy cost
of a building. The GA-based optimizer is used in [30] for thermo-economic optimization in urban
residential buildings of Beijing to find the solution of the mixed integer and non-linear programming
problem. Building design and structure also have a significant impact on energy consumption.
To analyze the impact of building design parameters on energy consumption, a study is presented
in [31]. They have proposed a multi-variable optimization scheme using GA to reduce residential
building life cycle costs (LCC) through the selection of optimal building design parameters.

A PSO-based methodology for building energy performance optimization is presented in [32].
They have used EnergyPlus to simulate energy consumption inside the building. This system can
suggest specifications for buildings to minimize their annual energy consumption. Another PSO-based
hybrid power system is proposed in [33] for unit sizing of a stand-alone power generator in remote
areas. A comprehensive review of optimized control systems for building energy and comfort
management of smart sustainable buildings is presented in [34].

Many research efforts published in the literature are either focused on energy optimization or
maximizing user comfort. Several efforts are made to propose a solution that shall result in less
energy consumption without compromising the user comfort index [4,6,7]. They have developed
a customized user comfort index formula and used it as a fitness function of their optimization
algorithms. Their formula gave optimal values for indoor parameters within the user-desired range in
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a way that results in minimum energy consumption as optimal values are selected to cause the minimal
change in current settings. We have revised this objective function for the optimization algorithm as
given in Equation (13), which results in improved performance. Furthermore, we have used real data
for the performance evaluation of modified system, whereas previously, experiments were done with
simulated data. The system is designed to improve the occupants’ comfort index and energy efficiency,
simultaneously. For optimization, we have selected two well-known optimization algorithms: genetic
algorithm (GA) and particle swarm optimization (PSO). The proposed objective function given in
Equation (13) is used as their fitness functions.

3. Proposed Conceptual Design for the Smart Energy Management System

We have developed a conceptual design for efficient energy management in the smart home
environment as shown in Figure 2. We have a closed environment of interest, i.e., the smart home,
which needs to be controlled by an IoT-based automated system for maintaining a comfortable
environment as per the user needs and specification with efficient resource utilization. The whole
process has four main steps. First, we monitor the indoor environment by collecting various data (e.g.,
temperature, illumination and air quality) through sensors. This gives us the current context of the
indoor environment. Secondly, we apply a prediction algorithm to estimate future conditions using
some historical data. This helps with adjusting/controlling the environment before it becomes worse
for the users inside. Thirdly, we apply optimization techniques to compute optimal conditions by
keeping in view the best settings for user needs and system constraints e.g., power. Finally, we adjust
the actuator levels to control the indoor environment as per the optimized settings in order to achieve
the maximum user comfort level. This helps with maintaining the best indoor conditions for the user
with optimal recourse utilization.

Monitoring and
 Context Awareness

(observe current environmental 
conditions through sensors)

Prediction
(predict future 

environmental conditions 
using history data)

Optimization
(compute optimal conditions to 
satisfy user requirement with 

optimal recourses utilization)

Control
(control actuators to have optimal 

environmental condition)

Desired Settings
(required User ranges for 

each parameters)

Constraints
(available power etc.)

. . .
Temperature 

Sensor
Light Sensor CO2 

Sensor
Fan AC Heater Bulb

Figure 2. Smart energy management system: conceptual design.
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The flowchart of the proposed system is shown in Figure 3. The process begins with reading
current indoor parameter values (temperature, air quality and illumination level) from sensors inside
the building. The Kalman filter algorithm is applied to remove error in sensor readings and to predict
actual parameter values. Afterwords, in the optimization check, we see if any parameter value is
outside the desired user range, then optimization is applied. For the optimization, we have used two
algorithms—genetic algorithm (GA) and particle swarm optimization (PSO)—to compute optimal
setting for each parameter in order to get the desired environmental condition inside the building.
Finally, these parameters are passed to the actuator controller module in order to send the operation
command to the respective controllers to adjust its operation level accordingly. The system has an
internal database for storing collected data for comprehensive analysis of the system performance gain
and resource savings. An interface is also provided to users in order to specify system parameters, e.g.,
desired (acceptable) ranges for temperature, illumination and air quality.

