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Abstract: The objective of this study was to create a tool that will enable renewable energy microgrid
(REµG) facility users to make informed decisions on the utilization of electrical power output from
a building integrated REµG connected to a smart grid. A decision support tool for renewable energy
microgrids (DSTREM) capable of predicting photovoltaic array and wind turbine power outputs was
developed. The tool simulated users’ daily electricity consumption costs, avoided CO2 emissions and
incurred monetary income relative to the usage of the building integrated REµG connected to the
national electricity smart grid. DSTREM forecasted climate variables, which were used to predict
REµG power output over a period of seven days. Control logic was used to prioritize supply
of electricity to consumers from the renewable energy sources and the national smart grid. Across the
evaluated REµG electricity supply options and during working days, electricity exported by the
REµG to the national smart grid ranged from 0% to 61% of total daily generation. The results
demonstrated that both monetary saving and CO2 offsets can be substantially improved through the
application of DSTREM to a REµG connected to a building.

Keywords: renewable energy; microgrid; smart grid; localized weather forecasting; demand side
management; electricity tariff; building energy

1. Introduction

The use of building integrated renewable energy microgrids (REµG) has in recent years become
an effective means of providing renewable energy while offsetting greenhouse gas emissions for
residential and commercial consumers. Optimizing the energy utilization from REµGs has become an
area of significant research interest. The creation of a decision support tool would be useful for REµG
users to optimize their energy utilization from renewable sources, taking into account REµG power
output, building electricity consumption, electricity tariff (ET) structures, feed-in tariff (FIT) structures,
and CO2 emissions.

One important consideration in the creation of such a decision support tool is the fact that
accurate predictions of climatic variables are required to simulate REµG power output. Several
studies have been carried out regarding the prediction of climatic variables and simulation
of renewable energy output power. REµG electricity consumption, electricity pricing structures,
FIT structures and associated CO2 emissions have also been modeled and analyzed in previous
research. Soshinskaya et al. [1] utilized measured wind speed, solar irradiation and real time
manufacturer’s data to model a REµG serving a water treatment plant in the Netherlands. Li et al. [2]
used autoregressive integrated moving average with exogenous input (ARIMAX) modeling to forecast
PV power. The study showed that the forecasting accuracy of PV power output was greatly
improved by the ARIMAX model when compared with an autoregressive integrated moving average
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model without exogenous inputs (ARIMA). Murphy et al. [3] used weather predictions from the
European Centre for Medium-Range Weather Forecasts (ECMWF) and corresponding onsite empirical
temperature data to generate a rolling onsite temperature forecast with a one-hour resolution. This was
accomplished by using a Non-linear Auto Regressive with eXogenous input (NARX) recurrent dynamic
neural network model. A significant increase in localized temperature forecast accuracy was found,
which enabled the optimization of cold energy storage in a smart grid environment. A model for
electricity consumption on dairy farms was created by Upton et al. [4]. This model was used to simulate
annual electricity consumption along with related CO2 emissions and electricity costs on dairy farms.
The model demonstrated that moving from a day and night ET structure to a flat ET structure for a dairy
farm resulted in significant electricity cost increases. Impacts of electricity pricing structures on REµGs
have also been studied in [5–17] and it has generally been found that exposing electricity consumers
to variable ET structures encourages demand response and promotes demand side management.
FIT policies have proven successful in the growth of renewable energy implementations [8,16–20].
Li et al. [21] developed and validated energy forecasting models for a building cluster with multiple
buildings and distributed energy systems, while also creating a collaborative operation framework
to determine the optimal operation strategies of said building cluster. Several studies have focused
on smart grids and REµGs for the purpose of reducing energy consumption, costs and carbon
footprint. Stamatescu et al. [22] applied a rule based control system to a microgrid under two
scenarios: a domestic dwelling with low energy demand and an office building with high energy
demand. In both scenarios introducing the control system resulted in improved energy efficiency and
improved renewable energy utilization. Pascual et al. [23] proposed an energy management strategy
for a residential REµG comprised of PV panels and a wind turbine. The proposed control strategy
used battery state of charge, power at each REµG node, electrical load and renewable generation
forecasts as inputs. By using forecasted data and correcting any forecasting errors according to the
state of the battery, the strategy resulted in a better grid power profile when compared with other
state-of-the-art strategies.

While previous studies have focused on the operations and analysis of specific renewable energy
systems, localized weather forecasting, demand side management and multiple tariff based smart grids,
this study focuses on developing a holistic decision support tool that may be applied to any building
in any location with a standard REµG and grid connection. It is clear from the studies listed above
that a holistic decision support tool for optimizing the utilization of a REµG connected to a building
and the smart grid, with multiple ET structures and FITs available, may yield both monetary savings
and CO2 offsets. To achieve this, scalable REµG and building models are required to allow application
of the decision support tool to various building and REµG sizes. A portable weather forecasting
tool is necessary to enable localized REµG power output predictions for specific building locations.
A smart grid model to simulate dynamic pricing structures and FITs would enable the selection of the
optimum operating strategy relative to the building load and REµG power output. A control system
to manage the flow of electricity between the REµG, building and smart grid would also be required.
The combination of the above sub-systems would provide a comprehensive decision support tool for
optimizing energy utilization in REµGs.

The objective of this study was to develop and demonstrate a Decision Support Tool for Renewable
Energy Microgrids (DSTREM). DSTREM enables the users of buildings with integrated REµGs and
smart grid connections to compare different ETs, FITs, monetary income and associated CO2 emissions
under different renewable energy system scenarios. To simulate the power output of the REµG,
scalable mechanistic models of the PV array, wind turbine and building load profile were constructed.
Three time series modeling techniques for the prediction of climate variables were simulated and
validated using ECMWF forecasts and localized historical recording as training inputs. Control logic
was then applied to the REµG, this creating the decision support tool. Section 2 details the construction
of the weather and REµG modes, while Section 3 demonstrates the use of the model by applying
it to a low energy building with an integrated REµG and a smart grid connection. Electricity costs,
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monetary income and avoided CO2 were further evaluated using three ET structures, three FITs and
a dynamic CO2 intensity profile.

2. Materials and Methods

2.1. Climate Model Data

In this study, hourly temperature (◦C) and wind speed (m/s) data were obtained from Cork airport
meteorological station for seven months (January, February, March, April, May, July, and September)
in the year 2013. According to the Irish calendar, winter, spring, summer and autumn begin
in November, February, May and August, respectively. Hence, the climate data for the months
listed took into account the climatic variations associated with each season. The seven months were
selected based on the availability of data for the case study year. Corresponding hourly irradiance
(W/m2) data were obtained from the National Build Energy Retrofit Test-bed (NBERT) meteorological
station for the seven months mentioned. ECMWF historical temperature, wind speed and irradiance
forecasts were extracted from the ECMWF database (NWP model) for the nearest grid point to Cork
Institute of Technology (CIT), approximately 2.58 km north of the base point. The data obtained
from NBERT meteorological station in a resolution of one hour were split into two groups; one for
model training and the other for validation and demonstration purposes. Seven weeks of climatic
data, each representing one of the seven months listed above, were employed for validation while
one of the seven weeks was selected as a demonstration week for DSTREM analysis. As the forecast
horizon was based on a typical working week, the last seven days of each month were selected
as the demonstration dataset and were used for model validation. Simulating over a longer period
was beyond the scope of this study. ECMWF forecasts for temperature, irradiance and wind speed
were based on a three-hour resolution. These forecasts were separated into hourly intervals through
interpolation in order to synchronize with the corresponding observed data.

