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Abstract: Wind Power Ramp Events (WPREs) are large fluctuations of wind power in a short time
interval, which lead to strong, undesirable variations in the electric power produced by a wind
farm. Its accurate prediction is important in the effort of efficiently integrating wind energy in
the electric system, without affecting considerably its stability, robustness and resilience. In this
paper, we tackle the problem of predicting WPREs by applying Machine Learning (ML) regression
techniques. Our approach consists of using variables from atmospheric reanalysis data as predictive
inputs for the learning machine, which opens the possibility of hybridizing numerical-physical
weather models with ML techniques for WPREs prediction in real systems. Specifically, we have
explored the feasibility of a number of state-of-the-art ML regression techniques, such as support
vector regression, artificial neural networks (multi-layer perceptrons and extreme learning machines)
and Gaussian processes to solve the problem. Furthermore, the ERA-Interim reanalysis from the
European Center for Medium-Range Weather Forecasts is the one used in this paper because of
its accuracy and high resolution (in both spatial and temporal domains). Aiming at validating the
feasibility of our predicting approach, we have carried out an extensive experimental work using
real data from three wind farms in Spain, discussing the performance of the different ML regression
tested in this wind power ramp event prediction problem.

Keywords: wind energy; wind power ramp events; machine learning regressors; reanalysis; Gaussian
processes; support vector machines; neural networks

1. Introduction

1.1. Motivation

Wind power is currently one of the most important renewable energies in the world [1] in
terms of penetration in the electric power system [2,3], economic impact and annual growth rate [4],
both onshore [5] and offshore [6]. Electric power generation is usually carried out in large wind
farms [7,8] far from urban centers [9,10], though, in the last few years, urban wind power generation
is also gaining impulse [11], including its use in smart grids [12].

The counterpart of the benefits associated with the flourishing of wind energy throughout the
world—mainly the reduction of CO2 emission, one of the causes of global warming [13] and climate
change [14]—are problems related not only to the maintenance and management of wind farm facilities,
but also to those of power grids. Regarding this, one of the most important problems yet to be solved is
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the efficient integration [15] of an increasing number of wind energy generators in both the distribution
and transmission power grids, which are becoming increasingly complex [16,17]. Such an intrinsically
complex nature of power grids is further increased because of the inherent stochastic nature of wind
energy [18] that, depending on the weather conditions, can lead to intermittent generation [18]. This can
affect the stability, robustness and resilience [16,17] of electric power grids. A useful discussion of the
technical differences between these interrelated, but distinct concepts can be found in [17].

Aiming at preserving grid stability in a scenario with a high percentage of intermittent renewable
sources—not only wind energy [6], but also photovoltaic [19] and wave [20] energies—power grids
need to be made more flexible [21]. In this effort, the emerging technologies associated with smart
grids [12] and micro-grids [22] can be used to mitigate wind power intermittency. An illustrative,
very recent proposal in this respect consists of increasing the penetration of Vehicle-to-Grid (V2G)
technologies [23] to use the batteries of idle Electric Vehicles (EV) as power storage units [24], absorbing
peaks of intermittent overproduction.

Wind power intermittency and its influence on power grids’ stability and performance are the
main reasons why Wind Power Forecasting (WPF) [25,26] is a key factor to improve its integration
without unbalancing the rest of the grid components. Among the different issues in wind power
prediction, one of the most significant is the existence of Wind Power Ramp Events (WPREs). WPREs
consist of large fluctuations of wind power in a short period of time, leading to a significant increasing
or decreasing of the electric power generated in a wind farm [27,28].

The field of scientific research in WPREs’ prediction (or forecasting) [29] is a relatively recent
topic driven by the need for improving the management of quick and large variations in wind power
output, particularly in the aforementioned context of power grids with high renewable penetration [30].
A useful review of different WPREs’ definitions (in which there does not seem to be a clear consensus)
and their types (increasing or decreasing, depending on the WPRE definition) can be found in [31].
Among them, WPREs’ severity is one of the important issues. Up and down WPREs can exhibit
different fluctuating levels of severity, although down WPREs are usually more critical than up WPREs
because of the availability of reserves [27]. WPREs are usually caused by specific meteorological
processes—basically, crossing fronts [32] and fast changes in the local wind direction—and they
involve at several scales (synoptic [33], mesoscale [34] and microscale). Surprisingly, it has been found
recently that very large offshore farms, clustered together, can also generate large WPREs on time
scales of less than 6 h [35]. This gives an idea of the complexity of the WPRE phenomenon.

WPREs’ prediction is not only important for power grid operators, but also for wind farm owners.
In fact, the occurrence of WPREs in wind farms is critical not only because of the aforementioned
undesired variations of power, but also due to their potential harmful effects in wind turbines,
which leads to an increase of management costs associated with these facilities [36]. Regarding this,
the accurate prediction of WPREs has been reported as an effective method to mitigate the economic
impact of these events in wind generation power plants [28,36].

According to [36,37], the prediction of WPREs and their influence on electricity generation and
grid stability have been recently tackled by using two major families of techniques: (1) “physical-based”
models (or numerical approaches aiming to tackle the complexity of the physical equations, which
rule the atmosphere to obtain a prediction); and (2) statistical approaches (usually data-driven models
to obtain predictions). The first group of techniques, the physical-based approaches, include a set of
equations that rules the atmospheric processes and their evolution over time and, because of their
complexity and nonlinearity, are tackled by means of numerical methods. The second group of WRPE
predicting techniques, the statistical approaches, are data-driven methods that are based on wind
time series and include a variety of techniques ranging from conventional approaches—for instance,
Autoregressive-Moving-Average (ARMA)—to Computational Intelligence (CI) approaches [38].
These are physics-inspired meta-heuristics [38] able to find approximate solutions to complex problems
that otherwise could not be solved or would require very long computational time. They include,
among others, three groups of bio-inspired techniques such as Evolutionary Computation (EC) [39],
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Neural Computation (NC) [40] and Fuzzy Computation (FC) [41]. An introduction to the main concepts
of bio-inspired CI techniques in energy applications can be found in [20,42]. Examples of NC are
Neural Networks (NNs), which are ML algorithms able to learn after training and validation processes.
Although it will be shown in more detail in our bibliographic review in Section 2, most of the research
works focus on WPREs’ forecast by using either numerical-physical models or statistical approaches,
but only a few combine both, mainly focused on WPREs’ classification, but not on prediction.

1.2. Purpose and Contributions

The purpose of this work is to explore the feasibility of a novel hybrid WPRE prediction framework
(proposed in this paper), which merges parts of numerical-physical models with state-of-the-art
statistical approaches. Specifically, our work presents a system for WPRE prediction based on
ML regression techniques, in which the predictive variables are obtained from the ERA-Interim
reanalysis data. Reanalysis is a methodology that consists of combining past observations with a
modern meteorological forecast physical model aiming at producing regular gridded datasets of
many atmospheric variables, with a temporal resolution of a few hours. ERA-Interim represents
a pivotal commitment by the European Centre for Medium-Range Weather Forecasts (ECMWF) to
produce a reanalysis by including accurate physical atmospheric models and assimilation system.
Among the ML regression techniques, we have tested NNs—Multi-Layer Perceptrons (MLPs) and
Extreme Learning Machines (ELMs)— Support Vector machines for Regression (SVR) and Gaussian
Processes for Regression (GPR). All the algorithm codes have been obtained by public implementations
available on the Internet.

When we use the term “hybrid algorithms”, we mean that our proposal combines data from
numerical-physical methods (reanalysis, in this case) with ML approaches (specifically, regressors).
Regarding what we have called the hybrid approach, there are two points to note. The first one is
that it would be possible to adapt the proposed regression techniques to operate with alternative data
(not coming from numerical methods, reanalysis, in this paper). The second one, which is the main
novelty of our work, is that we prove that the use of data from numerical-physical methods could help
achieve valuable prediction of WPREs in wind farms.

