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Abstract: The dynamic characteristics of power batteries directly affect the performance of electric
vehicles, and the mathematical model is the basis for the design of a battery management system
(BMS).Based on the electrode-averaged model of a lithium-ion battery, in view of the solid phase
lithium-ion diffusion equation, the electrochemical model is simplified through the finite difference
method. By analyzing the characteristics of the model and the type of parameters, the solid state
diffusion kinetics are separated, and then the cascade parameter identifications are implemented
with Particle Swarm Optimization. Eventually, the validity of the electrochemical model and the
accuracy of model parameters are verified through 0.2–2 C multi-rates battery discharge tests of cell
and road simulation tests of a micro pure electric vehicle under New European Driving Cycle (NEDC)
conditions. The results show that the estimated parameters can guarantee the output accuracy. In
the test of cell, the voltage deviation of discharge is generally less than 0.1 V except the end; in road
simulation test, the output is close to the actual value at low speed with the error around ±0.03 V,
and at high speed around ±0.08 V.

Keywords: lithium-ion battery; electrochemical model; particle swarm optimization;
parameter identification

1. Introduction

Recently, due to advantages of high energy density, high output power, long life, zero pollution,
and wide operating temperature range, lithium-ion batteries have been attached great importance to
new energy automotive industry with being the preferred choice. However, the battery applied to
automobile is required not only can provide large energy and power, but also ensure its safety and
reliable operation, and the performance will change with time, explosion may even occur in overcharge
or harsh conditions. So, real-time monitoring system of on-board power battery is essential.

In management of vehicle power batteries, an exact battery model is usually required to estimate
the state accurately. At present, simple equivalent circuit model (ECM) is widely used because of
its simple structure, rapid calculation, and relatively good battery state of charge (SOC) prediction
capability [1], including classic Rint [1], Resistance-Capacitance Circuits (RC) [1], Thevenin [2], and the
Partnership for a New Generation of Vehicles (PNGV) [3] models. A lot of follow-up research has been
carried out on the equivalent circuit model. Z Gao, et al. designed and implemented a smart lithium-ion
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battery system with real-time fault diagnosis capability for electric vehicles to ensure battery safety
and performance [4]. They also put forward an integrated equivalent circuit and thermal model of
a temperature-dependent LiFePO4 battery in an actual embedded application, which applied a cell
balancing strategy to balance the SOC of each cell to increase the lifespan of the battery [5]. However,
the parameters of model cannot correspond to actual physical quantities, and the prediction accuracy
of battery state depends largely on the previous experimental data. Unlike ECM, an electrochemical
model is established using the physical chemistry and electrochemistry theory, which can reflect
the internal reaction mechanism to make an accurate prediction of internal basic state, such as the
concentration of lithium ion, the potential in electrolyte and solid electrode materials. But owing
complex structure, numerous parameters, and highly nonlinear, it is hard to meet the operational
speed of real-time control system. Therefore, model simplification must be carried out first.

So far, literatures on electrochemical model of battery are quite extensive. Newman and
Tiedemann presented the first electrochemical approach to porous electrodes modeling for battery
applications [6]. Then, Doyle et al. proposed lithium anode/solid polymer separator/insertion
cathode cell model, a full-order model, based on concentrated solution theory [7]. This model was
later widely cited, and many electrochemical models were simplified on the basis of it. Such as the
micro-macroscopic coupled model, which introduced by Wang et al. in 1998 [8] with a great deal
of research on battery state estimation and energy management [9,10]. In fact, it was presented for
Ni-MH batteries at the beginning [11]. Then, it was expanded to lithium-ion batteries [12], where the
thermal behavior was also described. In addition, Chaturvedi and Klein [13] established a simpler
single particle model (SPM) by assuming the solid diffusion of electrode to be the diffusion within a
single spherical particle. Similarly, the average-electrode model, studied by Di Domenico et al. [14,15],
replaces the specific distribution of Li-ion concentration in electrode with the average concentration,
greatly pushing the complexity into smaller. Both of them have high accuracy at low to moderate
operating rate, but the latter has higher order with the important diffusion kinetic characteristics
in the solid particles retained. However, these models still have higher complexity than the circuit
model, which limits their application in the control system. Therefore, the further reduction is also
the focus. Smith and Wang reduced the diffusion dynamics by using the residue grouping [16].
Lee and Filipi obtained the ideal non-uniform discrete mode by Sequential Quadratic Programming
(SQP), and reduced the order of the state space model while guaranteeing the accuracy [17]. In recent
years, Zou, Manzie, and Nesic are committed to the simplification techniques for Partial Differential
Equation (PDE)-based Li-ion battery models [18], and have developed a framework for battery model
simplification starting from an initial high-order physics-based model [19].