Smart BuildingSmart Building

ActuatorsActuators

Monitoring 
(Get data from sensors )

Comparator 
(Compute error difference)

Parameters 
(User desired settings)

Actual current parameter values

Optimization
(Compute optimal parameter values)

Optimal Parameter values

Fuzzy Estimator 
(Calculate required operation level) 

Error in Parameters

Required level

Prediction using Kalman Filter 
(for error correction in sensor reading)

Predicted Parameter values

Actuator Controller 
(Calculate required power and operation duration) 

Power SourceAvailable Power

Consumed Power

Predicted Parameter values

Internal External
Optimization 

Required?

No

Yes

Change in Error 

Fan AC Heater Bulb

Temperature 
Sensor

Light 
Sensor CO2 Sensor

Figure 3. System flow diagram for the smart energy management system.

4. Problem Formulation for Optimization

Let us assume the current sensor readings for temperature, illumination and air quality are
denoted as [Tc, Lc, Ac] = [t, l, a]. Occupants specify the range of acceptable values for each parameters
to express their preferences. Ranges for user-desired settings are given by user set points, i.e.,
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USPd = (Td, Ld, Ad) (1)

where:
Td ∈ [Tmin, Tmax] , (2)

Ld ∈ [Lmin, Lmax] (3)

and:
Ad ∈ [Amin, Amax] (4)

This is based on the assumption that in the desired range, the max value actually specifies the
user’s most desired settings, and the min value is the least acceptable value for the indoor parameters.
If energy cost were not an issue, then the user would certainly like to have indoor parameters set to
the maximum value. As setting indoor parameters to their maximum values will require high energy
cost, therefore a tradeoff is required between energy consumption and user comfort. For the sake of
brevity, we express the range length of each parameter as ∆T = |Tmax − Tmin|, ∆L = |Lmax − Lmin| and
∆A = |Amax − Amin|.

Let us also assume that power consumption for per unit change in each parameter is estimated
by PT , PL, PA for temperature, illumination and air quality, respectively. If we have no problem with
power consumption, then we can simply set each parameter as per the user-desired setting, but in
practice, we cannot afford this all the time. Therefore, we need to find some trade-off between user
comfort and energy consumption. Table 1 presents a brief description of various notations used in
this formulation. It is worth mentioning here that the formulation presented in the paper’s main text
is valid for scenarios where heating is required (winter season). For cases (summer season) where
cooling will be required, the equations will be modified slightly as explained in Appendix A.

Table 1. Description of notations used in the formulation.

Notation Description

Tc Current temperature (◦C).

Lc Current illumination (lux).

Ac Current air quality (ppm).

To Optimal temperature (◦C).

Lo Optimal illumination (lux).

Ao Optimal air quality (ppm).

USPd Desired user set points.

Td User-desired temperature range.

Ld User-desired illumination range.

Ad User-desired air quality range.

PT Required power for per unit change in temperature (kWh).

PL Required power for per unit level change in illumination (kWh).

PA Required power for per unit level change in air quality (kWh).

Eo Required energy for optimal change in indoor parameters (kWh).

Guc Gain in user comfort.

Ges Gain in energy savings.

αuc, αes User preference for comfort and energy savings.

βT , βL, βA User preference for temperature, illumination and air quality.
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Let our optimal parameters values be [To, Lo, Ao] where the optimal value can be any value
within the user-desired range. Thus, the total required energy for maintaining settings with optimal
parameters will be:

Eo = PT · (To − Tc) + PL · (Lo − Lc) + PA · (Ao − Ac) (5)

Above is the total required power for maintaining optimal settings. Similarly, we can calculate
the possible minimum and maximum power consumption as below:

Emin = PT · (Tmin − Tc) + PL · (Lmin − Lc) + PA · (Amin − Ac) (6)

Emax = PT · (Tmax − Tc) + PL · (Lmax − Lc) + PA · (Amax − Ac) (7)

At stated earlier, we have two contradictory requirement, i.e., user comfort and energy
consumption. Our objective to get the maximum gain in user comfort along with the maximum
gain in energy savings (i.e., with low energy consumption). We can simply write our requirement in
an abstract fashion as below:

Maximize (αuc · Guc + αes · Ges) ∈ [0, 1] (8)

where Guc is the gain in user comfort and Ges is the gain in energy savings. αuc and αes define weights
for user comfort and energy saving, respectively, and can be set as fixed or adaptive such that:

αuc + αes = 1 (9)

User comfort gain can be formulated as:

Guc = ∑
X∈{T,L,A}

βX ×
(

1−
(

Xmax − Xo

∆X

)2
)
∈ [0, 1] (10)

where βX∀X∈{T,L,A} defines the user preference for each parameter—temperature, illumination and air
quality, respectively—such that:

βT + βL + βA = 1 (11)

Note: the βT , βL and βA values can be fixed or set adaptively as per the difference between current
and desired parameter values.