The contributions of our work are:

1. The use of regression techniques in this kind of problem since, up until now, the majority of
WPRE prediction frameworks have been based on classification approaches, as will be shown in
the literature review in Section 2.

2. The use of direct reanalysis data as predictive variables of the ML regression techniques. As will
be shown, this is because the direct application of regression algorithms makes unnecessary
the use of some pre-processing algorithms, which are necessary in other approaches [43,44].
Note that the classification problems associated with WPREs are usually highly unbalanced,
which makes it difficult to put into practice high-performance classification techniques without
having to use specific over-sampling or similar techniques [43,44].

3. The performance of the proposed system has been tested using real data from three different
wind farms in Spain.

1.3. Practical Perspectives

Section 1.1 has motivated the need for developing novel, more accurate WPRE prediction tools
and has illustrated the possible practical application. Going deeper into this regard, WPREs’ prediction
can have different goals and practical perspectives depending on the company that needs to use it.
Such enterprises are wind power farm owners, utility companies and Independent System Operators
(ISOs) [45]. In particular, for ISOs, the ability to predict abrupt changes in wind power generation is
one of their major concerns [27].
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In this context, our novel hybrid WPRE prediction framework, which combines parts of
numerical-physical models and state-of-the-art statistical ML regressors, could help the aforementioned
companies improve their WPRE forecasts, aiming at better integration of the wind farms in the power
grid (in the case of utility companies and independent system operators) or reducing the damage in
turbines (for wind power farms owners).

1.4. Paper Organization

The rest of the paper is organized as follows. Section 2 reviews the state-of-the-art, showing the
scientific novelty of our proposal and its practical importance. Section 3 states the problem definition
we tackle in this paper, in which the WPRE prediction is formulated as a regression task. Section 4
presents the data and predictive variables involved in our proposal. In Section 5, we describe the main
ML regression techniques we have tested to solve the WPRE prediction problem. In turn, Section 6
shows the experimental work we have carried out, these results being obtained by the different tested
algorithms in three WPRE prediction problems located at three distinct wind farms in Spain. Section 7
completes the paper by giving some final concluding remarks on the work carried out.

For the sake of clarity, Table 1 lists the acronyms used in this paper.

Table 1. List of acronyms used throughout this research article.

Acronym Meaning

ANN Artificial Neural Network
ARMA Autoregressive Moving Average

CI Computational Intelligence
CDF Computational Fluid Dynamics
EA Evolutionary Algorithm
EC Evolutionary Computation

ECMWF European Centre for Medium-Range Weather Forecasts
ELM Extreme Learning Machine
FC Fuzzy Computation

GCM Global Circulation Model
GP Gaussian Process

GPR Gaussian Processes for Regression
L1-SVR L1 Support Vector Regression

MAE Mean Absolute Error
ML Machine Learning

MLP Multi-Layer Perceptrons
NC Neural Computation
NN Neural Network

NWM Numerical Weather Model
NWP Numerical Weather Prediction
PCA Principal Component Analysis
RBF Radial-Basis Function
RC Reservoir Computing

RMSE Root Mean Square Error
SAF Sigmoid Activation Function
SDA Swinging Door Algorithm
SVM Support Vector Machine
SVR Support Vector (machine for) Regression
V2G Vehicle-to-Grid

WEST Wind Energy Study of Territory
WPF Wind Power Forecasting

WPREs Wind Power Ramp Events
WRF Weather Research and Forecasting
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2. Related Work

As mentioned before, according to [36], the prediction of WPREs is usually tackled by means of
two groups of methods: numerical-physical models and statistical approaches. Sections 2.1 and 2.2
review, respectively, the physical-based and statistical approaches, while Section 2.3 discusses the
novelty of our proposal, once the literature has been analyzed.

2.1. Physical-Based Models

Physical-based methods take into account both spatial and temporal factors in the framework
of the fluid dynamics of the atmosphere [46,47], which include a set of equations that models
the atmospheric processes and how the atmosphere evolves with time [48]. The equations that
model the motion on the atmosphere (primitive equations) are Newton’s second law of motion
(momentum conservation), the first law of thermodynamics (energy conservation), the continuity
equation (mass conservation), the equation of state and the equation of water conservation [48].
As mentioned before, modeling atmospheric processes is so complex that, in fact, the aforementioned
equations are simplified models of the actual physical atmospheric processes.

Additionally, and because of their non-linearity, a feasible way to solve this problem consists
of using numerical models and methods, leading to the so-called Numerical Weather Prediction
(NWP) models [48–51]. To put it simply, in an NWP model, the prediction of future states of the
atmosphere is made by numerically modeling the dynamics and other physical processes of the
atmosphere. The NWP model predictions are initialized from analyses, which represent the observed
state of the atmosphere, on a three-dimensional grid, by combining observational data with an
earlier prediction [49–51]. Enhancements of NWPs can be done by including some physical aspects
of the terrain such as the roughness, orography and obstacles [52]. This is usually carried out by
using Computational Fluid Dynamics (CDF), which allows for accurately computing the wind field
at the farm location considering the terrain [52]. For further details about wind forecasting using
NWP methods, the interested reader is referred to [48,52,53]. Within the field of application of wind
energy, NWP models are able to provide, relatively quickly, wind data with high spatial and temporal
resolutions. They are able to provide forecasts ranging from the next few hours up to several days
ahead [49–51].

As a subset of the NWP techniques to predict wind, there are some particular works, specifically
focused on WPREs prediction in wind farms, which will be discussed in the following paragraphs for
the sake of clarity.

To begin the discussion, it is convenient to start with the recent work [54], which is an illustrative
review of state-of-the-art physical models to predict WPREs. In particular, it proposes novel tools
and metrics to evaluate and compare different NWP models. The evaluation of a conventional wind
power forecasting methodology based on the combination of two Numerical Weather Models (NWMs)
has been carried out in [49]. Specifically, the models BoMMesoLAPS (a Limited Area Model with
high resolution of 12.5 km) and the Danish Wind Power Prediction Tool (applied to the output of
the BoM) have been tested in a problem of WPRE prediction, in time horizons between 19 and 42 h
ahead. In [55], NWMs have also been applied to the prediction of WPREs in wind farms. The proposed
methodology includes a transformation of the wind speed at each grid point to an equivalent value
that represents the surface roughness and terrain at the wind farm area. This modification of the
NWM outputs has been found to achieve improvements in WPRE prediction when compared to the
raw NWM data. In [56], an NWM has been used to reduce the forecasting error in the detection of
up-ramps and down-ramps with uncertain staring times. The results obtained are mainly based on the
improvement of the NWM, which is a hard problem itself.

An important point common to the revised papers is that winds computed by NWP models
suffer from non-negligible deviations when compared to real wind measurements. This is basically
because NWP models may have problems in representing local terrain characteristics (roughness and
topography) with sufficient precision and in resolving medium/small-scale meteorological phenomena.
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These disadvantages can appreciably affect the accuracy of their wind simulations and, consequently,
their energy production forecasting [48,57]. Reanalyses and analyses combine those data modeled by
NWP methods with atmospheric and oceanic measurements. However, in some cases (such as
local offshore wind energy prediction) [57], these approaches have coarse spatial resolutions
(50–250 km), which make it difficult to accurately characterize local wind regimes and to predict
wind energy production.

Another significant issue is that, as a consequence of its chaotic nature, the future state of the
atmosphere is very sensitive to small errors at the start of the prediction [35]. This leads to an uncertainty
in NWP model forecasts, which increases with the prediction horizon. To overcome this problem,
a given NWP model is usually run a number of times, with slightly different starting conditions,
leading to a set of predictions. The complete set of predictions is called the ensemble [35]. In this
methodology, the individual members of the ensemble can be analyzed to get a better idea of which
possible weather events may occur. Ensembles or grids of NWPs have been found to improve
the prediction [50,58], even up to a lead time of seven days [59]. In [50], the performance of NWM
ensembles has been evaluated in a problem of the probabilistic occurrence of WPREs. This study shows
the results corresponding to 18 months of data from a French wind farm and 51 prediction models
from the Ensemble Prediction System of the European Center for Medium-Range Weather Forecasts.
In [60], several numerical methods, such as WEST (Wind Energy Study of Territory), have been used
for characterizing anemometric fields and the potential available wind power.