From the introduction above, the research of the equivalent circuit model has been basically
perfected, and the corresponding battery management technology is generally based on the circuit
model. But the study of electrochemical models is still in its infancy, and rising stage. Therefore,
the research on the electrochemical model of lithium ion and its model reduction method can
also help to promote the application of electrochemical theory in the development of battery
management technology.

In addition, the parameters of the model need to be identified after the model is built. For the
equivalent circuit model, pulse charging and discharging experiment can be used to perform offline
parameter identification [20]. Many scholars adopt the pulse test at different temperature, current rates,
and SOC to improve the accuracy [21,22]. But in practice, the parameters are constantly changing,
so the most accurate battery model can only be obtained by real-time online identification. Currently,
improved least squares method or extended Kalman filter algorithm are the most widely used. As for
the electrochemical model, offline identification combined with some intelligent algorithms is adopted
more as a result of numerous electrochemical and complex identification methods.

In this paper, the average electrode model of lithium-ion battery combined with the uniformly
discrete finite difference method can firstly reduce the complexity of the electrochemical model.
Secondly, the electrochemical model characteristics and parameter types of Li-ion batteries are analyzed.
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The solid phase lithium-ion diffusion kinetics are separated, and the parameters are identified by PSO.
Finally, the accuracy of the parameters was verified by the multi-rate discharge test of single cells and
the NEDC cycle experiment of vehicle.

2. Electrochemical Model of Lithium Ion Battery

2.1. Average Electrode Model

Di Domenico et al. proposed the average electrode model of the battery in References [14,15],
which was simplified on the basis of the micro-macroscopic coupled battery model advanced in the
literature [8]. In order to reduce the complexity of the model, the electrolyte concentration in the
average electrode model is considered as a constant value, and the electrode dynamics characteristic of
the X axis in the cross section is considered only. This approximation (depicted in Figure 1) consists of
three domains—the positive composite electrode (consist of LiyMn2O4, LiyCoO2, LiyNiO2, or some
combination of metal oxides), separator, and negative composite electrode (with LixC6 active material).
During the charging and discharging, the lithium ion is embedded and removed between the positive
and negative electrodes.
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Figure 1. Schematic macroscopic (x-direction) cell model with coupled microscopic (r-direction) solid
diffusion model.

The electrochemical model is actually based on a series of differential algebraic equations
describing the internal potential and ion diffusion. The specific equations and boundary conditions
are shown in Table 1 [23], which an ideal model can be constructed from, and the detailed derivation
process can be referenced to [14].
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Table 1. Equations of electrochemical model for Li-ion batteries.

Kinetic Equations Boundary Condition

Liquid potential

∂φe(x, t)
∂x

= − ie(x, t)
κe f f

∂ie(x, t)
∂x

= jLi

∂φe

∂x

∣∣∣∣
x=0, x=L

= 0

∂φe

∂x

∣∣∣∣
x=δn , x=δsp

= − I
Aκe f f

Solid potential

∂φs(x, t)
∂x

= − is(x, t)
σe f f

∂is(x, t)
∂x

= −jLi

∂φs

∂x

∣∣∣∣
x=δn , x=δsp

= 0

∂φs

∂x

∣∣∣∣
x=0, x=L

= − I
Aσe f f

Lithium-ion concentration
in Solid phase

∂cs(x, r, t)
∂t

=
1
r2

∂

∂r

(
Dsr2 ∂cs(x, r, t)

