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Abstract: The traditional cumulant method (CM) for probabilistic optimal power flow (P-OPF) needs
to perform linearization on the Karush–Kuhn–Tucker (KKT) first-order conditions, therefore requiring
input variables (wind power or loads) varying within small ranges. To handle large fluctuations
resulting from large-scale wind power and loads, a novel P-OPF method is proposed, where the
correlations among input variables are also taken into account. Firstly, the inverse Nataf
transformation and Cholesky decomposition are used to obtain samples of wind speeds and loads
with a given correlation matrix. Then, the K-means algorithm is introduced to group the samples
of wind power outputs and loads into a number of clusters, so that in each cluster samples of
stochastic variables have small variances. In each cluster, the CM for P-OPF is conducted to obtain
the cumulants of system variables. According to these cumulants, the moments of system variables
corresponding to each cluster are computed. The moments of system variables for the total samples
are obtained by combining the moments for all grouped clusters through the total probability formula.
Then, the moments for the total samples are used to calculate the corresponding cumulants. Finally,
Cornish–Fisher expansion is introduced to obtain the probability density functions (PDFs) of system
variables. IEEE 9-bus and 118-bus test systems are modified to examine the proposed method.
Study results show that the proposed method can produce more accurate results than traditional CM
for P-OPF and is more efficient than Monte Carlo simulation (MCS).

Keywords: cumulant method (CM); probabilistic optimal power flow (P-OPF); large fluctuations;
K-means algorithm

1. Introduction

Optimal power flow (OPF) has been an important tool for power system operation and
planning [1,2]. Traditional OPF problems are based on deterministic models, in which loads, as well
as upper and lower bounds of generation, are fixed. Large-scale renewable energies have introduced
more uncertainties into power systems [3,4]. Meanwhile, loads fluctuate with large ranges, due to
changes of load characteristics and demands. Probabilistic optimal power flow (P-OPF) is a common
approach to handle generation and load uncertainties.

References [5,6] provided critical reviews on the probabilistic methods studying the uncertainties
in power systems. The methods of solving P-OPF problems could be classified into three categories:
simulation methods, approximation methods and analytical methods. Monte Carlo simulation
(MCS) [7,8] was used to solve P-OPF problems considering the uncertainties and correlations of input
variables. To illustrate the accuracy of MCS, references [9,10] applied the algorithm to a number of
benchmark problems and indicated that experimental error could be limited to a very low level through
a large number of simulations. Therefore, MCS with a large number of samples is usually utilized
as a comparative reference, but it is time-consuming. In order to reduce the computational burden
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of MCS, some efficient sampling methods such as importance sampling (IS) [11], Latin hypercube
sampling (LHS) [12,13] and Latin supercube sampling (LSS) [14] were applied. References [15,16]
indicated that quasi-MCS had better performance, based on computational efficiency, than traditional
MCS. Correlations among random variables were handled by Cholesky decomposition [12–14], copula
function [15], pair-copula method [8] and a ninth-order polynomial normal transformation technique
(NPNT) [16].

Compared with simulation methods, approximation methods are generally more efficient.
Approximation methods consist of point estimate method (PEM) and unscented transformation
method (UTM). The 2 m PEM and 2 m + 1 PEM are two widely used point estimate methods.
The 2 m PEM was proposed to solve P-OPF in [17,18]. Reference [19] carried out a cost-benefit
analysis for a power system with energy storage integration and wind generation using the 2 m
PEM. For solving probabilistic load flow (PLF) problems, reference [20] applied the 2 m + 1 PEM
to obtain more accurate results than the 2 m PEM. In [21,22], both 2 m and 2 m + 1 PEM were
employed to solve P-OPF problems for wind-integration power system. To handle correlations
among random variables, Cholesky decomposition was used to modify PEM [22–27]. In [25],
the modified 2 m + 1 PEM was applicable to P-OPF considering the correlations of wind speeds
following different distributions. Another approximation method, UTM, was presented to handle
correlations among input variables [5,28]. Approximation methods are powerful to solve P-OPF
problems. However, the efficiency decreases as the number of random variables increases, and the
accuracy becomes worse for higher order moments of output variables.