From Equation (10), we can understand that Guc increases as optimal values for parameters get
closer to the best desired values used (i.e., maximum), resulting in maximization of user comfort gain.

Next, we explore the second part of Equation (8). We know that gain in energy savings is inversely
proportional to energy consumption, i.e., Ges ∝ 1

Ec
(Ec means consumed energy), i.e., higher energy

consumption will result in lower gain in energy savings. We can formulate our gain in energy savings
as below:

Ges =

(
1−

(
Eo − Emin

∆E

)2
)
∈ [0, 1] (12)

From the above equation, it can easily be deduced that Ges increases as energy required for
maintaining the optimal setting (Eo) gets close to the minimum possible energy consumption, i.e.,
as Eo → Emin, the subtraction part in Equation (12) gets close to zero, resulting in the maximum gain
in energy savings.

Using the previous formulation given in Equations (10) and (12), we can rewrite our optimization
function from Equation (8) as below:

Maximize

αuc · ∑
X∈{T,L,A}

βX ×
(

1−
(

Xmax − Xo

∆X

)2
)
+ αes ·

(
1−

(
Eo − Emin

∆E

)2
) (13)
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i.e., we want to get values for To, Lo, Ao and Eo such that our optimization function given in
Equation (13) gets the maximum value. Higher values of To, Lo and Ao will result in reducing
the subtraction part in the first summation component, thus maximizing the user comfort, e.g., as

To → Tmax, the subtraction part
(

Tmax−To
∆T

)2
→ 0, and we get the max of βT . The same holds true for

Lo and Ao. However, higher values of To, Lo and Ao will result in a loss in the energy component, i.e.,

higher values of To, Lo and Ao will cause Eo → Emax and, thus,
(

Eo−Emin
∆E

)2
→ 1, which results in losing

the gain in the energy component. Thus, Equation (13) ensures a balance between user comfort and
energy consumption, which is our desired objective.

Constraints:
Tc ≤ Tmin ≤ To ≤ Tmax (14)

0 ≤ Lc ≤ Lmin ≤ Lo ≤ Lmax (15)

0 ≤ Ac ≤ Amin ≤ Ao ≤ Amax (16)

0 ≤ Emin ≤ Eo ≤ Emax (17)

5. Experimental Results and Discussion

This section is dedicated to the detailed discussion of the experimental settings and results. For the
sake of clarity, this section is divided into four subsections. First, we will discuss the data used in these
experiments along with others necessary system parameters and settings. The second part is about
our simulator implementation. In the third part, we present comprehensive performance evaluation
results of our proposed scheme, which are further covered in three subsections (1) analysis of the
prediction part, (2) analysis of the optimization part and (3) analysis of the actuators’ operations.
Finally, a comparative analysis is performed in the fourth part of this section.

5.1. Experimental Setup

For these experiments, we have collected real data in our lab’s indoor environment for a one-month
duration, i.e., from 4 February to 6 March 2017 (31 days). As discussed earlier, we are interested in
controlling three indoor environmental parameters, i.e., temperature, illumination and air quality,
according to user set points. Collected hourly data along with user set points are shown in Figure 4.
These data were recorded in our lab’s indoor environment, consisting of two connected rooms of a
total area of 80 m2. Each room has an inverter AC for heating and cooling, a multi-level exhaust fan
for maintaining air quality and ON/OFF tube lights to maintain the desired illumination level.