∂r

)
∂cs

∂r

∣∣∣∣
r=Rs

= − jLi

asFDs
,

∂cs

∂r

∣∣∣∣
r=0

= 0

Butler Volmer

jn(x, t) =
i0(x, t)

F

[
exp

(
αaF
RT

ηs(x, t)
)
− exp

(
−αcF

RT
ηs(x, t)

)]
where:

ηs(x, t) = Φs(x, t)−Φe(x, t)− µ(css(x, t))− FR f jn(x, t)
i0(x, t) = re f f ce(x, t)αa ∗ (cs,max − css(x, t))αa css(x, t)αc

css(x, t) ≡ cs(x, Rs, t)

Battery terminal voltage V(t) = η(L, t)− η(0, t) + (φe(L, t)− φe(0, t)) +
(
Up(cse(L, t))−Un(cse(0, t))

)
− R f I

First of all, according to the idea of average electrode, the negative current density jLi of Butler
Volmer is integrated in the direction of X, and combined with the liquid phase current density at the

boundary, and the average value jLi
n can be deduced.

jLi
(t)δ =

∫ δ

0
jLi(x′, t

)
dx′ = ie(δn, t)− ie(0, t) =

I
A
− 0 (1)

In formula: δn is negative electrode thickness.
Then, the terminal voltage can be simplified as a polynomial expressed by the average values

at the positive and negative electrodes in accordance with the boundary conditions in the table.
The specific derivation process can be referred to [14], and the voltage output Equation is:

V(t) = ηp(t)− ηn(t) +
(

ϕe,p(t)− ϕe,n(t)
)

+
(
Up
(
cse,p(t)

)
−Un(cse,n(t))

)
− R f I

(2)

Finally, according to the boundary conditions, the solid-liquid phase potential, the Butler
Volmer kinetic equation, and continuity of physical quantities at the model boundary in Table 1.
The terminal voltage of battery can be further written as a function of load current and the average
solid concentration lithium.

V(t) =
RT
αaF

ln
ξn +

√
ξ2

n + 1

ξp +
√

ξ2
p + 1

− I
2A

(
δn

ke f f + 2
δsep

ke f f +
δp

ke f f

)
+
(
Up
(
cse,p(t)

)
−Un(cse,n(t))

)
− R f I

(3)

In formula: ξn =
jLi
n (t)
2aj0

, ξp =
jLi
p (t)

2aj0
.

The lithium battery system is a strongly nonlinear distributed dynamical system with strong
coupling. After the simplification above, the model can be represented by lithium-ion concentration
in solid phase in the Table 1 and (3). But it is difficult to solve directly for the partial differential
equation, and further simplification is necessary. In addition, it can be seen from the Formula (3)
that in order to obtain the battery terminal voltage, it is also essential to figure out the distribution of
solid-phase concentration.
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2.2. Diffusion Kinetics of Solid-Phase Lithium Ion

The diffusion of lithium ion in the active particles is a primary dynamic characteristic in the
electrochemical model of Li-ion batteries. The lithium-ion concentration in solid phase in the Table 1
is the essence of Fick second law expressed in spherical coordinates. In the particle radius direction,
the partial differential equation can be simplified to a set of ordinary differential equations by means
of the finite difference. Then, a state-space model can be obtained for the control.

•
cs (i) = Ds

[ cs (i+1) − 2cs (i) + cs (i−1)

∆r2 +
2

i× ∆r
×

cs (i+1) − cs (i−1)

2∆r

]
=

Ds

∆r2

[(
i− 1

i

)
cs (i−1) − 2cs (i) +

(
i + 1

i

)
cs (i+1)

] (4)

The electrode solid-phase diffusion equation can be transformed into a set of state-space equations
in combination with the initial and boundary condition, for example, the state space of the positive
diffusion equation is expressed as follows:{ •

cs = A1cs + B1u
c+ss = C1cs + D1u

(5)

In the formula:

A1 =
Ds

∆r2



−2 2
1
2
−2

3
2

. . . . . . . . .

(
i− 1

i
) −2 (

i + 1
i

)

. . . . . . . . .