Compared with MCS, analytical methods can also reduce computational burden. Reference [29]
applied the Gaussian mixture model (GMM) to model non-Gaussian input variables and their
correlations. Without denying the advantage in modeling non-Gaussian distributions, the efficiency of
GMM decreases as the number of input variables increases. The cumulant method (CM) is one
of analytical methods and has the highest computational efficiency. For solving PLF problems,
CM and approximation expansions (Gram–Charlier, Edgeworth and Cornish–Fisher expansions)
were utilized to obtain cumulants, probability density functions (PDFs) and cumulative distribution
functions (CDFs) of output variables [30–32]. In addition, correlations among random input variables
were taken into account using Cholesky decomposition [33] and joint cumulants [31,34]. In [35],
the method of combining CM and GMM was used to model multimodal probability distributions.
For solving P-OPF problems, the CM for P-OPF was proposed to obtain the mean values, variance
values and PDFs of system variables [36]. In [37], two extensions of the CM for P-OPF were introduced,
where limits within the P-OPF problems were handled by combining multiple PDFs to generate final
PDFs, and Gram–Schmidt orthogonalization was used to handle correlations of loads.

When the input variables have large fluctuations, the cumulants and PDFs of output variables
(voltage magnitude, voltage angle, active power and reactive power of generation units etc.) obtained
using the traditional CM could result in significant errors compared with Monte Carlo simulation.
The traditional CM for P-OPF first performs the deterministic OPF using the mean values of input
variables (such as wind power outputs, loads) to obtain the Karush–Kuhn–Tucker (KKT) first-order
conditions, then takes the full derivative of KKT first-order conditions and obtains a linear relationship
between input variables and output variables (such as voltage magnitude, voltage angle etc.). Therefore,
the linear relationship is obtained at the operating point using the mean values of wind power outputs
and loads. When the wind power outputs and loads fluctuate to a value that is far away from the
mean value, the operating point has changed. The coefficients of linear relationship obtained at
the new operating point could be significantly different from the values obtained at the operating
point using the mean values of input variables. The cumulants calculated using the coefficients of
linear relationship could have large deviations. Therefore, the PDFs of output variables based on the
cumulant method may result in errors. Reference [38] studied the errors resulting from linearization
and pointed out that the linear model performed well within small ranges of random variables but
would cause large errors when ranges of random variables increased. To tackle this problem, this paper
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proposes a novel probabilistic optimal power flow method, which can handle large fluctuations and
correlations of stochastic variables.

This paper is structured as follows: Section 2 introduces the traditional CM for P-OPF. In Section 3,
the theoretical framework of the proposed method is proposed in detail. In Section 4, IEEE 9-bus and
118-bus test systems are used for verifying the proposed method. Finally, conclusions are presented in
Section 5.

2. Traditional CM for P-OPF

In the process of the traditional CM for P-OPF, a deterministic OPF model is solved for the mean
values of input variables using a Logarithmic Barrier Interior Point Method (LBIPM) [39]. The Hessian
is used to formulate the linear relationship between output variables and input variables.

For a power system integrated with wind farms, the deterministic OPF model can be described
by the following non-linear optimization problem with equality and inequality constraints [5,25]:

min
N

∑
i=1

(
a2iP2

Gi + a1iPGi + a0i

)
(1)

subject to:

Vi

N

∑
j=1

Vj

(
Gij cos δij + Bij sin δij

)
+ PDi − PGi − PWi = 0

Vi

N

∑
j=1

Vj

(
Gij sin δij − Bij cos δij

)
+ QDi −QGi −QCi = 0

Pmin
Gi ≤ PGi ≤ Pmax

Gi

Qmin
Gi ≤ QGi ≤ Qmax

Gi

Vmin
i ≤ Vi ≤ Vmax

i

|Tl | ≤ Tmax
l

(i = 1, · · · , N; l = 1, · · · , NT)