To complete this section, we would like to highlight, for different reasons that will be clear later
on, two recent works [32,35]. On the one hand, ref. [32] is interesting because it uses data from Global
Circulation Models (GCMs) (reanalysis data)to identify possible meteorological causes for WPREs and
also because it applies a methodology based on wavelets and Principal Component Analysis (PCA) to
estimate the best set of features (predictive variables) to estimate WPREs. On the other hand, ref. [35]
is intriguing because it explores the impact of high frequency ramps in a cluster of large offshore wind
farms in the UK, and by using a variety of state-of-the-art high resolution NWP models, the authors
are able to predict those WPREs that are caused by the wind farm clusters themselves.

2.2. Statistical Approaches

Statistical approaches include different methodologies such as ARMA algorithms, Dynamic
Programming (DP), neural networks, Support Vector Machines (SVMs) or kernel methods, to name
a few. The interested reader is referred to [61] for general aspects about the latter techniques and,
in particular, to [62], which is an updated reference on SVMs. The work in [63] is an updated review
of ELMs.

Focused exclusively on the WPRE prediction, at relatively short lead times (minutes to hours),
forecasts can be made using simple statistical methods such as ARMA [35,64]. A more elaborate
approach, a hybrid ARMA-hidden Markov model approach has been proposed in [65] for the forecast
of short-term wind speed, including wind ramp events. Experiments at two locations of the U.S.
(one in the Pacific Northwest and one in southern Wisconsin) show a good performance of the
methodology proposed, using surface wind speed and direction time series to estimate future values
of the wind speed. In [66], several time series prediction models, both univariate and multi-variate
approaches, have been evaluated in a problem of WPRE prediction, with a short-term prediction
horizon between 10 and 60 min. In this work, the boosting tree algorithm [67] has been used to perform
feature selection of the most important predictive variables in the multi-variate time series prediction
models. Experiments in a large wind farm with 100 wind turbines report good performance of this
data-mining approach. In [68], a DP approach has been proposed for detecting WPREs in time series
of wind power. The specific technique explored is based on previously defining a family of scoring
functions associated with the WPREs on an interval of the time series, and after this first step, a DP
recursion is used to locate the WPREs in the time series.
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NC approaches have also been explored in [36,69]. Specifically; an NN approach for switching
between three different regimes of WPREs (ramp-up, ramp-down and no-ramp) is proposed in [69].
Depending on the WPRE type (evaluated using a gradient time series of the wind speed), a different
NN is trained, with a specific structure and training process. Results of the application of this approach
in data from Spanish wind farms are reported. More recently, an NN has been used to model the
wind power generation as an stochastic process [36]. More specifically, the NN has been used as a
surrogate model of the wind power generation at a wind farm. The surrogate model is then used to
simulate different possible future scenarios of wind power generation. Since the prediction of WPREs
is different for each specific scenarios, ref. [36] gives WPRE prediction in a probabilistic way. In [70],
an SVM for classification is used to forecast WPREs, after grouping the ramp events into different
classes. The reported results show a good WPRE prediction with the SVM methodology.

Recently, an algorithm for pattern discovery in times series called the Swinging Door Algorithm
(SDA) has been applied to the detection of WPREs in wind power data [71]. The SDA has been tested
on wind power data from the Electric Reliability Council of Texas with good results in terms of WPREs’
detection and computational effort. In [72], a classification framework for evaluating and detecting
WPREs has been proposed. Different signal processing techniques (filters) are then proposed for the
practical prediction of WPREs.

Finally, we would like to discuss here three very recent works [43,44,73], which, at first glance, bear
some resemblance to our proposal. In [43], a new Reservoir Computing (RC) methodology [74] has been
successfully applied to a problem of WPRE prediction in wind farms. In that work, 6-h and 24-h binary
(ramp/non-ramp) predictions have been used. In contrast to this binary approach (ramp, non-ramp),
a three-class prediction has been proposed in [73] by considering: negative ramp, non-ramp and
positive ramp, in which the natural order of the events is clear. The independent variables contain
past ramp function values and meteorological data obtained from physical models (reanalysis data).
The methodology in [73] is also based on RC and on an over-sampling process for reducing the high
degree of unbalance of the dataset (since non-ramp events are much more frequent than ramp events).
Finally, the third work, [44], is based on modeling the prediction problem as a binary classification
problem from atmospheric reanalysis data inputs and combines ELM with Evolutionary Algorithms
(EAs) to optimize the trained models.

2.3. Review Conclusions

In spite of the important previous research, both on statistical approaches and physical models
analyzed, there have been very few works that consider both WPRE prediction paradigms together.
In [55], the possibility of using statistical techniques to carry out a down-scaling process with an
application in WPRE detection was suggested. A similar approach was first proposed in [34] for
short-term wind speed prediction, but without the direct application to WPRE prediction. In other
previous works in the literature, the WPRE detection problem has been defined as a classification
problem [72]. More recently, the aforementioned last three papers analyzed in Section 2.2, [43,44,73]
also combined physical models and statistical approaches, on the basis of a binary classification
task [43,44] or even ordinal classification [73]. However, the key difference between [43,44,73] and
the methodology that we put forward in the present paper is that, in addition to merging part of
numerical-physical models with state-of-the-art ML techniques, the ML algorithms that we propose
here are regressors. The use of regressors has not been previously applied directly to this WPRE
prediction problem. The purpose in this case is modeling the “wind ramp function” (St) as accurately
as possible in terms of several input variables. Note that this way of facing the problem overcomes
some problems associated with WPREs defined as a binary classification task [43,44] or even ordinal
classification [73]; for example, the appearance of highly imbalanced problems or the necessity of a
threshold in S for defining the appearance of a wind ramp.
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In conclusion, and to the best of our knowledge, there is no work aiming to predict WPREs
in wind farms based on ML regressors using reanalysis data directly as predictive variables of the
ML regressors.

3. Problem Definition

Following previous works in the literature [28,43,44,73], a WPRE can be characterized by a number
of parameters:

• Magnitude (∆Pr): defined as the variation in power produced in the wind farm or wind turbine
during the ramp event (subscript “r”).

• Duration (∆tr): time period during which the ramp event is produced.

In addition to the magnitude and duration of a wind ramp, the derived quantity called the ramp
rate (∆Pr/∆tr) is used to define the intensity of the ramp.

Taking these parameters into account, and as shown in Section 2.3, in the majority of previous
works in the literature, the WPRE detection problem has been defined as a classification problem [72].
Within this framework, let St ∶ Rk → R be the so-called ramp function, i.e., a criterion function that is
usually evaluated to decide whether or not there is a WPRE. There are several definitions of St, all of
them involving power production (Pt) criteria at the wind farm (or wind turbine), but the two more
common ones are the following [28]:

S1
t = Pt+∆tr − Pt (1)

S2
t = max([Pt, Pt+∆tr]) −min([Pt, Pt+∆tr]) (2)

Note that, in the ramp function S1
t stated by Equation (1), the power variation is referred to a given

time interval ∆tr. In the experimental work carried out throughout this work, such a time interval has
been assumed to be ∆tr = 6 h (the “reference time interval”) because of the reanalysis resolution.

Using any of these definitions of the ramp function St, the classification problem can be stated by
defining a threshold value S0, in the way:

It = { 1 , if St ≥ S0

0 , otherwise
(3)

where It is an “indicator function” to be used to label the data in the binary classification formulation
of the problem.

As will be shown later on, in our approach, we first set the threshold value S0, and then, a WPRE
is detected if the ramp function is larger than 50% of S0. It is worth mentioning that, if we were
interested in establishing a larger number of cases (for example, five classes of WPRE), we would need
at least two thresholds to do so.