(
Mr − 3
Mr − 2

) −2 (
Mr − 1
Mr − 2

)

(
Mr − 2
Mr − 1

) −(Mr − 2
Mr − 1

)


(Mr−1)×(Mr−1)

B1
T =

[
0 0 · · · 0 · · · 0

Mr

(Mr − 1)∆ra+L+F

]
1×(Mr−1)

D1 =
∆r

Dsa+L+F

C1 =
[

0 0 · · · 0 · · · 0 1
]

1×(Mr−1)

(6)

Off-line parameter identification does not require high speed, but ensure the accuracy of the
model, the discrete order in the radius direction is taken as 100. Thus, the average electrode model is
simplified as a solid-phase lithium ion diffusion equation and a terminal voltage.

3. Parameter Identification

3.1. Electrochemical Model Parameters

The electrochemical model can reflect the electrochemical process inside the battery, and the
model involves a large number of actual parameters shown in Table 2 [13], which are too difficult to be
measured directly. Depending on the nature of parameters, they can be roughly divided into three
categories: the performance, the structure, and the constant parameter. Among them, the first two
kinds will be different for different battery types, to be mainly identified below.
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Table 2. Electrochemical model parameters of Li-ion battery.

Parameter Performance Parameter Structural Parameter Constant Parameter

Model parameters
of average

electrode for
Li-ion battery

Parameters of
solid phase

diffusion

Es,n 0.1~0.9 Rp,n 1.5× 10−3~2.5× 10−3 F 968,485
Es,p 0.1~0.9 Rp,p 5× 10−4~1.5× 10−3 SOCini 1
Ds,n 1× 10−11~1 × 10−9 Ln 2 × 10−3~2 × 10−2 θn,0 0.126

Ds,p 1 × 10−11~1 × 10−9

Lp 2 × 10−3~2 × 10−2

θp,0 0.936

θn,100 0.676
Cs,max,n 1 × 10−3~1 × 10−2

θp,100 0.442
Cs,max,p 1 × 10−3~1 × 10−2

A 8645

Model
remaining
parameter

Ee,sep 0.1~0.9

Lsep 1 × 10−3~1 × 10−2

T 298.15
Rf 0~200

α 0.5
Ee,n 0.1~0.9

R 8.314Ee,p 0.1~0.9
Ce 1 × 10−3~1 × 10−2

The performance parameters are the main factors that determine battery charging and discharging
performance, the same type also will change in different health conditions. In the future study of
battery aging and health problems, some of the performance parameters can be paid close attention to.
The structural parameters will not change significantly during use, and the consistency of batteries is
basically the same. The constant parameters contain the basic electrochemical coefficients, constant
parameters of lithium batteries, and some accessible parameters. Where, θp,100, θn,100/θp,0, θn,0 indicate
the positive and negative solid-phase lithium ion concentration in the full or empty state of battery.
Since the concentration information in the battery is too difficult to obtain, the value in document [14]
is referenced here. In addition, the positive and negative open circuit voltages affected by them are
corresponding to the concentration of the solid phase lithium-ion in the electrodes, and whose curves
are mostly fitted by the experimental data. It is found that these four parameters mentioned above
only limit the range of concentration, therefore, the error of these parameters will have little influence
on the accuracy of the model in this paper.

Furthermore, it should be emphasized that in the use of batteries, excessive charging and
discharging must be strictly avoided, in the electrochemical model, the positive and negative solid
phase lithium-ion concentration should be limited within the parameter range above according to
the close relationship between the solid phase lithium-ion concentration and the SOC. The parameter
identification of the solid phase lithium-ion diffusion in cell model can be carried out separately,
which is not only helpful to ensure the battery running in normal state, but also beneficial to improve
the workload, accuracy, complexity of the algorithm brought by one-time identification.