(2)

where PGi and QGi are the active and reactive power generation of conventional generator at bus i. a2i,
a1i and a0i are cost coefficients of the generator at bus i. PWi is the active power output of the wind
farm at bus i. QCi is the reactive power injected by the compensation device at bus i. PDi and QDi are
the active and reactive loads at bus i. Vi is the magnitude of voltage at bus i. δij is the phase angle
difference between bus i and j. Gij and Bij are the real and imaginary parts of the element in the bus
admittance matrix, respectively. Tl is the complex power flow of branch l. N is the number of buses,
and NT is the number of branches. Pmin

Gi , Pmax
Gi , Qmin

Gi , Qmax
Gi , Vmin

i and Vmax
i are the lower and upper

bounds of corresponding variables. Tmax
l is the line rating of branch l.

In the P-OPF studies, wind power output and load at each bus should be treated as random input
variables. The wind power output is calculated using the following equation:

PWi =


0 ( 0 < SWi < Vci)

(A1 + B1 × SWi + C1 × SWi)× Pr ( Vci ≤ SWi < Vr)

Pr (Vr ≤ SWi < Vco)

0 (SWi ≥ Vco)

(3)

where SWi is the wind speed of the wind farm at bus i, and Pr is the rated power of the wind farm.
Vci, Vr and Vco are the cut-in, rated and cut-out speeds of the wind farm, respectively. A1, B1 and C1

are coefficients [40]. The wind power output can be modeled as a negative load, and its power factor is
kept constant [5].

References [36,37] built the model of CM for P-OPF with the load at each bus as a random input
variable. In this paper, wind power output is also treated as a random input variable and incorporated
into the computational model. The procedure of CM for P-OPF is summarized as follows:
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1. Take the mean values of wind power outputs and loads, and solve the aforementioned
deterministic OPF model using LBIPM.

2. Obtain the KKT first-order conditions, when the optimization is converged:

F(Y) = 0 (4)

where F is the set of equations defining the KKT first-order conditions. Y is a vector consisting of
magnitude and angle of voltage at each bus, active and reactive generation of each conventional
generator, slack variables and Lagrange multipliers.

3. Treat loads and wind power outputs as random input variables, and formulate new KKT
first-order conditions:

F(Y, L, W) = 0 (5)

where L and W are the vectors of load and wind power output at each bus, respectively.
4. Take the full derivative of (5), and find a linear relationship between input variables and

output variables:
H∆Y + HL∆L + HW∆W = 0 (6)

where H is the Hessian of the Lagrangian function with respect to Y when the optimization is
completed. ∆Y, ∆L and ∆W are vectors of the changes in Y, L and W. HL and HW are obtained
by taking the partial derivatives of (5) with respect to L and W, respectively. Equation (6) can be
reformed as the following equation:

∆Y = −H−1HL∆L−H−1HW∆W
= H1∆L + H2∆W

(7)

where H−1 is the inverse of the obtained Hessian, H1 = −H−1HL, and H2 = −H−1HW.

From Equation (7), an unknown variable yi can be formulated as a linear combination of known
input variables (loads and wind power outputs):

yi = yi0 + ∆yi

= yi0 +
NL
∑

j=1
h1ij(lj − lj0) +

NW
∑

j=1
h2ij(wj − wj0)

= ysi0 +
NL
∑

j=1
h1ijlj +

NW
∑

j=1
h2ijwj

(8)

where yi0 is the value of yi evaluated by the deterministic OPF in step 1. ∆yi is the change of
yi. h1ij and h2ij are the values at the i-th row and j-th column of H1 and H2, respectively. lj and
wj are the j-th variables in L and W, respectively. lj0 and wj0 are the mean values of lj and wj,
respectively. NL is the number of load variables, and NW is the number of wind power variables.
ysi0 = yi0 −∑NL

j=1 h1ijlj0 −∑NW
j=1 h2ijwj0.