The WPRE detection problem also involves a vector of predictive variables x. Different types
of inputs have been used as predictive variables in the literature. The key point here is that the
meteorological process must be always considered, since they are physical precursors of WPREs.
Different numerical weather prediction system outputs have been used to obtain these predictive
variables, including reanalysis data [32]. This provides a long history record of meteorological variables
to be used as predictive variables for WPRE prediction. Following these previous works, in this paper,
we tackle the following version of the WPRE prediction problem:

Let Xt = {x1, . . . , xl} (with t = 1, . . . , l) be time series of l predictive variables and l values of the
ramp function St (objective variables). The problem consists of training a regression modelM in a
subset of (Xt, St)T (training set), in such a way that, whenM is applied to a given test set (Xt, St)R,
an error measure e is minimized.
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4. Data and Predictive Variables

A reanalysis project is a methodology carried out by some weather forecasting centers,
which consists of combining past observations with a modern meteorological forecast model, in order
to produce regular gridded datasets of many atmospheric and oceanic variables, with a temporal
resolution of a few hours. Reanalysis projects usually extend over several decades and cover the
entire planet, being a very useful tool for obtaining a comprehensive picture of the state of the Earth
system, which can be used for meteorological and climatological studies. There are several reanalysis
projects currently in operation, but one of the most important is the ERA-Interim reanalysis project,
which is the latest global atmospheric reanalysis produced by the ECMWF [75]. ERA-Interim is a
global atmospheric reanalysis from 1979, continuously updated in real time. The data assimilation
system used to produce ERA-Interim is based on a 2006 release that includes a four-Dimensional
Variational analysis (4D-Var) with a 12-h analysis window. The spatial resolution of the dataset is
approximately 15 km, on 60 vertical levels from the surface up to 0.1 hPa. ERA-Interim provides
six-hourly atmospheric fields on model levels, pressure levels, potential temperature and potential
vorticity and three-hourly surface fields.

Aiming to tackle the WPRE prediction problem in this paper, we consider wind and
temperature-related predictive variables from ERA-Interim at some specific points in the neighborhood
of the area under study. The variables considered as predictors (Table 2) are taken at different pressure
levels (surface, 850 hPa and 500 hPa), in such a way that different atmospheric processes can be taken
into account. A total of 12 prediction variables per ERA-Interim node and four nodes surrounding the
area under study (wind farm) are considered at time t, i.e., in this problem, Xt is formed by N = 48
predictive variables. The ERA-Interim time resolution for the predictive variables (6 h) sets in this case
the ramp duration taken into account (∆tr = 6).

Thus, each regression model analyzed in this paper (M) must be trained with the data (Xt, S1
t )T

or (Xt, S2
t )T, where S1

t and S2
t are computed using Equations (1) and (2), respectively.

Table 2. Predictive variables considered at each node from the ERA-Interim reanalysis.

Variable Name ERA-Interim Variable

skt surface temperature
sp surface pression
u10 zonal wind component (u) at 10 m
v10 meridional wind component (v) at 10 m

temp1 temperature at 500 hPa
up1 zonal wind component (u) at 500 hPa
vp1 meridional wind component (v) 500 hPa
wp1 vertical wind component (ω) at 500 hPa

temp2 temperature at 850 hPa
up2 zonal wind component (u) at 850 hPa
vp2 meridional wind component (v) at 850 hPa
wp2 vertical wind component (ω) at 850 hPa

5. Computational Methods: Machine Learning Regression Techniques

This section describes the ML regression methods tested in this paper. SVR, MLP and GPR are
the state-of-the-art regression algorithms selected to be compared in the WPRE prediction problem
stated before.

5.1. Support Vector Regression

SVR [76] is one of the state-of-the-art algorithms for regression and function approximation,
which has yielded good results in many different regression problems. Although there are several
versions of the SVR, the classical model, ε-SVR, described in detail in [76], is the one considered in
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this work because it has been shown to be very useful in a large variety of problems in science and
engineering [77].

The ε-SVR method consists of the following: given a set of training vectors T = {(xi, Sti),
i = 1, . . . , l}, training a model of the form St(x) = f (x) + b = wTφ(x) + b, by minimizing a general
risk function of the form:

R[ f ] = 1
2
∥w∥2 +C

l∑
i=1

L (Sti , f (xi)) , (4)

where the norm of w controls the smoothness of the modelM, φ(x) is a function of the projection of
the input space to the feature space, b is a parameter of bias, xi is a feature vector of the input space
with dimension N, Sti is the output value to be estimated and L (Sti , f (xi)) is the loss function selected.
In this paper, we use the so-called “L1 Support Vector Regression” (L1-SVR), characterized by an
ε-insensitive loss function [76]:

L (Sti , f (xi)) = { 0 , if ∣Sti − f (xi)∣ ≤ ε∣Sti − f (xi)∣ − ε , otherwise
(5)

To train this model, it is necessary to solve the optimization problem [76]:

min
⎛⎝1

2
∥w∥2 +C

l∑
i=1

(ξi + ξ∗i )⎞⎠ (6)

subject to:
Sti −wTφ(xi) − b ≤ ε + ξi, i = 1, . . . , l (7)

− Sti +wTφ(xi) + b ≤ ε + ξ∗i , i = 1, . . . , l (8)

ξi, ξ∗i ≥ 0, i = 1, . . . , l. (9)

The dual form of this optimization problem is usually obtained through the minimization of the
Lagrange function, constructed from the objective function and the problem constraints. In this case,
the dual form of the optimization problem is:

max
⎛⎝−1

2

l∑
i,j=1

(αi − α∗i )(αj − α∗j )K(xi, xj) − ε
l∑

i=1
(αi + α∗i ) + l∑

i=1
Sti(αi − α∗i )⎞⎠ (10)

subject to:
l∑

i=1
(αi − α∗i ) = 0 (11)

αi, α∗i ∈ [0, C] (12)

In addition to these constraints, the Karush–Kuhn–Tucker conditions must be fulfilled, and also,
the bias variable, b, must be obtained. The interested reader can consult [76] for reference. In the
dual formulation of the problem, the function K(xi, xj) is the kernel matrix, which is formed by the
evaluation of a kernel function, equivalent to the dot product ⟨φ(xi), φ(xj)⟩. A usual election for this
kernel function is a Gaussian function, as follows:

K(xi, xj) = exp(−γ ⋅ ∥xi − xj∥2). (13)

The final form of function f (x) depends on the Lagrange multipliers αi, α∗i , as follows:

f (x) = l∑
i=1

(αi − α∗i )K(xi, x) (14)
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In this way, it is possible to obtain an SVR model by means of the training of a quadratic problem
for given hyper-parameters C, ε and γ.

Regarding SVR software, one of the most used packages for SVR is the implementation in C
language of the algorithm, described in [78], and freely available on the Internet at [79]. This is the
SVR version we test in this paper.

5.2. Multi-Layer Perceptrons

An MLP is a particular kind of ANN, a massively parallel and distributed information processing
system, successfully applied in modeling a large variety of nonlinear problems [80,81]. The MLP is a
parallel information processing network consisting of an input layer, a number of hidden layers and an
output layer. All the layers forming an MLP are basically composed of a number of special processing
units, called neurons. As important as the processing units themselves is the connectivity among them:
the neurons within a given layer are connected to those of other layers by means of weighted links.
The value of each weight is related to the MLP ability to learn and generalize from a sufficiently long
number of examples.

Such a learning process demands a proper database containing a variety of input examples or
patterns and their corresponding known outputs. The adequate weight values are just those that
minimize the error between the output generated by the MLP (when fed with input patterns in the
database) and the corresponding expected known one in the database. The number of neurons in the
hidden layer is a parameter to be optimized when using this type of neural network [80,81].