3.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO), also called bird swarm foraging algorithm. It is an
evolutionary computation technique developed by Kennedy and Eberhart in 1995 [23]. The algorithm
was first inspired by the regularity of bird swarm activity, and then a simplified model was built
using swarm intelligence. Particle swarm optimization algorithm based on the observation in animal
behavior of cluster activities, information sharing makes the population movement from disorderly
to orderly evolution in problem solving space by a group of individuals, so as to obtain the optimal
solution. It means that the optimal solution is searched by iteration from the stochastic solution,
and the quality of the solution is evaluated by fitness. In recent years, PSO has attracted the attention
of academics for its advantages of easy implementation, high precision, fast convergence, and has
demonstrated its superiority in solving practical problems. The specific algorithm steps are as follows:

• Step 1: Parameter setting
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Determine some basic parameters based on the battery model, including the number of population
sizes, the dimensions of a single particle, and the range of dimensions in operation, which can be
defined according to the range of the cell parameters given in Table 2.

• Step 2: Initializing the particle swarm

Initialize Particle Swarm (population size is n), including random locations and velocities. All set
as [0–1] random numbers.

• Step 3: Calculate the fitness of each particle

In the algorithm, each dimension of a single particle represents a complete set of model parameters,
and then n particles make up a population. The objective function is set to calculate the corresponding
errors of each set of parameters with the fitness obtained accordingly.

• Step 4: Finding the individual optimum position (pbest)

For each particle, the current adaptation is compared with the adaptive value corresponding to
its individual historical best position (pbest). Then, the pbest will be updated with the current position
if the current adaptation value is better.

• Step 5: Finding the global optimum position (gbest)

Similarly, compare the current fitness with the adaptation of the global optimum position (gbest),
and update the gbest with the current particle location if the current adaptation value is better.

• Step 6: Update the velocity and position of each particles

Update the velocity and position of the dimension d of the particle i according to
Formulas (7) and (8):

vk
id = wvk−1

id + c1r1

(
pbestid − xk−1

id

)
+ c2r2

(
pbestd − xk−1

id

)
(7)

xk
id = xk−1

id + vk−1
id (8)

where vk
id is the d dimensional component of the velocity vector of particle i in the k iteration and xk

id is
the position vector; c1, c2 is the acceleration constant, adjusting learning maximum step size; r1 and r2

are two random functions, in the range [0, 1] to increase search randomness; w is the inertia weight,
a nonnegative number, which regulates the search range of solution space.

• Step 7: Loop iteration to algorithm terminates

Repeat the 3 to 6 steps above until the maximum iteration or the increment of the optimum fitness
is less than a given threshold. The algorithm stops.

Because the electrochemical model studied in this paper is relatively complex, involving
many parameters, particle swarm optimization (PSO) is exactly suitable for solving such problems.
And according to the model structure and parameter division above, we can divide all the parameters
into two parts and identify them in turn.

3.3. Identification of Parameters Related to Solid-Phase Lithium Ion Diffusion Kinetics

The solid-phase lithium ion diffusion kinetics of positive and negative electrodes plays a relatively
independent but crucial role in the model, and the concentration of lithium ion can be received by
solving the diffusion equation. The diffusion model of positive electrode can be established by the
state space Equation (5) as shown in Figure 2.
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Write the parameter identification code based on the algorithm steps described above, the number
of population size SwarmSize = 30, the dimension of a particle ParticleSize = 10, the inertia weight
w = 0.7, acceleration constant c1 = c2 = 2 and restriction factor a = 0.792. Perform 50 iterations.

In the algorithm, the individual evaluation index is the error function of the positive and negative
solid-phase lithium ion concentration at the end of the discharge:

error(i) = abs(θ_n− θn,0) + abs(θ_p− θp,0) (9)

where,θ_p and θ_n respectively indicates the concentration of solid-phase lithium ion at the end of
discharge. On the one hand, the objective function can be used as a calculation index of individual
fitness. On the other hand, it can avoid the dangerous state of excessive discharge in simulation.

The algorithm runs as shown in Figure 3. The error decreases gradually with the iterations.
The error of the 50th generation is acceptable of 0.0034, and the final identification of parameters is
shown in Table 3.
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Table 3. Identification results of kinetic parameters of solid-phase lithium ion diffusion.