5. If the known input variables (loads and wind power outputs) are independent of each other, the
cumulants of unknown output variables can be computed by a linear combination of cumulants
of known input variables based on the property of cumulants (see Appendix A):

γ
yi
v =


NL
∑

j=1
h1ijγ

lj
1 +

NW
∑

j=1
h2ijγ

wj
1 + ysi0 (v = 1)

NL
∑

j=1
hv

1ijγ
lj
v +

NW
∑

j=1
hv

2ijγ
wj
v (v > 1)

(9)
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where γ
yi
v is the v-th order cumulant of yi. γ

lj
v and γ

wj
v are the v-th order cumulants of lj and

wj, respectively.

3. The Proposed Method for P-OPF

The traditional CM for P-OPF requires that input variables have small variances. In [36,37], loads
were modeled as normal distributions with a variance of 99% confidence interval equal to ±10% of
mean values. It is not reasonable if the wind power is assumed as a normal distribution with a variance
of 99% confidence interval equal to ±10% of the mean value because wind power can vary between
0 MW and its rated power. Based on our studies, the traditional CM for P-OPF will have significant
errors if the load’s standard deviation is larger than 5% of its mean and the ratio of the total rated
wind power to the total system load exceeds 10%. Therefore, a power system has large fluctuations
when the load’s standard deviation is larger than 5% of its mean and the ratio of the total rated wind
power to the total system load exceeds 10%. To solve P-OPF problems for power systems with large
fluctuations of stochastic variables, the proposed method treats samples of input variables (loads
and wind power outputs) as points in a multi-dimensional space and groups them into a number
of clusters using K-means algorithm. The points in the same cluster are close to one another, so in
each cluster samples of input variables have small variances. The total probability formula is used
to combine moments obtained using CM for P-OPF in each cluster to compute the final moments of
output variables. Section 3.1 introduces the overall procedure of the proposed method, which contains
seven steps. Sections 3.2–3.6 introduce key steps in detail.

3.1. The Overall Procedure of the Proposed Method

The flowchart of the proposed method in this paper is presented in Figure 1. The overall procedure
of the proposed method can be summarized as follows:

1. Input the basic data, including network data, the distribution functions of wind speeds and loads,
and the correlation matrix.

2. Generate samples of correlated wind speeds and loads using the method introduced in [25,41].
Then, calculate wind power outputs according to Equation (3).

3. Group the samples of wind power outputs and loads into a number of clusters using the
K-means algorithm.

4. In each cluster, the CM for P-OPF considering correlations among input variables is applied.
Firstly, the samples for each cluster are converted to uncorrelated samples. Then, the cumulants
of uncorrelated input variables are calculated based on uncorrelated samples [33]. Finally, the CM
for P-OPF is applied to compute the cumulants of system variables for each cluster.

5. Compute the final cumulants of system variables for the total samples.
6. PDFs of system variables are produced by Cornish–Fisher series expansion [42].
7. Output the cumulants and PDFs of system variables.

3.2. Generating Samples of Correlated Wind Power Outputs and Loads

For P-OPF problems, it is usually assumed that loads follow normal distribution functions and
wind speeds follow Weibull distribution functions. In the process of the proposed method, based on
the known distribution functions, samples of wind speeds and loads, which meet the given correlation
matrix, are first generated by the method introduced in [25,41]. Then, the wind power outputs are
calculated by (3).
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3.3. Application of the K-Means Algorithm to Group Samples into Clusters

The samples of wind power outputs and loads can be expressed as X = [X1, X2, · · · , Xi, · · · , Xn],
where Xi is a column vector of a sample for a specific input variable (wind power or load). The samples
of input variables (loads and wind power outputs) are treated as points in a multi-dimensional space
as shown in Figure 2.

Energies 2017, 10, 1623 6 of 20 

 

3.2. Generating Samples of Correlated Wind Power Outputs and Loads 

For P-OPF problems, it is usually assumed that loads follow normal distribution functions and 
wind speeds follow Weibull distribution functions. In the process of the proposed method, based on 
the known distribution functions, samples of wind speeds and loads, which meet the given 
correlation matrix, are first generated by the method introduced in [25,41]. Then, the wind power 
outputs are calculated by (3). 