The last seven days of each month were selected as the target periods for all three weather
variables. Twenty-one days of preceding data were used to train the models for each weather variable.
This training duration (21 days) was found to yield the optimal results. The 21 days of input data
contained hourly records for each weather parameter (temperature (◦C), wind speed (m/s) and
irradiance (W/m2)) and the corresponding ECMWF forecast values for each parameter. Therefore,
the regression models (see Section 2.2) were trained based on the forecast error of the ECMWF relative
to the actual values (local empirical records) of the weather parameters at a specific time (hourly)
over the preceding 21 days. This input data arrangement allowed the regression models to map the
relationship between the ECMWF forecast and the actual recorded parameters at specific times of the
day. Therefore, if there were reoccurring errors in the ECMWF forecast the regression models could
be applied as calibration tools to reduce the magnitude of the ECMWF error. This methodology has
been successfully employed in cognate studies [3,24,25]. The DSTREM seven-day forecast was then
generated by receiving the ECMWF forecast for the seven-day period and feeding this information
into the regressions models to generate a calibrated forecast. In situations where ECMWF forecasts
could not be obtained, actual values (local empirical records) alone were used to generate the DSTREM
forecast (see Figure 1). The improvement in weather parameter prediction accuracy is displayed
in Section 3.1.
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2.2. Climatic Variables Prediction Models

2.2.1. Seasonal Autoregressive Integrated Moving Average Model

The ARIMA model is a forecasting technique that simulates future values of a time series based
on historic data. The application of the ARIMA methodology for the study of time series analysis
was proposed by Box and Jenkins [26]. Its main assumption is that a time series’ own past values can
be used to predict its current value.

In this paper, a variation of the standard ARIMA model, the seasonal ARIMA model (SARIMA),
was used to account for the inherent seasonal (24 h) effect of the analyzed climatic variables. The model
is generally referred to as SARIMA (p d q) x (P D Q)s, where p, d, q and P, D, Q are non-negative integers
that refer to the polynomial order of the autoregressive, integrated, and moving average parts of the
non-seasonal and seasonal components of the model, respectively, while s represents the seasonality
factor of the variable [27].

The SARIMA model is represented mathematically as:

ϕp(B) ΦP(Bs)∇d ∇D
s yt = θq(B) ΘQ(Bs)εt, (1)

where yt is the forecast variable (temperature, irradiance or wind speed), s defines the seasonal
period of the time series, ϕp(B) and θq(B) represent the regular autoregressive and moving
average polynomial components of order p and q respectively, ΦP(Bs) and ΘQ(Bs) represent
the seasonal autoregressive and moving average polynomial components of order P and Q,
respectively. The differentiating operator ∇d and the seasonal differentiating operator ∇D

s eliminate
the non-seasonal and seasonal non-stationarity, respectively. B is the backshift operator, which operates
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on the observation yt by shifting it one point in time and term εt follows a white noise process.
The expressions are defined mathematically as follows:

ϕp(B) = 1− ϕ1B− ϕ2B2 − . . .− ϕpBp, (2)

ΦP(B) = 1−Φ1Bs −Φ2B2s − . . .−ΦPBPs, (3)

θq(B) = 1 + θ1B + θ2B2 + . . . + θqBq, (4)

ΘQ(B) = 1 + Θ1Bs + Θ2B2s + . . . + ΘQBQs, (5)

∇d = (1− B)d, (6)

∇D
s = (1− Bs)D, (7)

Bk(yt) = yt−k, (8)

The model’s development consisted of four iterative steps: Identification, estimation, diagnostic
checking and forecasting [26]. The models were created in MATLAB (Version 8.1, MathWorks, Inc.,
Natick, MA, USA) which uses a maximum likelihood estimation method, while the selection of the
most appropriate model for each simulation was based on automatically selecting a model with the
minimum Bayesian information criterion [26].

2.2.2. Linear Regression Model

The standard linear regression (LR) model is of the form:

y = bx + ε, (9)

where y is the forecast variable (observed data), x is the independent or explanatory variable (ECMWF
data in this study), b is the regression coefficient and ε is the error term.

2.2.3. Regression Model with ARIMA Errors

Regression model with ARIMA errors (RegARIMA) is a time series modeling technique with two
components: a regression model and an error model. The regression coefficients are automatically
generated based on the input training data. More details on the modeling technique can be found
in [28]. RegARIMA explains the behavior of a response using a linear regression model with predictor
data, though the errors have autocorrelation indicative of an ARIMA process. The model is of the form:

yt = c + Xtβ + ut, (10)

a(L) A(L)(1− L)D(1− Ls)ut = b(L) B(L)εt, (11)

where t = 1, . . . , T, yt is the forecast variable, Xt is the predictor data at time t, C is the regression model
intercept, β is the regression coefficient, ut is the disturbance series, εt is the innovative series, (1 − L)D

is the degree D non-seasonal integration polynomial, and (1 − Ls) is the degree s seasonal integration
polynomial. The degree p non-seasonal autoregressive polynomial a(L) is expressed as follows:

a(L) = (1 − a1L − . . . − apLp). (12)

The degree ps seasonal autoregressive polynomial A(L) is expressed as follows:

A(L) = (1 − A1L − . . . − ApsLps). (13)

The degree q non-seasonal moving average polynomial b(L) is expressed as follows:
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b(L) = (1 + b1L + . . . + bqLq). (14)

The degree qs seasonal moving average polynomial B(L) is expressed as follows:

B(L) = (1 + B1L + . . . + BqsLqs). (15)

2.2.4. Statistical Validation

To compare the forecast to the validation dataset and verify the prediction accuracy of the
proposed time series models for prediction of temperature, irradiance and wind speed, three forecast
statistical error measures were employed; Mean Week Error (MWE), Root Mean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE).

When yt is the actual observation for a time period t and ft is the forecasted value for the same
period, then the error et, MWE, RMSE and MAPE are expressed as:

et = yt − ft, (16)

MWE =

(
N

∑
t=1

et

yt

)
∗ 100, (17)

RMSE =

√
∑N

t=1(et)
2

N
, (18)

MAPE =
∑N

t=1|et|/yt

N
, (19)

where N is the forecast time horizon (168 h in this study).

2.3. Climatic Variables Model Selection for Renewable Energy Microgrid Model

In this study, there were four different climatic variable forecast models: ECMWF, SARIMA,
LR and RegARIMA. These forecast models were used to forecast climatic variables seven days ahead.
Data configuration of the climatic variables is described in Section 2.1, while validation of the four
forecast models were carried out using the statistical validation methods described in Section 2.2.4.