Table 2 present a summary of data presented in Figure 4. Temperature values remain below
15 ◦C as the data are collected for February and early March, which is the end of the winter season
in Jeju. The user’s acceptable range for indoor temperature is [20, 24], so we need to operate heaters
to adjust indoor temperature as per user set points. Cooling is not required in these experiments,
as temperature never goes beyond user set points. The X-axis label indicates the day, but hourly data
are plotted; and short cycles within the data indicate maximum and minimum temperature during the
day and night time, respectively. Varying peaks in temperature data reflect the frequent variability
in Jeju’s weather. The average value for indoor illumination data (i.e., 108.33 lux) indicates that we
need to use auxiliary lighting most of the time to maintain indoor illumination within the user-desired
range. User set points for illumination [250, 500] are selected as per the standard recommendation
for office lighting [35]. Short cycles with rising peaks in illumination data indicate maximum and
minimum illumination during the day and night time. In Figure 4b, flat (near zero) values can be
seen in illumination data from 9 to 11 February, which indicate cloudy weather outside resulting in
low indoor illumination. Low temperature values for the same period also confirm cloudy/raining
weather. Indoor air quality is measured in terms of CO2 concentration. Repeated cycles within air
quality data indicate the maximum and minimum CO2 concentration during the day (mostly occupied)
and night (less occupied), respectively. Varying peaks in indoor air quality data indicate the impact



Energies 2017, 10, 1818 10 of 21

of outdoor weather and wind speed on the indoor environment. The typical concentration of CO2 in
the outdoor environment ranges from 300 to 500 ppm; thus, an acceptable range from 800 to 1000 is
selected for indoor CO2 concentration as per the American Society of Heating, Refrigeration, and Air
Conditioning Engineers (ASHRAE) standard [36].
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Figure 4. Collected hourly data along with user set points for 31 days (744 h).

Table 2. Data summary with user set points.

Parameter Max Min Avg. User Set Points

Temperature 15.20 0.60 7.19 [20, 24]

Illumination 400.00 0.00 108.33 [250, 500]

Air Quality 2007.27 205.91 982.19 [800, 1000]

5.2. Implementation

Experiments are performed using a custom-built simulator based on indoor environment
modeling by taking into consideration the impact of external environmental parameters and actuator
operational level on indoor parameters. We have used a building environment emulator and an
actuator emulator to interact with our smart energy management simulator. The smart energy
management simulator was developed in Visual Studio C#. Figure 5 shows its main simulation
interface window. Before starting the simulation process, this application needs several settings
and the configuration as given in the check list. When the check list is ready, then the simulation
can be initiated; otherwise, the appropriate error message will be displayed instructing the user to
perform the necessary settings. Once the simulation is started, it obtains sensor reading data from the
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building environment emulator process via the Windows Communication Foundation (WCF) service.
The Kalman filter algorithm is applied for error removal. Afterwards, optimization is performed
to calculate the optimal parameter settings, which are then sent to the building actuator emulation
process via the WCF service. For optimization, we have implemented two algorithms, i.e., GA and
PSO. There is also a third option, no optimization scheme, which provides the baseline results for
comparative analysis. A brief description of the three schemes is given below.

5.2.1. Genetic Algorithm

GA is an evolutionary search and optimization algorithm based on the principles of natural
selection and genetics [37]. GA is commonly used to solve a wide range of optimization problems
where the search space is too large. GA starts with an initial random population and gradually
works towards the optimal solution, where each individual represents a solution of the problem to be
solved. Each individual is called a chromosome and is composed of a predetermined number of genes.
The steps of GA for indoor environment optimization are given below:

1. Initial random population of size S
2. Calculate the fitness of each individual using Equation (13)
3. Choose T best individuals
4. Perform single-point crossover with probability ρ among selected individuals to generate new

solutions (offspring)
5. Perform mutation with rate µ
6. Calculate the fitness of new offspring using Equation (13)
7. Combine the populations of Steps (3) and (5)
8. Goto Step 2 until the required number of iterations
9. Return the best fitted chromosome as the optimal solution

5.2.2. Particle Swarm Optimization

The PSO algorithm was first described as a new modern heuristic algorithm in 1995 [38]. It is
introduced as a stochastic operator-based, population-based and self-adaptive computer algorithm
inspired by birds’ social behaviors. PSO has been used widely for various engineering applications
and has turned out to be a powerful optimizer. The steps of the PSO algorithm for indoor environment
optimization are given below:

