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Abstract: With consideration of the intermittency of renewable generation and uncertain load,
a regional control strategy is presented to smooth the unscheduled power fluctuation in this letter.
Then, an affine arithmetic-based modeling method is proposed to describe the unscheduled power
tracking characteristic of dispatchable generation resources (DGRs), based on which interval power
flow solutions with narrower ranges can be obtained. Finally, the proposed algorithm is applied to a
modified IEEE 33-bus distribution system to demonstrate its effectiveness.
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1. Introduction

With the integration of renewable generation and uncertain load, their randomness and
intermittency have become indispensable factors in distribution system power flow analysis [1,2].
Interval arithmetic is a tool frequently used to describe the uncertain variables, and the concept
of interval power flow for a radial distribution system was originally proposed in Reference [3].
To reduce the conservatism of interval arithmetic, affine arithmetic has been introduced to power flow
analysis [4] and appropriately used in radial distribution systems [5], which keeps track of correlations
among different variables during the computational process. However, along with the rapidly
developed technology of active distribution networks (ADNs), much research has focus on the effects
of dispatchable generation resources (DGRs) on distribution systems [6–11]. Among these research
studies, adjusting the outputs of DGRs to compensate the unscheduled power fluctuation is considered
to be an essential process in the real-time operation of distribution systems [6–8]. This process is
a complement to economic dispatch and has many positive effects, such as decreasing the global
communication burden, reducing overall network losses, deferring the upgrade of corresponding
equipment, and so on. To the author’s knowledge, none of the existing interval power flow studies
take into consideration the control of DGRs to compensate unscheduled power fluctuation, and thereby
lead to the overestimation of interval power flow solutions.

This letter presents a regional control strategy to smooth the unscheduled power fluctuation in
distribution systems, based on which an affine arithmetic-based modeling method is proposed to
describe the unscheduled power tracking characteristic of DGRs and thus obtain interval power flow
solutions with narrower ranges. An IEEE 33-bus distribution system modified with extra uncertain
sources is utilized as a test system, and the comparison of interval power flow solutions demonstrates
the contribution of this letter.
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2. Regional Control of Unscheduled Power Fluctuation

To reduce the deviation of power flow solutions from the scheduled values, unscheduled power
fluctuation is always compensated through nearby DGRs in real-time operation. Thus, the distance
from an uncertain source to the corresponding DGR is a key factor that should be considered in
delimiting the control region. In this section, breadth-first search is utilized to determine the scope of
each control region and a simple example with two DGRs is shown in Figure 1.
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buses i and j, which are equal to the deviations in the corresponding interval models of uncertain
sources. Outputs of wind turbines and photovoltaic modules, as well as load demands of electric
vehicle charging stations are considered as uncertain sources in this letter, and more details of their
interval models can be found in References [12,13]. For any control region, Equation (1) guarantees
that the adjustable capacity of the DGR in this region can cover the corresponding unscheduled power
fluctuation; Equation (2) shows that adding any neighboring bus to this region would lead to the
insufficiency of the DGR’s adjustable capacity. Moreover, it is to be noted that buses far from the
substation bus are preferential to be included in the control region when several buses with the same
distance correspond to the DGR, because a longer power supply distance from the substation bus
always leads to more negative impacts.

The scope of each control region varies with the changes of some related factors, which are,
respectively, the economic dispatch schedules and the prediction error of uncertain sources. At any time,
the target of output control for each DGR is to compensate the total unscheduled power fluctuation
in the corresponding region, in order to relieve the impact of power fluctuation on the operation
of the power system. To make the description clear, the change of the DGR’s output in region k is
formulated as:
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where ∆PDGR
k represents the change of the DGR’s output in region k and ∆Punsch

i stands for the
unscheduled power fluctuation of the uncertain source at bus i.

3. Proposed Affine Arithmetic-Based Modeling Method and Power Flow Algorithm

At a given time, it is assumed that the active power injection at bus i varies within the range
of [Pi, Pi] due to the unscheduled power fluctuation of the connected uncertain source. This power
injection can be represented by the affine form:

∧
Pi =

1
2
(Pi + Pi) +

1
2
(Pi − Pi) · εi (4)

where
∧
Pi stands for the affine form of active power injection at bus i and εi is the corresponding noise

symbol. Each noise symbol is a symbolic real variable whose value is unknown, except that it is
restricted to the interval [−1, +1] and independent from other noise symbols. 1

2 (Pi + Pi) and 1
2 (Pi − Pi),

respectively, indicate the midpoint and maximum deviation of the active power injection at bus i.
To unify the definition of unscheduled power fluctuation, uncertain load demand is regarded

as negative power injection. Then the total unscheduled active power fluctuation in region k can be
formulated as:

∧
∆Ptotal

k = ∑
i∈Ωinc

k

1
2
(Pi − Pi) · εi (5)

According to the description in the regional control strategy, the change of the DGR’s output in
region k can be transformed into the affine form as:

∧
∆PDGR

k = − ∑
i∈Ωinc

k

1
2
(Pi − Pi) · εi (6)

Taking into consideration the economic dispatch schedule of the DGR, then the actual output of
the DGR is shown in (7):

∧
PDGR

k = PDGR−sch
k − ∑

i∈Ωinc
k

1
2
(Pi − Pi) · εi (7)

where PDGR−sch
k is the scheduled output of the DGR in region k. It should be noted that only active

power fluctuation is considered in this letter, since most of the reactive power in a distribution
system is provided by local reactive power compensation devices (e.g., shunt capacitor and Static Var
Compensator), whose outputs are controllable and without uncertainties.

Based on the established affine models of uncertain sources and DGRs in Equations (4) and (7),
a backward/forward sweep-based interval power flow algorithm is used to carry out the interval power
flow solutions. Details of the utilized interval power flow algorithm can be found in Reference [5].
Figure 2 presents the flowchart of the proposed algorithm.
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4. Case Study

To demonstrate the positive significance of the proposed algorithm, an IEEE 33-bus distribution
system [5,14] is adopted and modified by additionally integrating several uncertain sources and DGRs,
as shown in Figure 3. Details of the uncertain sources and DGRs are described as follows:

(1) WT, PV, CS and ES stand for wind turbine, photovoltaic module, electric vehicle charging station,
and energy storage, respectively. WT, PV, and CS are uncertain sources. ES is regarded as
the DGR.

(2) At the moment under study, uncertain sources of the same type are assumed to have the same
predicted output or demand. The predicted active power injection to the corresponding bus from
WT, PV, and CS are 300 kW, 200 kW, and −500 kW, respectively. The prediction errors of all the
uncertain sources are set as ±10%.

(3) The maximum charging or discharging power of ES is assumed to be ±100 kW, and no charging
or discharging performance occurs at the moment.
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According to the presented regional control strategy, energy storages at buses 15 and 27 are
respectively utilized to compensate for the unscheduled power fluctuation. In detail, ES output at bus
15 is adjusted to relieve unscheduled power fluctuation from buses 12, 14, and 17; meanwhile, ES output
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at bus 27 is for buses 7, 28, and 30. The interval power flow solutions are shown in Figures 4 and 5,
as well as the comparison with scheduled power flow solutions and interval power flow solutions
neglecting regional control. Furthermore, the maximum deviation and average deviation among all
the buses are illustrated in Table 1, where the deviation specifically refers to the distance from interval
power flow solutions’ bounds to scheduled power flow solutions.
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Table 1. Deviation analysis under different scenarios.

Scenario Type
Voltage Magnitude (p.u.) Voltage Angle (degrees)

Maximum Deviation Average Deviation Maximum Deviation Average Deviation

With regional control 0.0016 5.8667 × 10−4 0.0882 2.5423 × 10−2

Without regional control 0.0070 3.5262 × 10−3 0.2843 1.2892 × 10−1

Obviously, taking into consideration the presented regional control strategy to smooth the
unscheduled power fluctuation, interval power solutions with narrower ranges are obtained.
Viewed from voltage magnitude, maximum deviation and average deviation decreased from 0.0070 p.u.
to 0.0016 p.u. and 3.5262 × 10−3 p.u. to 5.8667 × 10−4 p.u., respectively. With respect to voltage
angle, maximum deviation and average deviation reduced from 0.2843 degrees to 0.0882 degrees
and 1.2892 × 10−1 degrees to 2.5423 × 10−2 degrees, respectively. Furthermore, the new obtained
interval power flow solutions are in good agreement with the practical scenario. Their narrower ranges
bring about the elimination of impractical risk warning in power system operations, thereby avoiding
unnecessary precautionary measures and reducing the requirement of dispatchable resources. Hence, it
is of great significance to propose the affine arithmetic-based power flow algorithm and utilize it to
take account of the unscheduled power tracking characteristic of DGRs in power flow analysis.
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5. Conclusions

This letter proposes an affine arithmetic-based power flow algorithm, taking into consideration the
regional control strategy for unscheduled power fluctuation. Interval power flow solutions obtained
by the proposed algorithm exhibit narrower ranges and good agreement with the practical scenario,
which will bring significant benefits to the operation of the distribution system. Following this work,
more complicated control strategies of DGRs as well as the corresponding affine arithmetic-based
modeling methods should be studied, which will make interval power flow solutions more accurate.
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