The climatic variables used as inputs for the REµG model selection process are such that
in locations where there is no access to local meteorological data, the ECMWF forecasts will
be solely utilized in the absence of a localized calibration technique (using close proximity empirical
meteorological data). In locations where local meteorological data are available, DSTREM users
can generate their own climatic variable forecast, solely using empirical data and SARIMA models,
or using both ECMWF forecast and empirical data with LR or RegARIMA modeling techniques.
A major characteristic of the regression models (LR and RegARIMA) is that they map the relationship
between ECMWF forecasts and the corresponding local data, while the SARIMA model’s major
characteristic is that it generates forecasts based on the historical patterns in the localized empirical
data. Hence, the methodology described in this paper is portable and could potentially be used
anywhere in the world. Figure 1 illustrates the REµG climate variable input selection process. Where
CV denotes climate variable and LOM represents locally obtained meteorological data.

2.4. Renewable Energy Microgrid Models

Three renewable energy power supply scenarios were explored, namely PV, Wind and PV+Wind.
In the PV scenario, REµG power output was only represented by PV power output predictions. In the
Wind scenario, REµG power output was only represented by wind turbine power predictions. In the
PV+Wind scenario, REµG power output was represented by the summation of PV power output and
wind turbine power output predictions.
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2.4.1. PV Model

This paper employed the simulation and validation methods proposed by Breen et al. [12]
to model a 12 kW PV system. PV panel parameters and empirical data from the NBERT PV array were
used in [12] for development and validation of the model. This model utilized the equivalent circuit
of a PV cell [29–35] consisting of a current source and a single diode with no series or shunt resistances.
It used the following expressions to determine voltage, current and power of a PV cell at maximum
power point:

Vm =
nNskBT

q
ln
(

nNskBT
qIo

Isc

Voc

)
, (20)

Im = Iph + Io −
(

nNskBT
q

Isc

Voc

)
, (21)

Pm = Vm Im, (22)

where Pm is the power at maximum power point (W), Vm is voltage at maximum power point (V),
Im is current at maximum power point (A), n is diode quality coefficient, Ns is the number of cells
in series in one module, kB is the Boltzmann constant (J/K), T is cell temperature (K), q is charge on the
electron (C), Io is saturation current (A), Isc is short circuit current (A), Voc is open circuit voltage (V)
and Iph is photocurrent (A).

Inputs to this model included specifications from the PV panel manufacturer’s datasheet [36].
For simulation purposes, temperature and irradiance inputs were obtained from the forecast results
of climate variable prediction models described in Section 2.2.

2.4.2. Wind Turbine Model

For this study, the manufacturer’s power curve for a Bergey XL1 [37] was used to simulate wind
turbine power output. A sixth order polynomial was fitted to the manufacturer’s data, represented
in Equation (23) below:
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Hourly wind speed values were obtained from the climatic variable prediction model forecasts.
These wind speed values were scaled to a height of 18 m using the Hellman exponential law [38] with
a reference height of 10 m. This method is represented mathematically as:

r2 = r1

(
H2

H1

)α

, (24)

where H1 is the reference height (m), H2 is the height of the wind speed to be determined, r1 is the
forecasted wind speed at height H1, r2 is the wind speed to be determined, and α is the Hellman
exponent, which is a topographical function of the local site.

It should be noted that any wind turbine could be used for this analysis. Most wind turbine
manufacturers publish their power curves online and thus only the regression coefficients are required
for a wind turbine to be used for a similar analysis.

2.5. Microgrid Load Control

DSTREM used a load priority control algorithm on the REµG to prioritize supply of electricity
to the office building. Grid priority control [7,39] was also evaluated to enable DSTREM users to make
CO2 and monetary cost comparisons between usage of renewable energy supply and national smart
grid power supply. Load priority dictated that electricity requirement of the office building’s occupants
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was prioritized to be met by the REµG power output (PV, Wind or PV+Wind scenarios), while
excess electricity from the REµG was sold to the national smart grid at selected FITs (FITs described
in Section 2.6.2 below). At periods when electricity production from the REµG was less than the
electricity requirements of the office building, the additional required electricity was supplied by the
national smart grid. The electricity requirement and the REµG power output at jth hour of the ith day
of the analyzed seven days are denoted by Eload(i, j) and MGp(i, j), respectively. Daily electricity
supplied by the REµG is denoted by ESMG, daily electricity supplied by the national smart grid
is denoted by ESG and daily electricity exported to the national smart grid is denoted by Eex. Daily
electricity supplied by the REµG was computed as:

ESMG =

(
24

∑
j=1

Em(i, j)

)
PV,Wind,PV+Wind

, (25)

where Em(i, j) is the electricity supplied by the REµG on Day i(i = 1–7) and Hour j(j = 1–24) and
derived as follows:

Em(i, j) =

{
Eload(i, j), |MGp(i, j) ≥ Eload(i, j)
MGp(i, j), |MGp(i, j) < Eload(i, j)

. (26)

Daily electricity supplied by the national smart grid was computed as:

ESG =

(
24

∑
j=1

Eg(i, j)

)
PV,Wind,PV+Wind

, (27)

where Eg(i, j) is the electricity supplied by national smart grid on Day i and Hour j and derived
as follows:

Eg(i, j) =

{
Eload(i, j)−MGp(i, j),|Eload > MGp

0,|Eload ≤ MGp
. (28)

Daily electricity exported to the national smart grid was computed as follows:

EEX =

(
24

∑
j=1

Eex(i, j)

)
PV,Wind,PV+Wind

, (29)

where Eex(i, j) is the electricity exported by the REµG on Day i and Hour j, derived as follows:

Eex =

{
MGp − Eload,|Eload < MGp

0,|Eload ≥ MGp
. (30)

Daily avoided CO2 emission was denoted by Cavoided and computed as follows:

Cavoided =

(
24

∑
j=1

cav(i, j)

)
PV,Wind,PV+Wind

, (31)

where cav(i, j) is CO2 emission avoided due to usage of REµG at a particular Day i and Hour j of the
analyzed period. cav(i, j) was derived as follows:

cav(i, j) = (CEF(j) ∗ (Eload(i, j)− Em(i, j)))PV,Wind,PW+Wind, (32)

where CEF(j) is the average CO2 emission factor at a particular hour j for the case study year (2013),
while Eload(i, j) is the electricity requirement and Em(i, j) is defined in Equation (26) above.