1. Initialize

• Randomly initialize particle positions
• Randomly initialize particle velocities

2. Optimize

• Calculate the fitness of each particle using Equation (13)
• Find the global and local best particle
• If the stopping condition is satisfied, then go to Step 3
• Update each particle velocity and position vector using the global and local best particles
• Go to Step 2

3. Return the best particle as the solution

5.2.3. No-Optimization Scheme

For the sake of comparison, we consider this scheme as a baseline approach for controlling
the indoor environment. This approach has no optimization scheme and just selects the minimum
acceptable values for each parameter in order to save the maximum energy, as this will result in the
minimum operation of the actuators to consume less energy. Its working is fairly simple, i.e., the
indoor environment is constantly monitored, and as soon as any parameters values are found outside
user set points, then the corresponding actuator is operated to control that parameter. Intuitively, this
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approach will work fine, but the results are not as expected. As the objective of this approach was to
save the maximum energy by making minimal changes to the indoor parameters, this is in fact counter
productive. Results without optimization refer to the results of this scheme.

Figure 5. Smart energy management system application main window.

5.3. Proposed System Results Analysis

5.3.1. Analysis of the Prediction Part Based on the Kalman Filter

In this part, we have used a variation of the Kalman filter algorithm that is focused on producing
a smoothing effect to remove error in sensor readings. Table 3 presents the parameter settings for
the Kalman filter algorithm used for these experiments. The error factor is included in our model
to factor out sensor calibration errors and the difference in sensor readings taken at different indoor
locations. A relatively larger difference was observed in temperature readings when taken near the air
conditioner (AC) compared to readings taken close to the corners.

Table 3. Parameter settings for the analysis of Kalman’s filter algorithm.

Parameter Values/Range

Process noise covariance matrix (Q) 1

Sensing noise covariance matrix (R) 10

Error in temperature sensor reading ±3

Error in illumination sensor reading ±10

Error in CO2 sensor reading ±20

Using the Kalman filter algorithm, our objective is to predict actual parameter values as shown in
the results graph. Results show that the Kalman filter algorithm was able to remove error (noise) in
the sensor readings and predict actual indoor environment parameter values as shown in Figure 6.
For better visualization, we only show the first five days (120 h) of results in these figures.

In Figure 6a, the Kalman filter results deviate from actual temperature in the first 5 h, but later, it
becomes stabilized and can accurately remove error in the temperature senor’s reading. The relative
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accuracy of the Kalman filter results is 1.31 in terms of root mean square error (RMSE) for whole
data when compared to actual temperature. However, the RMSE for temperature sensor’s readings
is relative high, i.e., 1.75. However, in the illumination data, the mean absolute deviation (MAD) of
the Kalman filter results in 0.65 for whole data, which is higher than MAD for the sensor’s readings,
i.e., 0.19 when compared to actual data. Similarly, for air quality data, the MAD of the Kalman filter
results is 0.11 for whole data, which is higher than MAD for the sensor’s readings, i.e., 0.01 when
compared to actual data. However, in this case, the Kalman filter behaves like a predictor and nicely
creates a smoothing effect in sensing data as shown in Figure 6b,c. This manifests the utility of the
Kalman filter algorithm in our proposed system to accurately estimate the contextual environment
from sensor readings.
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(a) Predicted vs. sensor readings for temperature.
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(b) Predicted vs. sensor readings for illumination.
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(c) Predicted vs. sensor readings for air quality.

Figure 6. Kalman filter predictions vs. sensor readings: first five days (120 h) of results.

5.3.2. Analysis of the Optimization Part

Our proposed formulation for optimal resource utilization in the smart home environment has
four parts as given in Equation (13). The contribution of each part to the overall optimization value is
controlled by alpha and beta values, which can be fixed or set adaptively. However, these experiments
were performed with fixed alpha and beta values as given in Table 4. We have collected energy
consumption data for indoor parameter changes and have observed that the per unit change in indoor
temperature requires 150 kWh (approx.) and the per unit level change in air quality and illumination
requires approximately 30 kWh. In other words, the per unit temperature change requires five-times
more power than the per unit level change in air quality and illumination. Therefore, we consider
PT = 5, PA = PL = 1. This ratio may change depending on the indoor environment and actuator
installation, but will have low impact on relative results as the same values are then used by all
approaches. Moreover, sensor readings are taken every five minutes, then optimization is done if
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required. Actuator levels are set for a five-minute duration, and afterwards, this may be changed if
new optimal parameters are calculated. In our simulation model, we consider external environment
parameters to remain the same for a one-hour duration as per the recorded data.