The input data for the MLP consist of a number of samples, which usually are arranged forming
input vectors, X={x1, . . . , xl}. As mentioned before, once an MLP has been properly trained, validated
and tested, when fed with an input vector different from those contained in the database, it is able to
generate a proper output St. The relationship between the output and the input signals of a neuron is:

St = ϕ
⎛⎝

n∑
j=1

wjxj − θ
⎞⎠ , (15)

where St is the output signal, xj, for j = 1, . . . , n, are the input signals, wj is the weight associated
with the j-th input and θ is a threshold [80,81]. The transfer function ϕ is usually considered as the
logistic function:

ϕ(x) = 1
1+ e−x . (16)

Usually, the well-known Levenberg–Marquardt algorithm is applied to train the MLP [82].
In this paper, we have therefore used the MATLAB implementation of the MLP with the
Levenberg–Marquardt training algorithm.

5.2.1. Extreme Learning Machines

An ELM [63,83] is a novel and fast learning method based on the structure of MLPs. The ELM
approach is a novel way of training feed-forward neural networks, with perceptron structure. The most
significant characteristic of the ELM training is that it is carried out just by randomly setting the network
weights and then obtaining a pseudo-inverse of the hidden-layer output matrix. The advantages of this
technique are its simplicity, which makes the training algorithm extremely fast, and also its outstanding
performance when compared to avant-garde learning methods, usually better than other established
approaches such as classical MLPs or SVRs. Note that in this particular application, the fast-training
characteristic of the ELM is not dramatically important, since the learning process is off-line, but it helps
to quickly test the performance of this algorithm. Moreover, the universal approximation capability of
the ELM network, as well as its classification capability have been already proven [84].
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The ELM algorithm can be summarized as follows: given a training set T = (xi, St i)∣xi ∈ Rn,
St i ∈ R, i = 1,⋯, l, an activation function g(x) (a sigmoidal function is used in this work) and a number
of hidden nodes (Ñ),

1. Randomly assign input weights wi and bias bi, i = 1,⋯, Ñ.
2. Calculate the hidden layer output matrix H, defined as:

H =
⎡⎢⎢⎢⎢⎢⎣

g(w1x1 + b1) ⋯ g(wÑx1 + bÑ)⋮ ⋯ ⋮
g(w1xl + b1) ⋯ g(wÑxN + bÑ)

⎤⎥⎥⎥⎥⎥⎦l×Ñ

(17)

3. Calculate the output weight vector β as:

β = H†St, (18)

where H† stands for the Moore–Penrose inverse of matrix H [83], and St is the training output
vector, St = [St1,⋯, St l]T.

Note that the number of hidden nodes (Ñ) is a free parameter of the ELM training and must be
estimated to obtain good results. Usually, scanning a range of Ñ values is the solution for this problem.
In the experiments, 150 hidden nodes are used.

The MATLAB ELM implementation by G. B. Huang, freely available on the Internet [85], has been
used in this paper.

5.3. Gaussian Processes for Regression

GPR have recently attracted much attention because of their good performance in regression
tasks [86]. We give here a short description of the most important characteristics of the GPR approach,
the interested reader being referred to the more exhaustive reviews [87] or [86,88].

Given a set of l-dimensional inputs xi and their corresponding scalar outputs Sti , that is
the dataset T ≡ {xi, Sti}l

i=1, the regression task consists of obtaining the predictive distribution for the
corresponding observation St∗ based on T given a new input x∗.

The GPR model assumes that the observations can be modeled as some noiseless latent function
of the inputs plus independent noise, St = f (x) + ε, and then sets a zero-mean GP prior on the latent
function f (x) ∼ GP (0, k(x, x′)) and a Gaussian prior on ε ∼ N(0, σ2) on the noise, where k(x, x′) is a
covariance function and σ2 is a hyperparameter that specifies the noise power.

The covariance function k(x, x′) specifies the degree of coupling between St(x) and St(x′), and it
encodes the properties of the GP such as power level, smoothness, etc. One of the best-known
covariance functions is the anisotropic squared exponential. It has the form of an unnormalized
Gaussian, k(x, x′) = σ2

0 exp (− 1
2 xTΛ−1x) and depends on the signal power σ2

o and the length-scales
Λ, where Λ is a diagonal matrix containing one length-scale per input dimension. Each length-scale
controls how fast the correlation between outputs decays as the separation along the corresponding
input dimension grows. We will collectively refer to all kernel parameters as θ.

The joint distribution of the available observations (collected in St) and some unknown output
St(x∗) is a multivariate Gaussian distribution, with parameters specified by the covariance function:

[ St

St∗
] ∼ N (0, [ K + σ2IN k∗

kT
∗

k∗∗ + σ2 ]) , (19)

where [K]nn′ = k(xn, xn′), [k∗]n = k(xn, x?) and k∗∗ = k(x∗, x∗). IN is used to denote the identity matrix
of size N. The notation [A]nn′ refers to entry at row n, column n′ of A. Likewise, [a]n is used to
reference the n-th element of vector a.
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From (19) and conditioning on the observed training outputs, we can obtain the
predictive distribution:

pGP(St∗ ∣x∗,D) = N(St∗ ∣µGP∗, σ2
GP∗)

µGP∗ = kT
∗
(K + σ2IN)−1St

σ2
GP∗ = σ2 + k∗∗ − kT

∗
(K + σ2IN)−1k∗,

(20)

which is computable in O(N3) time, due to the inversion of the N × N matrix K + σ2IN .
Hyper-parameters {θ, σ} are typically selected by maximizing the marginal likelihood (also called

“evidence”) of the observations, which is:

log p(St∣θ, σ) = −1
2

St
T(K + σ2IN)−1St − 1

2
∣K + σ2IN ∣ − N

2
log(2π). (21)

If analytical derivatives of Equation (21) are available, optimization can be carried out using
gradient methods, with each gradient computation taking O(N3) time. GPR algorithms can typically
handle a few thousand data points on a desktop PC.

The software used for GPR implementation is the one included in the SimpleR package for
regression by G. Camps-Valls [89], freely available on the Internet.

6. Experimental Work

This section presents the experimental evaluation of the proposed approach in a real problem
of WPRE prediction, by exploring the different ML regressors mentioned before (SVR, ELM, GPR
and MLP). Prior to describing the experiments carried out, it is worth emphasizing the practical
importance of using reanalysis data to test the accuracy and feasibility of the proposed hybrid approach
with ML regressors. Non-hybrid approaches (the use of regression techniques in other alternative
data, from measuring stations, for example) is also possible, as we have pointed out in Section 1.1.
However, note that, from the viewpoint of the repeatability of the experiments, reanalysis data are
very convenient since they are freely available on the Internet, so that the experimental part of our
work can be easily reproduced by other researchers.

Starting with the detailed description of the experimental work carried out, we have considered
specifically three wind farms in Spain, whose locations have been represented in Figure 1. The three
wind farms chosen (labeled “A”, “B” and “C” in Figure 1) are medium-sized facilities, with 32, 28 and
30 turbines installed, respectively. Note that the wind farms selected cover different parts of Spain,
north, center and south, characterized by different wind regimes. Different numbers of data were
available for each wind farm: in wind farm “A”, data ranges 1 November 2002–29 October 2012 ,
while in wind farm “B” ranges 23 November 2000–17 February 2013. In wind farm “C”, the data used
are between 02 March 2002 and 30 June 2013.

A pre-processing step to remove missing and corrupted data was carried out. Note that we only
kept data every 6 h (00 h, 06 h, 12 h and 18 h), to match the predictive variables from the ERA-Interim
to the objective variables.