DSTREM also evaluated daily percentage reduction in cost of electricity by REµG, associated
monetary income (€) and savings (€) relative to supplying all electricity requirements of the participants
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via the national smart grid. Daily percentage reduction in electricity cost denoted by %Costreduc was
calculated as follows:

%Costreduc =

((
Gridcost(i, j)− µGcost(i, j)

Gridcost(i, j)

)
∗ 100

)
PV,Wind,PV+Wind

, (33)

where Gridcost(i, j) is the cost (€) of buying all electricity requirements of the participants from the
national smart grid at jth hour of Day i. Gridcost(i, j) was calculated as follows:

Gridcost(i, j) = Eload(i, j) ∗ ET(j), (34)

where µGcost is the daily cost (€) acquired by using load priority REµG control method. µGcost(i, j) was
calculated as follows:

µGcost =

(
24

∑
j=1

(Em(i, j) ∗ ET(j))

)
PV,Wind,PV+Wind

. (35)

Daily REµG monetary income (€) was denoted by µGinc and calculated as follows:

µGinc =

(
24

∑
j=1

(Eex(i, j) ∗ FIT(j))

)
PV,Wind,PV+Wind

. (36)

Daily monetary savings associated with the usage of REµG, denoted by µGsavings, was calculated
as follows:

µGsavings =

([(
24

∑
j=1

Gridcost(i, j)

)
− µGcost

]
+ µGinc

)
PV,Wind,PV+Wind

. (37)

2.6. Electricity Consumption

In this study, a seven-day electricity consumption profile for occupants of the NBERT located in
the Zero2020 building at CIT was utilized for simulations. The NBERT contains offices and meeting
rooms for lecturers, researchers, industry consultants, and visiting academics. The NBERT test-bed
consists of a state of the art interior where occupants partake in a “living lab” environment for research
into human dependent topics including thermal comfort and demand side management [39–45].
The hourly electricity requirement of each of the building’s occupants was recorded for five working
days (Monday to Friday) and two non-working days (Saturday and Sunday). Hence, all analyses were
computed as a seven-day by 24hour matrix (7 × 24). The simulation results in Section 3.3 were based
on a seven-day electricity usage profile that was based on recorded empirical data for each occupant
of the building. The daily electricity consumption patterns for each occupant were recorded for the
year 2013 through the NBERT building management system (BMS). This BMS recorded data pertaining
to heating lighting, and general services within the NBERT. Furthermore, all energy-consuming
appliances used by each individual occupant of the NBERT were sub-metered, including desktops,
monitors, laptops, fans, kettles, air heaters, printers, speakers and coffee machines. The information
gathered by the BMS was used to generate a deterministic energy usage profile for each occupant of the
building based on their weekly work schedule. To calculate the combined electricity usage profile for
use with DSTREM, the electricity profiles for all occupants were aggregated and added to base loads
which included heating, lighting and general services. The average daily electricity requirement of the
NBERT occupants was 5.51 kWh, while the total seven-day electricity requirement of the occupants
was 27.67 kWh.

2.6.1. ET and CO2 Calculations

Three ET structures were used: Day and Night (DN), Time of Use (TOU) and Real Time Pricing
(RTP). The DN tariff is a commonly used ET structure representing an electricity price between
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the hours of 09:00 and 00:00 (Day), and a lower electricity price between the hours 0:00 and 09:00
(Night). In this study, €0.16/kWh and €0.08/kWh represented day and night electricity prices,
respectively. The TOU ET structure is similar to the DN ET structure, with the addition of a third
price band between 17:00 and 19:00, corresponding to the period during which the demand on the
electricity grid is at its highest. The electricity prices used in the TOU tariff were as follows: €0.15/kWh
between 09:00 and 00:00, €0.14/kWh between 00:00 and 09:00, and €0.22/kWh between 17:00 and
19:00. The electricity prices used for TOU and DN were within the range of electricity prices charged
by electricity providers in Ireland [46]. The RTP ET represents a dynamic pricing structure based
on the demand of the national smart grid, which varies depending on the hour of the day, day of the
week and month of the year. The RTP ET contains a demand-dependent electricity price known as the
system marginal price (SMP). This SMP does not however reflect the electricity price paid by the
consumer, thus necessitating additional costs including transmission, balancing and distribution costs,
as well as a retail margin [6,7,10,43]. Prices for the RTP ET were calculated for the year 2013 based
on previous RTP studies [7,47]. Data pertaining to real-time CO2 (g/kWh), a byproduct of electricity
generation, for the year 2013 in Ireland were provided by Eirgrid [48]. These data represent the
dynamic CO2 production relative to the make-up of the electricity generation providers (wind, gas,
coal, etc.). The obtained CO2 emission factor (CEF) was converted to kg/kWh to represent a dynamic
hourly CEF for 2013. The above ET and CEF data were used in the DSTREM simulation in Section 3.3.

2.6.2. FITs

To compare the monetary benefits produced by different FITs to DSTREM users, the smart grid
model explored three different FITs. Greater monetary benefits are achieved by dynamically varying
FITs in a sequence that follows critical peak period and national electricity load demand [7], hence
two dynamic FITs were explored in the DSTREM simulation (FIT1 and FIT2). In Ireland, renewable
energy FITs range from €0/kWh to €0.15/kWh depending on the technology deployed [46,49]. Hence,
a stationary FIT (FIT3) at a rate of €0.09/kWh was also used. Data provided by the Single Electricity
Market Operator (SEMO) [50] were averaged over a period of one year to represent average hourly
system load demand for the case study year (2013). The hourly averaged system load demand profile
was divided into four periods (A, B, C and D). These periods were based on high demand (period B),
critical demand (period C) and low demand (periods A and D) of the averaged profile, as shown
in Figure 2. Period A represented from 00:00 to 09:00, period B from 09:00 to 17:00, period C from 17:00
to 19:00 and period D from 19:00 to 00:00. Detailed rules for the derivation of the four demand periods
are further explained in [7]. The FIT margins for periods A to D were calculated relative to the cost
of buying electricity from the national smart grid, as shown in Table 1 below. For FIT1, 90%, 100%,
110% and 100% of the cost of buying electricity from the national smart grid were used to calculate
the FIT applied to periods A, B, C and D, respectively. For FIT2, 30%, 130%, 200%, and 40% of the
cost of buying electricity from the national grid were used to calculate the FIT applied to periods A, B,
C and D, respectively. The rules which were followed in order to determine these dynamic FITs are
described in [7].
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Table 1. FIT1 and FIT2 tariff margins for the system demand periods. Percentages shown represent the
percentage of the buying price of electricity used to calculate the FIT in each period A to D.

FIT Period A Period B Period C Period D

FIT1 90% 100% 110% 100%
FIT2 30% 130% 200% 40%

The smart grid scenario applied in the DSTREM simulation in Section 3.3 was based on empirical
electricity demand, price and CO2 data from the Irish national grid, which was supplied electricity
from a mix of conventional and renewable generation sources. The ETs and FITs described above were
applied for the purpose of simulating the monetary result from the dynamic exchanging of electricity
to and from the smart grid. As a smart grid currently does not exist in Ireland, this arrangement was
considered by the authors to be a best guess hypothetical scenario for what the smart grid may look
like in Ireland in the near future.