Table 4. Parameter settings for the optimization algorithm.

Parameter Values/Range

αuc 0.5

αes 0.5

β1 0.4

β2 0.3

β3 0.3

PT 5

PL 1

PA 1

The first part in our optimization formula controls the temperature level such that the maximum
user comfort can be achieved. The second part is for maintaining the desired illumination level
inside the building. Similarly, the third part is for maintaining the desired air quality inside the
building. The formulation tries to get the maximum out of each of the three components, but it
will result in increased energy consumption, i.e., loss in the fourth part of the optimization function,
which is included for energy optimization. As stated earlier, each parameter value can be selected
anywhere between the [Min, Max] range as given in Table 2. The optimization approach tries to
find a balancing point in order to have minimum power consumption with maximum user comfort.
Figure 7 presents the first five days (120 h) of results to show the impact of the optimization on the
indoor environmental parameters of temperature, illumination and air quality, respectively. Actual
data indicate the environmental parameter values before optimization. These results illustrate the
impact of optimization on the indoor parameters, and we can easily extract the amount of change
made in each parameter by comparing the corresponding actual and optimized values. For instance,
in Figure 7a, the initial indoor temperature is 7.6 ◦C and the corresponding optimal temperature was set
to 23 ◦C. The increase in indoor temperature can be seen from the second hour. Afterwards, a constant
fluctuation in indoor temperature is observed, which is due to the cold external temperature, which
pulls down the indoor temperature, whereas the optimization process pulls it up by keeping it within
the user-desired range [20, 24]. Similarly, in Figure 7b, initial indoor illumination is 0 lux (night time)
and the corresponding optimal illumination was set to 260 lux. The increase in indoor illumination can
be observed as being due to external day light and internal auxiliary lighting. Afterwards, a constant
fluctuation in indoor illumination can be seen, which is attributed to the variation in external day
light. The optimization process ensures indoor illumination to be inside the user-preferred settings, i.e.,
[250, 500]. During Hours 60 to 65 (on 6 February), the actual and the optimized indoor illuminations
are the same because the actual illumination is within the user-desired range, so the optimization is
not required. In fact, 6 February was a clear sunny day in Jeju. Indoor air quality optimization is
done when the indoor CO2 level goes beyond user set points, i.e., greater than 1000 ppm, as shown in
Figure 7c. Furthermore, we can observe cycles in indoor CO2 depending upon indoor occupancy i.e.,
rise during day time and fall during night time. On 5 and 6 February, indoor air quality is good due
to external high speed wind approaching 40 km/h approximately which helps in auto ventilation of
indoor environment.
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(a) Optimized vs. actual indoor temperature.
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(b) Optimized vs. actual indoor illumination.
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(c) Optimized vs. actual indoor air quality.

Figure 7. Optimized vs. actual indoor parameters: first five days (120 h) of results.

5.3.3. Analysis of the Actuators’ Operations

The optimization process results in the change in actual indoor parameters through necessary
adjustment in the actuators’ operational level. The actuators’ operational level needs to be changed
according to the desired change in the indoor parameters. Figure 8 shows the first four days of
results (100 h) of the desired change in the indoor parameters along with the corresponding actuators’
operation levels for temperature, illumination and air quality, respectively. The desired change in the
indoor parameters is plotted against the primary vertical axis, and the corresponding actuators level
is plotted along the secondary vertical axis. The heater operation level reflects the desired change in
temperature, i.e., for an increase of x ◦C in temperature, and the heater operation level needs to be
set to x, as shown in Figure 8a. In the beginning, where a 15 ◦C change in temperature was required,
the heater operation level was set to 15. Afterwards, a small change in the heater operational level is
made along with the fluctuation in indoor temperature. Similarly, the lighting level reflects the desired
proportional change in illumination, i.e., lighting operational level x indicates a 10× x change in indoor
illumination, as shown in Figure 8b. In the beginning, where a 260 change in illumination was required,
the lighting operation level was set to 26. Afterwards, adjustment of the lighting operational level is
made along with the fluctuation in indoor illumination. The fan operational level reflects ventilation
desired for a proportional change in indoor CO2 concentration, i.e., a unit rise in fan operational level
results in a 50-ppm change in indoor CO2 concentration, as shown in Figure 8c. During the second
and third day when the indoor air quality is good (within the desired user set points), the fan actuator
need not be operated. On the fourth day, adjustment of the fan operational level is made along with
fluctuations in indoor air quality.
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(a) Heating level for optimized change in temperature.
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(b) Lighting level for optimized change in illumination.
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(c) Ventilation level for optimized change in air quality.