3.3. Application of the K-Means Algorithm to Group Samples into Clusters 

The samples of wind power outputs and loads can be expressed as ܆ = ሾ ଵܺ, ܺଶ,⋯ , ௜ܺ,⋯ , ܺ௡ሿ, 
where ௜ܺ  is a column vector of a sample for a specific input variable (wind power or load). The 
samples of input variables (loads and wind power outputs) are treated as points in a multi-
dimensional space as shown in Figure 2.  

 
Figure 2. The elements of the samples of wind power outputs and loads. 

In order to obtain the samples with smaller variances, the clustering algorithm is intended to be 
used to group all the samples into a number of clusters. Hierarchical clustering and K-means 
algorithm are two common approaches for clustering. However, the hierarchical clustering algorithm 
can only be used for relatively small datasets [43]. Therefore, K-means algorithm is applied in this 
paper. The K-means algorithm procedure is as follows: 

(1). Pick initial mean values of all clusters, which are defined as the following equations: 

଴ۻ = ێێۏ
ۍێێ
݉ଵ݉ଶ⋮݉௝⋮݉௞ۑۑے

 (10) ېۑۑ

௝݉ = ሾݔଵ௝଴ , ଶ௝଴ݔ ,⋯ , ௜௝଴ݔ ,⋯ , ௡௝଴ݔ ሿ (11) 

where ۻ଴ is a multi-dimensional vector comprised of initial mean values of all clusters, ݇ is 
the pre-set number of clusters, ௝݉ is the mean value vector of cluster ݆, and ݔ௜௝଴  is the picked 
initial mean value of the variable ݅ in cluster ݆. 

(2). Calculate Euclidean distances from each point to each cluster mean according to the following 
equation: ݀(݈, ݆) = ට(ݔଵ௟ − ଵ௝଴ݔ )ଶ + ଶ௟ݔ) − ଶ௝଴ݔ )ଶ + ⋯+ ൫ݔ௜௟ − ௜௝଴ݔ ൯ଶ + ௡௟ݔ)+⋯ − ௡௝଴ݔ )ଶ (12) 

where ݀(݈, ݆)  is the Euclidean distance from point ݈  to the mean of clusters ݆ , point ݈  is 
expressed as ሾݔଵ௟, ⋯,ଶ௟ݔ , ,௜௟ݔ ⋯ ,  .௜௟ is the l-th element of ௜ܺݔ ௡௟ሿ, andݔ

(3). Assign every point to the nearest cluster according to the Euclidean distances, and update the 
mean values of all clusters. 

(4). Repeat steps 2 and 3 until points in each cluster are no longer changed. 

In this process, the performance of the K-means algorithm is affected by initial values of ۻ଴. It 
is desirable that the ݇ initial points in ۻ଴ are as far away from each other as possible. Therefore, in 

Figure 2. The elements of the samples of wind power outputs and loads.

In order to obtain the samples with smaller variances, the clustering algorithm is intended to
be used to group all the samples into a number of clusters. Hierarchical clustering and K-means
algorithm are two common approaches for clustering. However, the hierarchical clustering algorithm
can only be used for relatively small datasets [43]. Therefore, K-means algorithm is applied in this
paper. The K-means algorithm procedure is as follows:

(1). Pick initial mean values of all clusters, which are defined as the following equations:

M0 =



m1

m2
...

mj
...

mk


(10)
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mj =
[

x0
1j, x0

2j, · · · , x0
ij, · · · , x0

nj

]
(11)

where M0 is a multi-dimensional vector comprised of initial mean values of all clusters, k is the
pre-set number of clusters, mj is the mean value vector of cluster j, and x0

ij is the picked initial
mean value of the variable i in cluster j.

(2). Calculate Euclidean distances from each point to each cluster mean according to the
following equation:

d(l, j) =

√(
x1l − x0

1j

)2
+
(

x2l − x0
2j

)2
+ · · ·+

(
xil − x0

ij

)2
+ · · ·+

(
xnl − x0

nj

)2
(12)

where d(l, j) is the Euclidean distance from point l to the mean of clusters j, point l is expressed
as [x1l , x2l , · · · , xil , · · · , xnl ], and xil is the l-th element of Xi.