2.6.3. DSTREM System Process

Figure 3 represents an overview of the DSTREM system process while Figure 4 represents the
DSTREM system flow process. The DSTREM has five major sections as follows:

• Climatic variables and REµG inputs
• REµG electricity forecasts
• Electricity related inputs
• CO2 costs, REµG electricity production output, electricity costs and FIT applications
• DSTREM outputs
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3. Results and Discussion

3.1. Climate Variables Forecast Model Validation

In this study, the decoded ECMWF operational forecast data were used as explanatory
variables in the linear regression models and RegARIMA for the analyzed climate variables.
The SARIMA models were solely developed using empirical data obtained from the CIT NBERT
meteorological station. Figures 5–7 show weekly forecasted climate variables from the SARIMA,
LR and RegARIMA models together with the ECMWF forecast and empirically obtained data,
throughout the demonstration week.
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Figure 7. Predicted and observed wind speed.

3.1.1. Temperature Forecasts

Figure 5 displays predicted and observed temperature over the demonstration week. The average
performance of the models over the validation periods can be observed in Tables 2–4. Average MWE
was approximately 9%, 10%, −47% and −15% for ECMWF, LR, SARIMA and RegARIMA forecasts,
respectively. The average RMSE was approximately 1.4 ◦C, 1.0 ◦C, 4.2 ◦C and 1.0 ◦C for ECMWF,
LR, SARIMA and RegARIMA forecasts respectively. The average MAPE was approximately; 21%,
21%, 81% and 30% for ECMWF, LR, SARIMA and RegARIMA forecasts, respectively. Monthly error
erraticism for temperature can be seen in Figures 8 and 9 for all the analyzed models. The SARIMA
model generally had the highest prediction errors across the examined validation dataset, while the
month of July had the minimum prediction errors across the analyzed models together with the
ECMWF forecasts. This can be attributed to the stochastic nature of temperature in Ireland [51] and
the dependency of the SARIMA model on historical data. The month of July had a more consistent
daily temperature, hence the model generated more accurate predictions.

Table 2. Average RMSE for climatic variable predictions for the year 2013.

Climatic Variable ECMWF LR SARIMA RegARIMA

Temperature (◦C) 1.00 0.97 4.24 1.38
Irradiance (W/m2) 326.9 294.1 283.4 222.6
Wind Speed (m/s) 1.90 1.26 4.70 1.61

Table 3. Average MWE (%) and average MAPE (%) for climatic variable predictions for the year 2013.

Climatic Variable
MWE (%) MAPE (%)

ECMWF LR SARIMA RegARIMA ECMWF LR SARIMA RegARIMA

Temperature 9 10 −47 −15 23 21 81 30
Irradiance 20 −1 −3 0 387 452 385 219

Wind Speed −117 −4 51 −21 28 22 97 28
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Table 4. Average percentage reduction of RMSE and MAPE by LR, SARIMA and RegARIMA relative
to ECMWF forecasts.

Climatic Variable
RMSE (%) MAPE (%)

LR SARIMA RegARIMA LR SARIMA RegARIMA

Temperature 3 −316 −36 6 −318 −32
Irradiance 11 10 28 2 −0.01 44

Wind Speed 33 −167 12 20 −234 −0.21
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Figure 9. Temperature RMSE for all forecasting models and ECMWF data (RegA denotes
RegARIMA model).

Figures 10 and 11 show the monthly variations in percentage reduction of errors by the examined
time series models relative to ECMWF forecasts. These represent the improvement made through the
introduction of the regression model trained with ECMWF historical forecasts and locally recorded
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meteorological data. The SARIMA model, however, only used locally recorded meteorological data
and no ECMWF forecasts. It can be seen that the SARIMA models had more errors relative to ECMWF
forecast errors, with large negative percentage reductions i.e., percentage increases in RMSE and
MAPE (−316% average reduction in RMSE and −318% average reduction in MAPE). The RegARIMA
models also had errors relative to ECMWF forecast errors, with negative percentage reductions also
seen in RMSE and MAPE (−36% average reduction in RMSE and −32% average reduction in MAPE).
The LR model, however, saw average positive percentage reductions in both RMSE and MAPE (3%
average reduction in RMSE and 6% average reduction in MAPE). These results further demonstrated
the inadequacy of SARIMA models for accurate predictions of temperature in the analyzed location.
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Figure 10. Percentage reduction of temperature MAPE relative to ECMWF data for all forecasting
models (RegA denotes RegARIMA model).
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models (RegA denotes RegARIMA model).

3.1.2. Irradiance Forecasts

Figure 6 displays predicted and observed irradiance over the demonstration week (three-hour
totalized resolution). Performance of the models can be observed in Tables 2–4. The average MWE
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was approximately 20%, −1%, −3% and 0% for ECMWF, LR, SARIMA and RegARIMA, respectively.
The average RMSE was approximately 327 W/m2, 294 W/m2, 283 W/m2 and 223 W/m2, respectively,
for ECMWF, LR, SARIMA and RegARIMA. The average MAPE was approximately 387%, 451%,
385% and 219% for ECMWF, LR, SARIMA and RegARIMA, respectively. Monthly error erraticism for
irradiance can be seen in Figures 12 and 13 for all the analyzed models. The RegARIMA model generally
had the lowest prediction error across the examined validation dataset. A seasonal trend in error
variation of MAPE (see Figure 12) was observed across the analyzed models together with ECMWF
forecasts. This can be attributed to the highly seasonal nature of irradiance and the dependency
of the ARIMA model on historical data. Figures 14 and 15 show the monthly variations in percentage
reduction of errors by the examined time series models relative to ECMWF forecasts. It can be seen
that there was a general positive percentage reduction in errors of all the proposed models relative
to ECMWF forecast error. RegARIMA had the largest average percentage error reductions relative
to ECMWF with an average of 28% decrease in RMSE and 45% decrease in MAPE.
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Figure 12. Cumulative irradiance MAPE for all forecasting models and ECMWF data (RegA denotes
RegARIMA model).
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Figure 13. Cumulative irradiance RMSE for all forecasting models and ECMWF data (RegA denotes
RegARIMA model).
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Figure 14. Percentage reduction of cumulative irradiance MAPE relative to ECMWF data for all
forecasting models (RegA denotes RegARIMA model).
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Figure 15. Percentage reduction of cumulative irradiance RMSE relative to ECMWF data for all
forecasting models (RegA denotes RegARIMA model).