The performance of the four ML regressors described in Section 5 in WPREs prediction problems
at each wind farm is shown in terms of different error measurements (e), such as Root Mean Square
Error (RMSE), Mean Absolute Error (MAE) or “sensitivity”, s, also called the true positive rate. This last
measure is defined as:

s = NP
NP

× 100, (22)

where: (1) NP stands for the number of positive predictions, i.e., the correct predictions of ascending
(+), descending (−) and no ramps (with the S1

t definition), and ramps or no ramps (with the S2
t

definition) values in the experiments; (2) NP stands for the number of positive values in the test,
i.e., the total real values of positive ramps, negative ramps, ramps or no ramps in the database.
Note that this way, the experiments are performed with the two different definitions of the ramp
function (S1

t and S2
t ) given in Section 3.
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Figure 1. Representation of the geographical location of the wind farms (labeled “A”, “B” and “C”)
considered in the experimental work carried out in this paper. The four closest nodes from the
Era-Interim reanalysis (predictive variables) have also been represented for illustrative purposes.
The reason why these wind farms have been selected is that they cover different parts of Spain, north,
center and south, characterized by different wind regimes.

The following step to obtain the prediction of the WPREs is to train the considered ML regressors.
A partition of the data into training (80%), and test (20%) sets is carried out. In the case of the SVR and
MLP, a validation set from the training (5%) set is also considered. This validation set is used to obtain
the best SVR hyper-parameters C, ε and γ, by means of a grid search [76]. The validation set is also
used in the training of the MLP approach, in order to prevent the NN from overtraining. Both training
and test sets have been randomly constructed from the available data after the cleaning pre-processing.
The concrete configurations and the values used for the parameters of the considered ML regression
models,M, are listed in Table 3.

With all these previous considerations in mind, Sections 6.1 and 6.2 focus on showing the results
obtained and on discussing them, respectively.

Table 3. Configuration and design parameters of the regression ML models M explored in the
proposed approach for all the wind farms considered. See Section 5 for further details.

ModelM Model Configuration Values Used in the Design Parameters for Each ModelM

SVR SVR with Gaussian kernel
C = 2c, c = −5⋯12; ε = 2e, e = −15⋯0;

γ = (0.1− 0.0001)/9 ⋅ g + 0.0001, g = 0⋯9

ELM
3-layer NN with

sigmoid activation function
Number of neurons in each of the

three layers (input-hidden-output): 48-150-1

GPR RBF kernel
Λ = ln[(max(xi) −min(xi)]/2);

σ2
o = variance(Sti ); σ2 = σ2

o /4

MLP Levenberg–Marquardt training
epoch = 1000; gradient = 10−7 ;
µ = 1010; validation-checks = 6

6.1. Results

As mentioned in the description of the problem at hand, among the several definitions
of ramp functions, St, we have considered the most common ones [28], stated, respectively,
by Equations (1) and (2), because both include power production criteria (Pt) at the wind farm.
The variation of power caused by a wind ramp, Pt+∆tr − Pt, has been studied in the experiments
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below in the three wind farms (Figure 1) within a time interval ∆tr = 6 h, which is determined by the
resolution of the reanalysis data.

In addition, in order to properly understand the analysis of our results, it is convenient to point
out that, by using the indicator function It stated by Equation (3), the proposed methodology is able
to successfully detect those WPREs that surpass the thresholds (S0 or −S0), when using the S1

t ramp
function definition, or the single threshold (S0), when using the S2

t definition. As will be shown later on,
this is due to the fact that, with the first ramp definition (S1

t ), we want to detect three types of events:
ascending ramps (which are those whose power exceeds S0), descending ramps (those surpassing −S0)
and the existence of “no ramps” (when the generated electric power is in between the two thresholds).
Conversely, in the case of using the S2

t ramp function definition, it is only necessary to determine
whether or not there is a ramp, so that only a threshold is necessary.

Taking these considerations into account and aiming at better explaining the results, we have
organized the discussion according to the objective function used, either S1

t or S2
t , leading to

Sections 6.1.1 and 6.1.2, respectively

6.1.1. Results Using S1
t as the Ramp Function Definition

Table 4 shows the results obtained in this problem of WPRE prediction when considering S1
t as the

objective function, in the three aforementioned wind farms in Spain (labeled “A”, “B” and “C” in Figure 1).
For each wind farm, the performance of any of the ML regressors explored (SVR, ELM, GPR and MLP)
has been measured using the metrics RMSE, MAE and sensitivity (s (+ramp), s (−ramp), s (no ramp)).

Table 4. Results (in terms of RMSE, MAE and sensitivity) corresponding to the estimation of the
ramp function S1

t ( Equation (1) ) obtained when using the proposed approach, as a function of the ML
regressors explored (SVR, ELM, GPR and MLP), in the tree study cases: the wind farms “A”, “B” and
“C”, whose locations have been represented in Figure 1.

Wind Farm A

ML Regressor RMSE MAE s (+ramp) s (−ramp) s (no ramp)
(MW) (MW) (%) (%) (%)

SVR 7.0085 5.2673 26.93 24.20 96.59
ELM 5.6779 4.2499 40.54 42.59 95.51
GPR 5.3066 3.9519 54.93 51.95 93.96
MLP 5.4538 4.0021 12.13 5.72 99.41

Wind Farm B

ML Regressor RMSE MAE s (+ramp) s (−ramp) s (no ramp)
(MW) (MW) (%) (%) (%)

SVR 8.0025 5.9773 35.53 34.10 86.66
ELM 7.4539 5.9768 32.93 33.14 92.13
GPR 5.9856 4.4298 52.10 58.25 91.71
MLP 5.9009 4.3429 15.11 13.14 97.25

Wind Farm C

ML Regressor RMSE MAE s (+ramp) s (−ramp) s (no ramp)
(MW) (MW) (%) (%) (%)

SVR 7.1370 5.3406 45.38 44.20 91.33
ELM 5.8367 4.4462 50.32 47.64 94.01
GPR 4.7515 3.4771 57.14 61.05 93.99
MLP 5.0727 3.6827 14.21 10.26 98.52

Regarding the reasons why we have decided to use the mentioned metrics to the detriment of
others, it is convenient to stress some aspects related to what, in fact, are two conceptually distinct
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groups of measures: metrics that measure errors (RMSE and MAE), on the one hand, and metrics that
quantify success prediction rates (sensitivity), on the other. These facets to be highlighted are:

• With respect to the “conventional” metrics that measure errors, there are two reason that have
compelled us to include the RMSE and MAE metrics. The first one is that they are the most
commonly used in the literature. Examples of relevant papers in which these metrics are used for
WPRE forecasting are [28,49,69,90]. Please see [28] for a useful discussion on this issue. The second
cause is, as will be shown, that the utility of these error measures can be complemented by using
the sensitivity metric, the other class of metrics that we have chosen.

• The second couple of points that are important to be emphasized here are just those related to
the aforementioned sensibility in Equation (22), one with respect to its meaning and the other
regarding its application. On the one hand, the physical meaning of sensitivity is just the percentage
of correct ramp predictions with respect to actual measured data. Despite its apparent simplicity,
this is, however, an excellent measure of the extent to which the regressor algorithm under test is
efficient in detecting wind ramps. On the other hand, regarding its application step in the proposed
methodology, the key point is that sensitivity is only used after having predicted the ramp function
with a regression technique and a threshold has been defined. After applying the threshold, the
number of real WPREs is thus obtained and compared to the predicted number. This way, the fact
that the problem is highly unbalanced is not an issue any longer; or, in other words, we first apply
the regression techniques to the ramp function, and then, we establish a threshold to classify events.
In this case, the percentage of correct WPRE identifications is obtained. Note that the paper’s
objective is to deal with a regression problem, so we do think that it is enough to show the good
percentage of correct classification after the threshold setting in the predicted ramp function.

The analysis of Table 4 allows for elucidating some interesting conclusions:

1. The performance of the ML regressors is, in general, good in terms of RMSE, MAE and sensitivity
s, although, as shown, there are some ML regressors that work better than others.