(3). Assign every point to the nearest cluster according to the Euclidean distances, and update the
mean values of all clusters.

(4). Repeat steps 2 and 3 until points in each cluster are no longer changed.

In this process, the performance of the K-means algorithm is affected by initial values of M0. It is
desirable that the k initial points in M0 are as far away from each other as possible. Therefore, in this
paper, preliminary clustering is performed using a random 10% sample of X. The final mean values of
preliminary clustering are used as initial mean values of the K-means algorithm.

In each cluster, each point is close to one another, so that there is a small variance for a variable
sample. This property ensures that, in each cluster, the CM for P-OPF can be applied to solving P-OPF
problems within acceptable errors.

3.4. The Method of Handling Correlations among Input Variables

CM requires that input variables are independent. In this paper, the Cholesky decomposition
algorithm [33,44] is applied to convert correlated variables to independent variables. This algorithm is
a reasonable solution for a normal distribution vector with a mean of zero [45]. However, there exist
errors for a non-normal distribution vector.

Before applying the Cholesky decomposition algorithm, this paper proposes performing
standardization for a multi-dimensional and non-normal distribution vector W (wind power variables)
first using Equation (13):

w′i =
wi − Ewi

δwi

(13)

where wi is a variable in W, Ewi and δwi are respectively mean and standard deviation of wi, and w′i is
the standardized variable corresponding to wi.

The correlation matrix of W′ is usually a positive definite matrix, which can be decomposed by
the Cholesky decomposition algorithm as the following equation:

CW′ = G′G′T (14)

where CW′ is the correlation matrix of W′ and can be calculated according to the samples of W′, and G′

is a lower triangular matrix.
The standardized vector W′ can be transformed to a linear combination of an uncorrelated vector

U by (15):
W′ = G′U (15)

Assume that a diagonal matrix D is defined as:

D = diag(δw1 δw2 · · · δwNW ) (16)
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where NW is the number of wind power variables.
Based on Equations (13), (15) and (16), the linear relationship between W and U can be formulated

as follows:
W = DW′ +

[
Ew1 , Ew2 , · · · , Ewl

]T
= NU + E

(17)

where N = DG′ and E =
[
Ew1 , Ew2 , · · · , Ewl

]T.
It can be seen from Equation (17) that dependent input variables can be converted to a linear

combination of uncorrelated variables, which can be easily incorporated into Equation (8) to formulate
a new linear combination. This method can also be applied to handling the correlations between loads
and wind power outputs.

3.5. Computation of the Cumulants of System Variables

According to the algorithms introduced in the above subsections, the cumulants of system
variables in each cluster can be obtained. The next step is to calculate the final cumulants of system
variables for the total samples. This paper adopts a new method of computing the moments of system
variables for the total samples by combining the moments of system variables for all clusters, after the
moments of system variables corresponding to each cluster are calculated.

The procedure of computing the final cumulants of system variables for the total samples can be
summarized as follows:

(1). In each cluster, cumulants of a system variable for each cluster can be obtained based on the
algorithms introduced in Sections 3.2–3.4. The moments of the system variable for each cluster
are computed using the following equation:

αi
v =


γi

1 (v = 1)

γi
v +

v−1
∑

j=1
Cj

v−1αi
jγ

i
v−j (v > 1) (18)

where αi
v is the v-th order moment of a variable for cluster i, γi

v is the v-th order cumulant of
a variable for cluster i, and Cj

v−1 is a combination of j elements from v − 1 different elements.

(2). The property that moments meet the total probability formula is applied to combine the moments
of the system variable for all clusters. The moments of the system variable for the total samples
are calculated using the following equation:

αv =
k

∑
i=1

pi × αi
v (19)

where αv is the v-th order moment of a system variable for the total samples, k is the number of
clusters, and pi is the proportion of the number of elements in cluster i to the total samples.

(3). The final cumulants of the system variable for the total samples are obtained using the
following equation:

γv =


α1 (v = 1)

αv −
v−1
∑

j=1
Cj

v−1αjγv−j (v > 1) (20)

where γv is the v-th order cumulant of a system variable for the total samples.