3.1.3. Wind Speed Forecasts

Figure 7 shows the predicted and observed wind speed over the demonstration week.
Performance of the models can be observed in Tables 2–4. Average MWE was approximately −117%,
−4%, 51% and −21% for ECMWF, LR, SARIMA and RegARIMA, respectively. Average RMSE was
approximately 2 m/s, 1 m/s, 5 m/s and 2 m/s for ECMWF, LR, SARIMA and RegARIMA, respectively.
Average MAPE was approximately 28%, 22%, 96% and 28% for ECMWF, LR, SARIMA and RegARIMA,
respectively. Monthly error erraticism for wind speed can be seen in Figures 16 and 17 for all the
analyzed models, which shows that the SARIMA model generally hadthe highest prediction errors
across the examined validation dataset. This can be attributed to the spontaneous nature of wind speed
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in Ireland [51,52] and the dependency of the SARIMA model on historical data. Figures 18 and 19
show the monthly variations in percentage reduction of errors by the examined time series models
relative to ECMWF forecasts. It can be seen that there was a general negative percentage reduction (i.e.,
a percentage increase) in SARIMA model errors relative to ECMWF forecast errors (−167% average
reduction in RMSE and −234% average reduction in MAPE). There was a general positive percentage
reduction in LR model errors relative to ECMWF forecast errors with an average of 33% reduction
in RMSE and 20% reduction in MAPE.
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Figure 16. Wind speed MAPE for all forecasting models and ECMWF data (RegA denotes
RegARIMA model).
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Figure 17. Wind speed RMSE for all forecasting models and ECMWF data (RegA denotes
RegARIMA model).
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Figure 18. Percentage reduction of wind speed MAPE relative to ECMWF data for all forecasting
models (RegA denotes RegARIMA model).
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Figure 19. Percentage reduction of wind speed RMSE relative to ECMWF data for all forecasting
models (RegA denotes RegARIMA model).

3.1.4. General Discussion on Selection of Climatic Variable Forecast Model

Tables 2–4 provide model validation results for the climatic variable prediction models. It can
be seen from these tables that LR with ECMWF forecasts had the lowest forecast errors for temperature
and wind speed, followed by ECMWF with no regression model for prediction calibration. SARIMA
had the highest forecast errors for temperature and wind speed forecasts. For irradiance forecasts,
RegARIMA with ECMWF forecasts had the lowest errors, followed by SARIMA. In a location where
local meteorological data are obtainable along with ECMWF forecasts, the LR with ECMWF forecasts
model would be the most suitable for temperature and wind speed forecasts, while RegARIMA
with ECMWF forecasts would be the most suitable for irradiance forecasts. The errors presented
in Tables 2–4 were deemed acceptable to the authors because they showed a comparison for different
modeling techniques for the prediction of climatic variables. In a location where local meteorological
data are not available, ECMWF forecast should be used for all climatic variable forecasting. In this study,
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local meteorological data were available, hence LR with ECMWF forecasts for temperature prediction
and RegARIMA with ECMWF forecasts for irradiance prediction were used as inputs for the PV model.
LR with ECMWF forecasts for wind speed prediction was used as an input to the wind turbine model.

3.2. Microgrid Power Simulations, Forecasts and Validation

Forecasted climatic variables and corresponding recorded climatic variable data (seven-week
validation set) were used to simulate two sets of hourly PV power output and two sets of hourly
wind turbine power output, namely empirical based simulations and forecast based simulations.
The empirical based simulations were used to validate the forecast based simulations power outputs for
the PV array and wind turbine. Figure 20 shows empirical and forecast based simulations of PV power
output for the demonstration week, while Figure 21 shows empirical and forecast based simulations
of wind turbine power output for the demonstration week. Figures 20 and 21 clearly illustrate
the similarities between using empirical and forecasted climactic variable data for the simulation
of PV array and wind turbine output power. While there were outliers, it is clear that the overall
prediction accuracy was quite good and captured the general trend very well. Due to the high
correlation and low error displayed in Figures 20 and 21, the errors listed in Tables 2–4 were deemed
acceptable. Though there were errors in this forecast, it was still very useful for analysis in DSTREM.
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3.2.1. PV Array Model

For the PV array, the total empirical and forecast based simulations of power output for the
demonstration week, averaged across the analyzed validation dataset were 41.5 kWh and 38.0 kWh
respectively. The Pearson correlation coefficient, MWE and RMSE between empirical and forecast
based simulations of PV power output were0.99, 2.4% and 0.16 kWh respectively.

3.2.2. Wind Turbine Model

Empirical and forecast based simulations of wind turbine power output for the demonstration
week, averaged across the analyzed validation dataset were 58.5 kWh and 54.9 kWh respectively.
The Pearson correlation coefficient, MWE and RMSE between empirical and forecast based simulations
for wind turbine power output were 0.90, −10% and 0.14 kWh respectively. The results shown for
both the PV array and wind turbine power output simulations indicate that the forecast models were
effective seven-day-ahead predictors, and were therefore deemed suitable for integration into DSTREM.

3.3. DSTREM Demonstration

To demonstrate DSTREM, the PV array and wind turbine power output predictions for February
2013 were selected. The weekly power output predictions were 19.49 kWh and 15.83 kWh for the
PV array and wind turbine respectively. To make the analysis carried out on PV and wind comparable,
the month of February was chosen as it had the smallest difference in power output (3.66 kWh) between
the PV array and wind turbine from the seven months of validation data available. The seven-day
electricity requirement by the NBERT occupants was 27.67 kWh (see Section 2.6). Figure 22 shows
the total hourly PV array, wind turbine, and PV+Wind turbine power output predictions with
corresponding hourly NBERT electricity demand based on the building occupants’ work schedules.
Results of the DSTREM load control demonstration are presented in Tables 5–9. Table 5 presents REµG
usage variables, namely electricity exported to the national smart grid, electricity supplied by the REµG,
electricity supplied by the national smart grid, electricity demand met by REµG, electricity demand
met and avoided CO2 across seven days. Table 6 presents the cost reduction generated by the REµG
relative to buying all required electricity from the national smart grid across the three ET structures,
the three REµG supply options (PV, Wind, PV+Wind) and for each day of the demonstration week.
Tables 7–9 present the incurred income and savings for the analyzed FITs and ETs across the REµG
supply options (PV, Wind, PV+Wind) and for each day of the demonstration week.
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Table 5. Electricity exported (kWh and %), Electricity supplied by REµG (kWh and %), electricity
supplied by national smart grid (kWh), percentage RE exported, percentage RE used, avoided
CO2 by RE (kg and %) for the three REµG scenarios and for each day of the demonstration week.

Day REµG
Scenario

Electricity
Export
(kWh)

Electricity
REµG
(kWh)

Electricity
Grid

(kWh)
% ex %

Used % µG % G
Avoided
CO2 by
RE (kg)

%
Avoided

CO2

Friday
PV 0.01 1.73 3.45 0 100 33 67 0.73 33

Wind 6.86 4.65 0.53 60 40 90 10 2.03 90
PV+Wind 8.12 5.13 0.05 61 39 99 1 2.23 99

Saturday
PV 2.91 0.00 0.00 100 0 NA NA NA NA

Wind 0.16 0.00 0.00 100 0 NA NA NA NA
PV+Wind 3.07 0.00 0.00 100 0 NA NA NA NA

Sunday
PV 3.17 0.00 0.00 100 0 NA NA NA NA

Wind 0.11 0.00 0.00 100 0 NA NA NA NA
PV+Wind 3.28 0.00 0.00 100 0 NA NA NA NA

Monday
PV 0.21 3.55 2.38 6 94 60 40 1.52 59

Wind 0.14 0.45 5.47 23 77 8 92 0.20 8
PV+Wind 0.56 3.79 2.13 13 87 64 36 1.63 63

Tuesday
PV 0.00 2.38 3.62 0 100 40 60 1.02 39

Wind 0.11 1.00 5.00 10 90 17 83 0.43 16
PV+Wind 0.31 3.18 2.82 9 91 53 47 1.37 52

Wednesday
PV 0.02 1.99 2.68 1 99 43 57 0.85 42

Wind 0.12 0.58 4.09 17 83 12 88 0.25 12
PV+Wind 0.28 2.42 2.25 10 90 52 48 1.04 51

Thursday
PV 0.24 3.28 2.51 7 93 57 43 1.40 56

Wind 0.49 1.16 4.63 30 70 20 80 0.51 20
PV+Wind 0.89 4.27 1.51 17 83 74 26 1.84 73

Table 6. Electricity cost reduction (€ and %) generated by the REµG relative to buying all required
electricity from the national smart grid across the three ET structures and the three REµG scenarios for
each day of the demonstration week.