Figure 8. Change in actuators’ level for the optimized change in the indoor parameters: first four days
(100 h) of results.

5.4. Comparative Analysis

Before presenting the power consumption and achieved user comfort level results, first, we look
at how the two schemes perform in maintaining the desired indoor environment setting inside the
building. Figure 9 shows the hourly results for 31 days indicating that both schemes nicely maintain
the desired parameter level inside the building, i.e., all three parameters are within the desired user
ranges for each of the three schemes.

No-optimization scheme makes minimal changes and keeps the indoor parameters on the
boundary line with user set points. Indoor temperature without optimization fluctuates around
the user’s least acceptable value, i.e., 20 ◦C, as shown in Figure 9a. However, variation in indoor
temperature is observed with the optimization scheme. Similarly, the no-optimization scheme results
for indoor illumination and air quality remain around 250 lux and 1000 ppm, respectively. Rising
peaks in indoor illumination results for the no-optimization scheme in Figure 9b are due to external
day light, as can be seen in the original data for indoor illumination given in Figure 4b. The difference
in air quality results for both schemes can be seen at points where the indoor CO2 concentration goes
beyond 1000 ppm, as shown in Figure 9c. The no-optimization scheme results for indoor air quality
stay just around 1000 ppm, whereas the optimization scheme tries to pull this back below 1000 ppm as
much as is feasible.

Although there is no difference in either scheme as far as maintaining the desired environment
inside the building is concerned, as both approaches seem to be satisfying user comfort, however,
a great difference in the two schemes is revealed when quantified in terms of user comfort index and
energy consumption. Next, we compare their performances in terms of resource utilization.
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(a) Indoor temperature results.
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(b) Indoor illumination results.
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(c) Indoor air quality results.

Figure 9. Optimization vs. no-optimization scheme: 31 days (744 h) of results.

Through optimization, we tried to find a tradeoff between two contradictory requirements.
We want to have low energy consumption, which compels us to operate actuators for a lesser duration,
but this will result in degradation in achieving the user comfort level, i.e., maintaining the lowest
acceptable setting, which is also not desirable. Our optimization formula helps us find the best optimal
settings for indoor parameters and maintains a balance between energy consumption and user comfort
gain. Figure 10a,b shows the results comparison in terms of user comfort gain and power consumption.
This figure also includes the results obtained with PSO for the sake of comparison. A brief summary of
the optimization schemes’ results is given in Table 5.

The no-optimization scheme target was to keep indoor parameters on the boundary line with
user set points, but due to rapid fluctuations in the external environment, it failed to maintain the
desired user settings all of the time. Particularly, temperature and indoor illumination results given in
Figure 9a,b indicate that the no-optimization scheme’s performance deteriorated with respect to user
set points. This results in degradation of the overall user comfort index for the no-optimization scheme,
i.e., 0.87 (on avg.), as shown in Figure 10a. Furthermore, contrary to expectations, the no-optimization
scheme also resulted in more energy consumption, as shown in Figure 10b. This is due to the fact
that one or more actuating devices are operational all of the time, and the power consumption graph
stayed around 20 kWh. Total energy consumption during 31 days for the no-optimization scheme
was about 15.96 MWh, whereas PSO and GA resulted in 12.13 MWh and 11.63 MWh, respectively.
Both optimization algorithms, PSO and GA, try to find optimal values for indoor parameters away from
the boundary line of user set points, which results in higher instant energy consumption, as indicated
by the peaks in Figure 10b. This strategy not only helps with maintaining the indoor environment as
per the user-desired settings for a longer period of time, resulting in improved user comfort, as shown
in Figure 10a, but also creates an automated duty cycling effect for actuating devices, allowing them
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to turn off and save energy. This phenomenon is reflected by the repeated cycles in the power
consumption graph in Figure 10b for the PSO and GA results. Compared to GA, PSO stretches the
optimal values for the indoor environment parameter a little longer and results in higher peaks for
power consumption. However, higher peaks of energy consumption in PSO result in little to no
improvement in the user comfort index (0.967) as compared to the GA results (0.964). In other words,
we can say that GA outperforms the PSO algorithm, as GA can give almost the same user comfort
index results as the PSO algorithm, but with relatively low energy consumption.
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(b) Power consumption results.