3.6. Computation of PDFs of System Variables

Compared with Gram–Charlier A series expansion and Edgeworth series expansion,
Cornish–Fisher series expansion works better for non-Gaussian distribution variables [42]. This paper
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adopts Cornish–Fisher series expansion to obtain PDFs of system variables. This method is introduced
in detail in [42].

4. Case Studies

IEEE 9-bus and 118-bus test systems [46] are modified to verify the accuracy and efficiency of the
proposed method. Two wind farms are added into the IEEE 9-bus test system, and three wind farms
are added into the IEEE 118-bus test system. The rated capacities of wind farms and corresponding
buses are listed in Table 1. It is assumed that the cut-in, rated and cut-out speeds are 3 m/s, 13 m/s
and 25 m/s, respectively. The wind farm power factor is assumed as 0.85 lag [47].

Table 1. The rated capacities of wind farms and corresponding buses.

Systems Buses Connected with Wind Farms Rated Capacities (MW)

IEEE 9-Bus Test System 1, 3 60
IEEE 118-Bus Test System 59, 80, 90 250

The parameters of the objective functions are taken from MATPOWER files [46]. In each case,
Monte Carlo Simulations (MCS) are performed with 40,000 samples, whose results are treated as
reference for other methods. The traditional CM without consideration of correlations of input variables
(UCCM) and with consideration of correlations of input variables (CCCM) using the method introduced
in [37] are also performed to demonstrate the accuracy of the proposed method. The absolute percent
error (APE) of mean and standard deviation values are calculated to measure the errors.

All the cases are tested using a personal computer with a dual-core 2.6-GHz processor and 8-GB
of RAM.

4.1. The Modified IEEE 9-Bus Test System

For the IEEE 9-bus test system, the total system load is modeled as a normal distribution with
the mean value equal to the nominal value and the standard deviation equal to 10% of the mean
value. The load at each bus varies with the total system load according to its original percentage of the
total load, and its power factor is kept constant. Wind speeds are modeled as Weibull distributions,
whose parameters are presented in Table 2 [48]. The correlation coefficient of wind speeds is 0.76.

Table 2. Parameters of Weibull distributions (modified IEEE 9-bus test system).

Wind Speed Distribution Shape Parameter Scale Parameter

W1 (Connected to Bus 1) 1.732 6.611
W2 (Connected to Bus 3) 2.036 7.933

4.1.1. Application of the K-Means Algorithm to Group Samples into Clusters

The samples of wind power outputs and the total system load have been generated using the
method introduced in Section 3.2. The mean values of these samples are 10.5880 MW, 15.0741 MW
and 315.1020 MW, respectively. The standard deviation values of these samples are 16.1379 MW,
18.4307 MW and 31.4904 MW, respectively. The K-means algorithm is applied to group these samples
into 25 clusters. In order to measure the fluctuations of input variables for all clusters, the mean,
maximum and minimum values of standard deviation values of input variables for all clusters are
calculated, as shown in Table 3. It can be seen from Table 3 that input variables for each cluster have
much smaller standard deviation values than those for the total samples, which indicates that input
variables for each cluster have smaller fluctuations.
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Table 3. Statistics of standard deviation values for all clusters.

Input Variable δmean (MW) δmax (MW) δmin (MW)

Wind Power 1 (Connected to Bus 1) 7.0850 10.9982 2.8596
Wind Power 2 (Connected to Bus 3) 7.2758 11.6619 3.6242

Total System Load 8.1510 14.3702 3.4837

4.1.2. Cumulants of System Variables and Comparison

In each cluster, the CM for P-OPF considering the correlation of wind power outputs is conducted
to obtain the cumulants of system variables. These obtained cumulants are used to calculate the final
cumulants for the total samples using the method introduced in Section 3.5.

The mean (the first order cumulant) and the standard deviation (the square root of the second
order cumulant) are calculated as the most important results of P-OPF. The standard deviation provides
an indicator for the fluctuation of each system variable. Table 4 shows the results of generation cost
obtained using different methods. It can be seen that all absolute percent error (APE) values obtained
using the proposed method are much smaller than those obtained using UCCM and CCCM.