Day REµG
Scenario RTP (€) TOU (€) DN (€) RTP (%) TOU (%) DN (%)

Friday
PV 0.36 0.27 0.28 34 34 34

Wind 0.97 0.71 0.72 89 88 89
PV+Wind 1.07 0.79 0.79 99 99 99

Saturday
PV 0.00 0.00 0.00 NA NA NA

Wind 0.00 0.00 0.00 NA NA NA
PV+Wind 0.00 0.00 0.00 NA NA NA

Sunday
PV 0.00 0.00 0.00 NA NA NA

Wind 0.00 0.00 0.00 NA NA NA
PV+Wind 0.00 0.00 0.00 NA NA NA

Monday
PV 0.75 0.55 0.57 60 60 62

Wind 0.10 0.07 0.07 8 8 8
PV+Wind 0.80 0.58 0.61 64 64 66

Tuesday
PV 0.50 0.37 0.38 40 40 41

Wind 0.21 0.15 0.16 17 16 17
PV+Wind 0.67 0.49 0.51 53 53 54

Wednesday
PV 0.42 0.32 0.32 43 43 44

Wind 0.12 0.09 0.09 12 12 13
PV+Wind 0.51 0.38 0.39 52 52 53

Thursday
PV 0.69 0.50 0.52 57 56 58

Wind 0.24 0.17 0.18 20 20 20
PV+Wind 0.90 0.65 0.67 74 73 75
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Table 7. Daily income (€) and cost savings (€) for three microgrid electricity supply options (PV, Wind,
and PV+Wind), under three ET structures (RTP, TOU and DN) for FIT1.

Day Income (€) Savings (€)

RTP PV Wind PV+Wind PV Wind PV+Wind

Friday 0.00 1.20 1.46 0.37 2.16 2.53
Saturday 0.62 0.03 0.65 0.62 0.03 0.65
Sunday 0.67 0.02 0.69 0.67 0.02 0.69
Monday 0.05 0.02 0.11 0.79 0.12 0.91
Tuesday 0.00 0.02 0.06 0.50 0.23 0.73

Wednesday 0.00 0.02 0.06 0.42 0.14 0.57
Thursday 0.05 0.10 0.18 0.74 0.34 1.08

TOU PV Wind PV+Wind PV Wind PV+Wind

Friday 0.00 0.89 1.09 0.27 1.60 1.88
Saturday 0.45 0.02 0.48 0.45 0.02 0.48
Sunday 0.49 0.01 0.50 0.49 0.01 0.50
Monday 0.03 0.02 0.08 0.58 0.09 0.67
Tuesday 0.00 0.02 0.04 0.37 0.17 0.54

Wednesday 0.00 0.02 0.04 0.32 0.10 0.42
Thursday 0.04 0.07 0.13 0.54 0.24 0.78

DN PV Wind PV+Wind PV Wind PV+Wind

Friday 0.00 0.60 0.80 0.28 1.32 1.60
Saturday 0.47 0.02 0.49 0.47 0.02 0.49
Sunday 0.51 0.01 0.52 0.51 0.01 0.52
Monday 0.03 0.01 0.08 0.60 0.08 0.69
Tuesday 0.00 0.01 0.04 0.38 0.17 0.55

Wednesday 0.00 0.02 0.04 0.32 0.11 0.43
Thursday 0.04 0.07 0.13 0.56 0.24 0.80

Table 8. Daily income (€) and cost savings (€) for three microgrid electricity supply options (PV, Wind,
and PV+Wind), under three ET structures (RTP, TOU and DN) for FIT2.

Day Income (€) Savings(€)

RTP PV Wind PV+Wind PV Wind PV+Wind

Friday 0.00 0.63 0.98 0.37 1.60 2.05
Saturday 0.83 0.02 0.84 0.83 0.02 0.84
Sunday 0.88 0.01 0.89 0.88 0.01 0.89
Monday 0.06 0.01 0.13 0.81 0.10 0.93
Tuesday 0.00 0.01 0.06 0.50 0.22 0.73

Wednesday 0.00 0.01 0.05 0.42 0.13 0.56
Thursday 0.07 0.04 0.15 0.76 0.28 1.04

TOU PV Wind PV+Wind PV Wind PV+Wind

Friday 0.00 0.46 0.71 0.27 1.17 1.50
Saturday 0.61 0.01 0.63 0.61 0.01 0.63
Sunday 0.65 0.01 0.65 0.65 0.01 0.65
Monday 0.05 0.01 0.09 0.59 0.07 0.68
Tuesday 0.00 0.01 0.04 0.37 0.16 0.53

Wednesday 0.00 0.01 0.04 0.32 0.09 0.42
Thursday 0.05 0.03 0.11 0.55 0.20 0.76

DN PV Wind PV+Wind PV Wind PV+Wind

Friday 0.00 0.37 0.64 0.28 1.09 1.43
Saturday 0.63 0.01 0.64 0.63 0.01 0.64
Sunday 0.67 0.01 0.68 0.67 0.01 0.68
Monday 0.05 0.00 0.09 0.61 0.08 0.70
Tuesday 0.00 0.00 0.04 0.38 0.16 0.55

Wednesday 0.00 0.01 0.04 0.32 0.10 0.42
Thursday 0.05 0.03 0.11 0.57 0.20 0.78
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Table 9. Daily income (€) and cost savings (€) for three microgrid electricity supply options (PV, Wind,
and PV+Wind), under three ET structures (RTP, TOU and DN) for FIT3.