Parameter Value Parameter Value

Es_n 0.4638 Es_p 0.5186
L_n 0.0097 L_p 0.0119

Ds_n 7.1908 × 10−10 Ds_p 1.7080 × 10−10

Rp_n 0.0018 Rp_p 5.8806 × 10−4

Csmax_n 0.0091 Csmax_p 0.0075
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3.4. Voltage Curve Fitting of Positive and Negative Electrodes

The battery terminal voltage is divided into four parts in the average electrode model, they are
over potential, electrolyte-phase potential, electrode open circuit potential, and potential caused by
internal resistance. The third part in Formula (2) is the battery positive and negative electrode open
circuit potential, usually expressed as a function of the electrode solid-phase lithium ion concentration,
which can be obtained by fitting experimental data. But the open circuit potentials will not the same
with different materials, the battery studied in this paper will be just chosen a ternary battery with
the negative electrode material being LixC6, the cathode material being Li(NiCoMn)O2. At present,
there is little difference between the anode materials, but cathode materials have many kinds with
different corresponding potential curves. Thus, the negative open circuit potential expression of this
paper will refer to the polynomial in the literature [10], the positive expression can be got by fitting
experimental data. The specific formula is as follows. The relation curve between the potential and the
concentration is shown in Figures 4 and 5.

U−(θn) = 0.7222 + 0.1387× θn + 0.029× θn
0.5 − 0.0172/θn

+0.0019× θn
−1.5 + 0.2808× exp(0.9− 15 ∗ θn)

−0.7984× exp(0.4465× θn − 0.4108)

(10)

U+(θp) = −3336608× θp
10 + 2224336× θp

9 − 66321816× θp
8

+116462170× θp
7 − 133373853× θp

6 + 104078116× θp
5

−56042493× θp
4 + 20560010× θp

3 − 4917875× θp
2

+692535× θp − 43591.6828

(11)
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The input of model is load current, and output is battery terminal voltage. According to the
experimental data of battery, the identification code is written, and all the parameters can be received
ultimately. Set the SwarmSize = 20, the ParticleSize = 6, other parameter settings are consistent with
the previous ones to carry out 20 iterations. The individual evaluation index is the mean error function
of the battery terminal voltage:

error(i) = avg(U_experiment−U_simulink) (12)

Operation results as shown in Figure 7, the error of the 20th generation is 0.0040. And the
identification results of the remaining 6 parameters are shown in Table 4.
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Table 4. Identification results of model remaining parameters.

Parameter Value Parameter Value

Ee_sep 0.4732 Rf 194.8967
Ee_n 0.6626 Ee_p 0.8812

Ce 0.0019 L_sep 0.0053

At this point, the 16 unknown parameters of the average electrode model are identified by two
PSO algorithms with the error all in reasonable limits. The battery test used in parameter identification
is 0.5 C discharge to the cut-off voltage 2.7 V under constant temperature and current, then hold 15 min.
And in this test, the initial SOC is 100%, the ambient temperature is 25 ◦C. The voltage curve shown
in Figure 8 indicates that the terminal voltage of the model output is basically consistent with the
experimental data, which shows that the model parameters identified with PSO can meet the precision.
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4. Simulation and Experimental Result

Based on the experimental data of 0.5 C discharge, the identification of all parameters of the
battery electrochemical model is completed. The output voltage of the model has been found as
essentially in agreement with the experimental value. In order to verify the accuracy and the validity,
we use the NEWARE battery test system (BTS-5V/10A) shown in Figure 9 to test the battery discharge
at different rates. NEWARE battery test system is the equipment that can realize the comprehensive
performance test of various rechargeable batteries with different shapes. In addition, the system has the
advantages of a stable and reliable hardware system, computer monitoring, convenient operation, clear
results, and accuracy of 0.1%.The experiments consisted of five groups of constant current discharge
tests, (0.2 C, 0.5 C, 1 C, 1.5 C and 2 C), and the initial SOC was set as 100%, the ambient temperature
will be maintained at 25 ◦C. The test will be terminated when the discharge cut-off voltage reaches
2.7 V and then hold 15 min.
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The final experimental and simulation results are shown in Figure 10. It is a 0.5 C battery discharge
test performed to identify model parameters, therefore, in the small current discharge of 0.2 C and
0.5 C, the model voltage is basically the same as the actual one. Moreover, the amount of electricity is
released the same in experiment and simulation, the average error of voltage is 0.0106 V and 0.004 V,
not more than 0.1 V.