2. Regarding the performance of one regressor with respect to that of another, the results of Table 4
clearly indicate that the GPR model reaches the best results of all the regressors tested, with an
excellent reconstruction of the ramp function S1

t from the ERA-Interim variables. Note in Table 4
that we have marked in bold the values of the metrics obtained by the GPR regressor. Its RMSE
and MAE values are much lower (better) than those of the other ML regressors explored. In terms
of sensitivity, its performance is even better. Specifically, its sensitivity s (or percentage of correct
predictions (with respect to the real, measured data) stated by Equation (22)) is much higher
(better) than those of the other regressors: s (+ramp)GPR ≫ s (+ramp)others (for ascending ramps)
and s (−ramp)GPR ≫ s (−ramp)others (for descending ramps). This confirms the validity of the
results measured with the error metrics and proves the feasibility of the proposed methodology
for predicting wind ramps, both ascending and descending ramps.

3. The worst result corresponds to the MLP, with a poorer detection of positive WPREs,
when compared to the other ML regressors.

4. The SVR and ELM work well in between both GPR and MLP, with acceptable values of detection
in positive WPREs.

With this analysis in mind, Figures 2–4 show the estimation of S1
t obtained by the GPR and ELM

algorithms (the two best approaches tested in our experiments), when using S1
t as the objective function,

for the wind farms A, B and C, respectively. Some aspects to correctly interpret these figures are:

• Aiming at clearly showing the algorithms’ performance, only the 300 first samples of the test set
have been represented in these figures.

• Furthermore, a threshold value S0 (and the corresponding −S0) has been marked in these figures,
so it can be used to decide whether or not the event is a ramp power event (see Equation (3)).
When a ramp occurs, it is possible to decide whether the ramp event is ascending or descending.
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Figure 2. (a) Estimation of the ramp function S1
t ( Equation (1) ) obtained by using the proposed

approach in the particular case in which the ML is an ELM regressor. This figure corresponds to
Wind Farm A, whose location has been represented in Figure 1. (b,c) represent two shorter excerpts in
which the predicted WPREs that exceed the thresholds (S0 or −S0) are shown to be correctly detected.
A WPRE is detected if S1

t > 0.5S0. The predicted series exhibits RMSE ≈ 5.68 MW, MAE ≈ 4.25 MW,
s (+ramp) = 40.54%, s (−ramp) = 42.59% and s (no ramp) = 95.51%.

The results illustrated in Figure 2a show two data series: the series of real measured WPRE
(red ○) and the series of predicted WPRE (blue ∗) values computed by using the proposed hybrid
methodology. In the effort to better explain the results and the applicability of our proposal, we have
drawn Figure 2 in a more detailed way than the others, zooming into two shorter time excerpts, b and c.
The insets b and c show how there are some WPREs that surpass any of the thresholds S0 and −S0.
Specifically, and as mentioned before, a WPRE is detected in our approach if the ramp function is
larger than 50% of S0. Note that Figure 2b,c shows how the predicted WPREs (blue ∗) exceeding any
thresholds (S0 or −S0) are correctly predicted when compared to the real, measured WPRE (red ○).
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Regarding such a threshold value, it is worth mentioning that S0 is not used until the very end of
the experiments, once the ramp function has been predicted with the ML regression algorithms. In this
respect, it is also convenient to remark that, in the proposed approach, we do not look to optimize
S0. We only display S0 as an indication (example) that the ML regression modelM applied can be
turned into a classification for WPRE. Note, however, that the purpose of our paper is to deal with it as
a regression problem.

The good performance observed in Figure 2 for the EML is common (and even better) to those
illustrated in Figures 3 and 4.
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Figure 3. Estimation of the ramp function S1
t ( Equation (1) ) obtained by our proposed hybrid

approach when using the GPR as the ML regressor in Wind Farm B. The predicted series exhibits
RMSE ≈ 5.98 MW, MAE ≈ 4.43 MW, s (+ramp) = 52.10%, s (−ramp) = 58.25% and s (no ramp) = 91.71%
(see Table 4).
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Figure 4. Prediction of the ramp function S1
t ( Equation (1) ) when using the GPR in Wind Farm C.

The predicted ramps series exhibits RMSE ≈ 4.75 MW, MAE ≈ 3.48 MW, s (+ramp) = 57.14%,
s (−ramp) = 61.05%, and s (no ramp) = 93.99% (see Table 4).

The joint analysis of both Figures 2 and 4 and Table 4 reveals the suitable throughput of the ML
regression techniques (mainly the GPR model), which hybridized with the ERA-Interim predictive
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values, assist in obtaining a robust decision system in terms of the existence or not of a power ramp,
depending, of course, on the definition of the threshold S0.

6.1.2. Results Using S2
t as the Ramp Function Definition

On the other hand, Table 5 and Figures 5–7 will assist us in explaining the results when S2
t is the

ramp function to be predicted.

Table 5. Results (in terms of RMSE, MAE and sensitivity) corresponding to the estimation of the ramp
function S2

t ( Equation (2) ) obtained by the proposed approach as a function of the ML regressors
explored (SVR, ELM, GPR, and MLP), for Wind Farms “A”, “B” and “C”, respectively.

Wind Farm A

ML Regressor RMSE MAE s (ramp) s (no ramp)
(MW) (MW) (%) (%)

SVR 6.8847 5.1876 31.33 96.27
ELM 5.7037 4.2925 41.99 95.01
GPR 5.2048 3.7897 49.66 96.36
MLP 5.4351 3.9861 8.71 99.44

Wind Farm B

ML Regressor RMSE MAE s (ramp) s (no ramp)
(MW) (MW) (%) (%)

SVR 7.9439 5.8853 44.16 85.55
ELM 7.3148 5.8675 34.67 93.23
GPR 5.9223 4.4037 65.32 84.12
MLP 5.9051 4.3475 14.76 97.17

Wind Farm C

ML Regressor RMSE MAE s (ramp) s (no ramp)
(MW) (MW) (%) (%)

SVR 7.1525 5.4677 37.88 93.83
ELM 5.8624 4.4368 58.16 92.10
GPR 5.1030 3.6991 57.26 94.42
MLP 5.0605 3.6670 11.22 98.56

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Ramp values

Ramp predicted values

Test samples

Also, a threshold value S0

Ramp values

Ramp predicted values

S
t

2
[M

W
]

Figure 5. Estimation of the ramp function S2
t ( Equation (2) ) obtained by the proposed approach using

the GPR regressor, in Wind Farm A. The ramp predicted values resemble the ramp measured ones with
RMSE ≈ 5.20 MW and MAE ≈ 3.79 MW, s (ramp) = 49.66% and s (no ramp) = 96.36% (see Table 5).
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Figure 6. Estimation of the ramp function S2
t ( Expression (2) ) obtained by the proposed method

when using the ELM regressor, in Wind Farm B. The predicted series follows the measured series with
RMSE ≈ 5.90 MW and MAE ≈ 4.40 MW, s (ramp) = 65.32% and s (no ramp) = 84.12% (see Table 5).
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Figure 7. Estimation of the ramp function S2
t ( Expression (2) ) obtained by the proposed method

when using the ELM regressor, in Wind Farm C. The predicted series follows the measured series with
RMSE ≈ 5.86 MW and MAE ≈ 4.43 MW, s (ramp) = 58.16% and s (no ramp) = 92.10% (see Table 5).

Table 5 represents the results (in terms of RMSE, MAE and sensitivity) corresponding to the
estimation of the ramp function S2

t ( Expression (2) ) achieved by using the proposed approach as a
function of the ML regressors explored (SVR, ELM, GPR and MLP).

A first aspect that stands out in Table 5 is that it has fewer columns related to sensitivity than those
of Table 4. This is an interesting points that arises from the different definitions of the ramp function
S2

t , either S1
t or S2

t . Note that, for definition S2
t , the sensitivity is the percentage of correctly predicted

results (either ramp or no ramp) with respect to the actual measured data. This is the reason why s
has only two columns in Table 5, s (ramp) and s (no ramp), whereas Table 4 exhibits three s-related
columns. This is because, in the case of the S1

t ramp definition, there are three events to be detected:
ascending ramp (+), descending ramp (−) and no ramps.