Day Income (€) Savings (€)

RTP PV Wind PV+Wind PV Wind PV+Wind

Friday 0.00 0.62 0.73 0.37 1.59 1.80
Saturday 0.26 0.01 0.28 0.26 0.01 0.28
Sunday 0.29 0.01 0.30 0.29 0.01 0.30
Monday 0.02 0.01 0.05 0.77 0.11 0.85
Tuesday 0.00 0.01 0.03 0.50 0.22 0.70

Wednesday 0.00 0.01 0.03 0.42 0.13 0.54
Thursday 0.02 0.04 0.08 0.71 0.29 0.98

TOU PV Wind PV+Wind PV Wind PV+Wind

Friday 0.00 0.62 0.73 0.27 1.33 1.52
Saturday 0.26 0.01 0.28 0.26 0.01 0.28
Sunday 0.29 0.01 0.30 0.29 0.01 0.30
Monday 0.02 0.01 0.05 0.57 0.08 0.63
Tuesday 0.00 0.01 0.03 0.37 0.16 0.52

Wednesday 0.00 0.01 0.03 0.32 0.10 0.41
Thursday 0.02 0.04 0.08 0.52 0.22 0.73

DN PV Wind PV+Wind PV Wind PV+Wind

Friday 0.00 0.62 0.73 0.28 1.34 1.52
Saturday 0.26 0.01 0.28 0.26 0.01 0.28
Sunday 0.29 0.01 0.30 0.29 0.01 0.30
Monday 0.02 0.01 0.05 0.59 0.08 0.66
Tuesday 0.00 0.01 0.03 0.38 0.17 0.53

Wednesday 0.00 0.01 0.03 0.32 0.10 0.41
Thursday 0.02 0.04 0.08 0.54 0.22 0.76

3.3.1. DSTREM Application Results

Electricity exported by the REµG for all three REµG options during non-working days (Saturday
and Sunday) was 100% due to the fact that there was no electricity demand by the occupants on these
days, and hence 0% usage of the REµG electricity output. Likewise, avoided CO2 for non-working days
was 0 kg, hence percentage avoided CO2 analysis was not applicable (NA) for these days. The ranges
of electricity exported during the five working days under PV, Wind and PV+Wind, scenarios were 0%
to 7%, 10% to 60% and 9% to 61% of the total daily electricity production, respectively. The percentage
of REµG electricity output used during working days, under the three REµG scenarios ranged from
39% to 100% of total daily production for each scenario. The PV only scenario had the highest
percentage of RE power output usage at 100%, while the wind only scenario had the lowest percentage
at an average of 72% of total daily wind turbine power production. This was due to the fact that the
case study electricity demand was obtained from occupants of an office building and most of the
electricity requirements of these occupants were during day time hours, which was more in phase
with the PV power output profile (see Figure 22). Across the three REµG scenarios, CO2 avoided
as a result of consuming electricity from the REµG ranged from 8% to 99% of the daily CO2 cost
incurred from buying all the required electricity from the national smart grid. These variations were
dependent on each day’s electricity requirement profile, PV array power output forecasts and wind
turbine power output forecasts. PV array and wind turbine power outputs were in turn dependent
on climatic variables.

Reduction in the monetary costs of electricity by the REµG relative to buying all required electricity
from the national smart grid for the three REµG scenarios and three ETs ranged from 8% to 99%,
with the 99% reduction occurring under the PV+Wind scenario.
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Daily monetary income and savings incurred from FITs ranged from €0.00 to €2.53 (see Tables 7–9).
The PV+Wind scenario resulted in the largest monetary income and savings, followed by the
PV scenario. The wind turbine scenario resulted in the lowest monetary income and savings.
FIT2 which had a dynamic tariff structure (Section 2.6.2) resulted in the highest monetary income
and savings out of the three FITs. This was due to electricity being sold to the national smart grid
at 130% of the grid price between 00:00 and 17:00. FIT1, which also followed a dynamic tariff structure,
had the second highest monetary income and savings. FIT3, which had a constant FIT structure
of 9 cents/kWh, produced the lowest monetary income and savings.

These results show that for this scenario, under a particular set of circumstances, a REµG consisting
of both a PV array and a wind turbine under a dynamic FIT structure provided more income and
reduced the cost of buying electricity from the grid, while also reducing CO2 emissions. These results
demonstrated the functionality of DSTREM and its ability to provide detailed information to REµG
users to aid them in managing their system.

3.4. General Discussion

The occupants of the office building in this study worked primarily during the PV power
production period, hence most of the PV power output was consumed by the building occupants,
and therefore the FIT rate did not have a substantial impact on the PV only system. For PV only,
more power was exported to the national smart grid, meaning the FIT had a more profound effect
on price. If the application was a domestic building, more power consumption would have been
seen in the early mornings and evening as most building occupants would have gone about their full
daily routines.

The novelty and contribution of this body of work to the field lies in the area of systems application
and integration. Previously there have been studies which used a combination of building energy,
smart-grid and microgrid models in an energy management system. The originality of DSTREM stems
from the fact that it provides a scalable and portable platform, with the only requirement for retrieving
weather parameter forecasts being the GPS coordinates of the REµG location. Additionally, a novel
feature of DSTREM is that it may be applied to any building with an integrated REµG, provided
details pertaining to the size and specifications of the REµG are known, as well as the weekly building
electricity load profile based on occupancy schedules. Based on the results in Section 3.3.1, DSTREM
can be a useful tool for REµG users to select the ET, FIT and REµG control scheme for the best monetary
and CO2 savings to suit their particular needs. It may also be used to estimate carbon credits one week
in advance. A REµG with local recorded meteorological data has an advantage of increased accuracy
in the weather forecasts due to regression of the recorded empirical data with ECMWF forecasts.
This results in an increase in accuracy of the mechanistic PV model and the wind turbine power curve
model. For a REµG where local meteorological data is not available, ECMWF forecasts alone have
been shown to provide accurate inputs for the PV model and wind turbine model, based on the results
in Section 3.1.

4. Conclusions

A decision support tool for renewable energy microgrids was developed. Over a seven-day
horizon DSTREM simulated daily electricity consumption and related costs for three ET structures
(RTP, TOU and DN), income and cost savings for three FIT structures (FIT1, FIT2 and FIT3), electricity
cost in kg of CO2, avoided CO2, total REµG electricity output, total REµG electricity exported to the
smart grid, total REµG electricity consumed and total electricity supplied by the smart grid.

Three time series modeling techniques (SARIMA, LR and RegARIMA) were integrated into
DSTREM for climatic variable forecasts. ECMWF data were used as independent variables for the
LR and RegARIMA models, while the climatic variable model simulation outputs were validated
with empirically obtained data and ECMWF data. The LR model statistically outperformed all other
models for temperature and wind speed forecasting with an average RMSE of 0.97 ◦C and 1.26 m/s,
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respectively. The RegARIMA model had the lowest error for irradiance forecasting with RMSE
of 0.22 kW/m2. DSTREM was applied to a REµG integrated office building connected to the smart
grid. DSTREM simulated outputs demonstrated how DSTREM may be used to compare differentREµG
scenarios. It also illustrated its suitability as an advanced tool for REµG building users and managers
in choosing the most appropriate ET and FIT, estimating their weekly power production, electricity
exports, monetary savings and CO2 offset. This information may be used to improve the facility’s
energy utilization, while reducing its electricity costs and carbon footprint.

In this study, the load profile was based on a deterministic occupancy schedule of an office
building. Future research on DSTREM will focus on building applications with a flexible occupancy
schedule, as well as the modification of DSTREM to support demand side management strategies.
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