It can be seen that the output voltage error of model, increases with the increment of current.
The discharge curves of 1 C, 1.5 C, and 2 C show that the errors are mainly concentrated in the end of
discharge and the static process. Usually in the process of constant current charging and discharging with
cut-off voltage protection, the greater the current, the smaller the amount of electricity to charge in or out
theoretically, which the simulation results in this diagram can well reflect. But in actual test, the discharge
capacity of these three experiments is very close, leading to obvious ‘hysteresis’ in the simulation curves
of 1 C, 1.5 C, and 2 C. In addition, as battery voltage is related to SOC, the SOC of the three groups are
approximately equal at the end of discharge, therefore, the final voltages are basically the same during the
static setting. However, in the simulation, the discharge capacity of 1 C, 1.5 C, and 2 C decreases in turn,
thus the static voltage will increase successively with the more obvious error. And the average errors in
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discharge stage are 0.0156 V, 0.0146 V, and 0.0216 V, respectively, the maximum deviation is not up to 0.1 V.
The final static voltage deviations are 0.149 V, 0.248 V, and 0.26 V.Energies 2017, 10, 1811 13 of 16 
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For further research, the effectiveness of the model parameters obtained by this identification
method under actual conditions, the road simulation experiment of NEDC urban cycle condition
on micro electric vehicle carried out by using chassis dynamometer. The experimental platform is
depicted in Figure 11. In this experiment, the chassis dynamometer is used to simulate the road,
and the two front wheel-motor controllers on the drum are given a control signal to drive the prototype
car. The voltage, current, and temperature of the cell in battery management system (BMS) are collected
by Controller Area Network (CAN). The car is designed with a maximum speed of 96 km/h, and its
specific driving conditions as shown in Figure 12. Besides, the prototype car is also equipped with a
braking energy recovery system, the battery is in a state of continuous charge and discharge during
operation. The initial SOC is 100%, and is 93% at the end.
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The connection modes of cell in the battery pack are first 24 parallel connections and then
20 groups in series, and the rated voltage of pack is 82 V, the rated capacity is 127 Ah. Among them,
the cell voltage can be obtained through the CAN packet, and then divide bus current by 24 to get
the cell current. Finally, the simulation and experimental results are plotted in Figure 13, the charge
and discharge current is small, about 0.5 C at low speed condition in city. In acceleration and at high
speed condition, discharge rate can reach 1 C to 1.5 C. I found that the overall trends of these two
are consistent, and really close at low speed by comparing the model output voltage with the cell
voltage collected in the actual Battery Management System (BMS). The error is about ±0.03 V. In high
speed condition, the error is larger, basically about ±0.08 V, and the maximum error can reach 0.2 V.
There are two main reasons resulting in voltage error, the measurement error caused by low measuring
accuracy of sensor, and the electrochemical model error proposed in this paper. The model accuracy
needs to be improved when charging and discharging at high current. Furthermore, the charge and
discharge efficiency, temperature, and capacity attenuation will also cause a certain deviation between
the simulation and actual value, which deserve further study.
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5. Conclusions

In this paper, the electrode dynamics of Li ion battery is analyzed, and then the electrochemical
model is established by relevant theories. The electrochemical model of the battery is a multi-loop
and strongly nonlinear system. In the light of the average electrode in [15–17], the simplified average
electrode model is finally built by combining the discrete finite difference method. Through the analysis
and classification of the parameters, applying the particle swarm optimization (PSO) algorithm, based
on the discharge experiment of 0.5 C, after two times identification, all parameters of the model
are obtained with the error within its reasonable range. By the 0.2–2 C multi-rate battery discharge
experiment, the parameters on the identification of particle swarm optimization algorithm can ensure
the accuracy of battery model, maximum voltage error is less than 0.1 V, and only occurs in the end of
large current discharge. For promoting the application of cell electrochemical models in vehicle-used
battery management systems, the average electrode model put forward in this thesis, the perfection of
model simplification, and the output characteristics under different working conditions are the focus
of the next research.
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