In the same way as Table 4, Table 5 also reveals that, for St = S2
t , the GPR approach exhibits

the best results, outperforming clearly the rest of the ML regressors tested, except the MLP. This has
similar values only in its error metric, RMSE and MAE, but not in its s (ramp) value, which is
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considerably worse than that of the GPR. This is clear, for instance, in Wind Farm A, in which
RMSEGPR ≈ 5.20 MW, less than that of the other regressors. Note that s(ramp)GPR = 49.66 ≫ s
(ramp)MLP = 8.71. In Wind Farm B, the performance of the GPR (RMSEGPR ≈ 5.90 MW) is similar to that
of the MLP and much better than that of SVR (RMSESVR ≈ 7.94 MW) and SVR (RMSESVR ≈ 7.32 MW).
Note again that, although the GPR model is similar to the MLP in error metrics, however, the GPR
exhibits much better sensitivity than the MLP, s (ramp)GPR ≫ s (ramp)MLP. This is true not only for
the MLP (which has similar errors), but also for the rest of the ML, which are long surpassed by the
GPR model in the aim of detecting wind ramps. For clarity, we have marked this in bold in Table 5.
This means that the GPR is more efficient in predicting wind ramps (the very core of our approach)
than the others, and this is the reason why we say that the sensitivity helps supplement the information
provided by the error metrics.

Once the results shown in Table 5 have already been analyzed, it is convenient to have a look
at its associated figures showing the data series, which involve both the estimated (predicted) and
the measured values of the ramp function S2

t . Regarding this, Figures 5–7 show the estimation of S2
t

obtained by the GPR (in Wind Farm A) and ELM algorithms, for the wind farms B and C, respectively.
We have also represented in Figures 5–7 a threshold value S0 to mark the presence (or not) of a

WPRE. As in the first objective function, the good performance of the ML regressors allows a significant
detection of WPRE in wind farms.

6.2. Discussion

The results obtained show that the proposed hybrid WPREs prediction approach—which
combines data from numerical-physical models (reanalysis) with state-of-the-art statistical ML
approaches (regressors)—is a feasible option to tackle this problem in wind farms. Regarding the
proposed fusion of reanalysis data and ML regressors, the results have pointed out that:

• The use of reanalysis data as predictive variables for WPRE forecast has the following
beneficial properties:

1. Reanalysis makes the training of the ML regressors easier if there are enough measures of
the objective variables. This is just the case in our approach because reanalysis data provide
robust meteorological variable estimation back to 1979 in the case of the ERA-Interim
reanalysis, with high spatial and enough temporal resolution to tackle this problem.

2. The variables from reanalysis projects are similar to those by any weather numerical forecast
system, even meso-scale ones, so it is straightforward to tackle the WPRE prediction
by using alternative models, such as the well-known Weather Research and Forecasting
(WRF) meso-scale model [91], to predict future values of the predictive variables and, then,
the corresponding WPRE prediction for a given wind farm.

3. The use of reanalysis data allows the repeatability of the described experiments by other
researchers since such data are freely available on the Internet.

• The performance studies of the state-of-the-art ML regressors, the other pillar our approach is
based on, have shown that the GPR reaches the best results in both definitions of the wind power
ramp function considered:

1. When using the S1
t definition, the results clearly show that the GPR model achieves the best

results of all the regressors tested, with an accurate reconstruction of the ramp function from
the ERA-Interim variables. Its RMSE and MAE vales are much lower than those of the other
ML regressors explored. Furthermore, its sensitivity s—or percentage of correct predictions
(with respect to the real, measured data)—is much higher than those provided by the other
regressors: s (+ramp)GPR ≫ s (+ramp)others (for ascending ramps) and s (−ramp)GPR ≫
s(−ramp)others (for descending ramps). This demonstrates the feasibility of the proposed
methodology for predicting wind ramps, both ascending and descending ones.
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2. Similarly, when using the S2
t ramp definition, the GPR approach also exhibits the best results,

outperforming clearly the rest of the ML regressors tested, except the MLP, which has similar
values only in its error metric, RMSE and MAE, but not in its s(ramp) value, which is
considerably worse than that of the GPR. These sensitivity results point out that the GPR
is more efficient in predicting wind ramps (the very core of our approach) than the other
regressors, this being the reason why we have mentioned that the sensitivity metric helps
complement the information provided by the error measures.

Finally, the results show how the proposed approach allows the use of threshold values to detect
whether or not a wind power ramp occurs. The method is also flexible enough to choose a ramp
function definition in the aim of considering a multi-class problem. Although in the experiments
carried out, the multi-class problem contains three classes (ascending, descending or not ramp, in the
S1

t definition), more classes could be defined. The optimal selection of the threshold values is an open
question in the literature that has not been considered in this case.

7. Conclusions

In this paper, we have explored the feasibility of a novel hybrid approach that—by combining
data from numerical-physical models (reanalysis) and state-of-the-art statistical Machine Learning
(ML) regressors—aims at predicting Wind Power Ramp Events (WPREs). The accurate prediction
of WPREs—caused by large fluctuations of wind power in a short time interval lead—is of practical
interest not only for utility companies and independent system operators (in the effort of efficiently
integrating wind energy without affecting power grid stability), but also for wind power farm owners
(to reduce damage in turbines).

Specifically, several state-of-the-art statistical ML regressors—ranging from a Multi-Layer
Perceptron (MLP) neural network to an Extreme Learning Machine (ELM), a Gaussian Process
Regression (GPR) or a Support Vector Regression (SVR) algorithm—have been applied to solve
this problem in three different wind farms in Spain.

This has been the first contribution of our proposal since the use of regressors has not been
previously applied directly to this WPRE prediction problem. The second contribution has been
the use of direct reanalysis data as input (predictive) variables of the ML regression techniques.
In this regard, we have proposed the use of data from the ERA-Interim reanalysis because it ensures
a high resolution of the inputs, both spatial (grid of 0.125 × 0.125 at global level) and temporal
(6-h time horizon). Two other reasons why we have used reanalysis are: (a) the use of reanalysis
data allows the repeatability of the experiments by other researchers since such data are available on
the Internet; (b) the variables from reanalysis are similar to those from weather numerical forecast
systems, even mesoscale ones, so that it would be straightforward to tackle the WPRE prediction
problem by using other alternative models. Note however that it would be possible to adapt the
proposed regression techniques to operate with alternative data not coming from numerical methods
(or reanalysis), but other types of input variables.

Our purpose has been modeling the wind ramp function as accurately as possible in terms of
several input variables. This way of tackling the problem overcomes some problems associated with
the WPRE defined as a binary classification task [43,44], or even ordinal classification [73], such as the
appearance of highly imbalanced problems.

We have considered two different definitions of the ramp function, those that are used the most in
the literature. The experimental work has been carried out using data corresponding to three wind
farms, located in different zones of Spain and having different atmospheric conditions, in the effort to
obtain results as generalizable as possible. The experimental work carried out basically points out that:
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1. The results show a good performance of the explored ML regression techniques hybridized
with the ERA-Interim reanalysis data, especially those corresponding to the ELM and the GPR
ML regressors. In particular, the GPR has been found to exhibit the best results, outperforming
clearly the rest of the ML regressors tested. This has been shown especially evident in terms
of its sensitivity (or percentage of correct predictions (with respect to the real, measured data)),
which is much higher than those provided by the other regressors, showing the feasibility of the
proposed methodology for predicting WPREs.

2. The experimental work has also revealed that the use of reanalysis data as predictive variables for
WPRE forecast is beneficial: reanalysis has been found to make the training of the ML regressors
easier since the ERA-Interim reanalysis provides robust meteorological variable estimation back
to 1979, with high spatial and enough temporal resolution to tackle this problem.

As a general conclusion, the results achieved by the proposed approach show that our hybrid
method is a feasible alternative to deal with the important problems that WPREs can cause in both the
management of wind farms and in the balanced operation of power grids.
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