Figure 10. Results comparison of GA, PSO and the no-optimization scheme: first five days (125 h)
of results.

Table 5. Optimization schemes’ result summary.

Optimization Scheme User Comfort Index (avg.) Total Power Consumption (kWh)

No-optimization scheme 0.87 15,969

Particle Swarm Optimization (PSO) 0.967 12,130

Genetic Algorithm (GA) 0.964 11,632

6. Conclusions and Future Work

This paper presents a detailed study of IoT application in a smart home for energy optimization.
We have proposed an improved optimization function that ensures the maintenance of the desired
environment inside the building as per the user-desired settings with optimal energy utilization.
The Kalman filter algorithm is used to remove noise in sensor readings by predicting actual parameter
values. A comprehensive formulation is done for energy optimization with detailed analysis. For the
optimization, we have used the GA and PSO algorithms and performed a comparative analysis
with a baseline scheme on data collected for a one-month duration in our lab’s indoor environment.
Experimental results show that the proposed optimization schemes have achieved a 27.32% and a
31.42% reduction in energy consumption, by PSO and GA, respectively. The user comfort index was
also improved by 10%, i.e., from 0.86 to 0.96. The GA-based optimization results were better than
PSO, and it achieved almost the same user comfort with a 4.19% reduced energy consumption. In this
paper, our objective was to develop a smart energy management system that can maintain the desired
environment in a smart home using IoT-based sensor data by controlling various actuators’ operation.
The system is flexible enough to serve as a foundation for a complete system and includes various
other sensor data, e.g., user occupancy, building design parameters, etc. In the future, we are looking
forward to extending this work by performing a complete analysis of the proposed system for energy
savings and the effect on the actuator ON/OFF sequence.
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Appendix A. Modifications of the Equations for the Cooling Case

The formulation for maintaining temperature in a smart indoor environment is a little complex
and therefore briefly explained here. In fact, there are two possible scenarios.

• Case 1: When the current temperature is below the user-desired range, then heating will be
required. The formulation for this scenario is covered in the paper’s main text. The constraint
given in Expression (14) covers this case.

• Case 2: When the current temperature is above the user-desired range, then cooling will be
required. The formulation for this scenario will require minor adjustments in certain equations,
which are given here.

If Tmax ≤ Tc, then cooling will be required, and we need to choose at optimal temperature To

through optimization where To ≤ Tc. The equation for total required energy for maintaining
settings with optimal parameters will change as below:

Eo = PT · (Tc − To) + PL · (Lo − Lc) + PA · (Ao − Ac) (A1)

Above is the total required power for maintaining optimal settings where cooling is required for
temperature. Similarly, calculations for possible minimum and maximum power consumption in
this case will also change as below:

Emin = PT · (Tc − Tmax) + PL · (Lmin − Lc) + PA · (Amin − Ac) (A2)

Emax = PT · (Tc − Tmin) + PL · (Lmax − Lc) + PA · (Amax − Ac) (A3)

The equation for the computation of user comfort gain will also change as below:

Guc = βT ×
(

Tmax − To

∆T

)2
+ ∑

X∈{L,A}
βX ×

(
1−

(
Xmax − Xo

∆X

)2
)
∈ [0, 1] (A4)

The constraint for the second case is given below:

Tmin ≤ To ≤ Tmax ≤ Tc (A5)

Note: when the current temperature is inside the desired user range, i.e., Tmin ≤ Tc ≤ Tmax, then
no optimization is required for temperature.
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