Table 4. Comparison of generation cost (modified IEEE 9-bus test system).

Algorithm Mean Mean APE Standard Deviation Standard Deviation APE

MCS 4769.75 \ 992.97 \
UCCM 4697.13 1.52% 910.72 8.28%
CCCM 4697.13 1.52% 1022.13 2.94%

Proposed
Method 4765.08 0.10% 994.90 0.19%

Figure 3 illustrates the results of generators’ reactive power, and Figure 4 illustrates the results
of voltage magnitude at each bus. In Figure 3, it can be seen that the proposed method has much
better performance, based on mean and standard deviation APE. It is noteworthy that the mean APE
value of reactive power generation at bus 2 obtained using the proposed method is relatively large at
11.75%. The actual error is only −0.0137 MVar. In Figure 4, it is obvious that most standard deviation
APE values obtained using the proposed method are extremely small and much smaller than those
obtained using UCCM and CCCM. It should be pointed out that the standard deviation APE value of
voltage magnitude at bus 6 using the proposed method is 80.13%. However, the standard deviation
of voltage magnitude at bus 6 obtained using MCS is only 7.20 × 10−6 p.u., and the actual error is
5.77 × 10−6 p.u. Moreover, the ratio of its standard deviation to mean, namely coefficient of variation
(CV), is only 0.0007%, which is much smaller than those of other variables. The CV is a standardized
measure of dispersion of a probability distribution, so that the quite small value indicates that this
variable is almost deterministic, compared with others. Therefore, this kind of variables, whose CV
values are very small, can be treated as constants and not analyzed as probabilistic variables.
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4.1.3. PDFs of System Variables and Comparison

Cornish–Fisher series expansion is applied to produce the PDFs of output variables. The PDFs
of generation cost and reactive power generation at bus 2 are shown in Figures 5 and 6. It can be
observed that the curves obtained using the proposed method match the histograms obtained using
MCS better than those obtained using UCCM and CCCM. Especially, curves obtained using UCCM
and CCCM have significant errors at the tails of curves, which also demonstrates the shortcoming of
traditional CM for P-OPF as discussed in Section 1. Moreover, the computation time of the proposed
method is hundreds of times less than that using MCS as listed in Table 5. In summary, the traditional
CM has significant errors when solving P-OPF problems with large fluctuations of stochastic variables.
On the contrary, the proposed method performs well, based on the accuracy and efficiency.

Table 5. Computation time table for the modified IEEE 9-bus test system.

Algorithm Time (s)

MCS 1912.72
UCCM 4.21
CCCM 4.58

Proposed Method 6.27
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4.2. The Modified IEEE 118-Bus Test System

The IEEE 118-bus test system is modified to verify the applicability of the proposed method for
a large power system with a large number of random input variables. The wind speeds are modeled as
Weibull distributions with different shape and scale parameters as shown in Table 6 [48]. As a matter
of fact, there is a correlation between wind speeds at nearby wind farms, mainly due to weather
conditions and locations of wind farms, etc. The closer the correlation coefficient is to either −1 or
1, the stronger the correlation between wind speeds. The correlation matrix of wind speeds is listed
in Table 7. All the buses are divided into three areas, which are presented in Table 8. For each area,
the sum of loads follows a normal distribution with the mean value equal to the nominal value and
the standard deviation equal to 10% of the mean value. The load on each bus varies with the sum of
loads according to the original percentage of the sum of loads in each area, and its power factor is
kept constant.

Table 6. Parameters of Weibull distributions (modified IEEE 118-bus test system).

Wind Speed Distribution Shape Parameter Scale Parameter

W1 (Connected to Bus 59) 1.732 6.611
W2 (Connected to Bus 80) 2.036 7.933
W3 (Connected to Bus 90) 1.350 5.774
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Table 7. The correlation matrix (modified IEEE 118-bus test system).

W1 W2 W3

W1 1.00 0.76 0.64
W2 0.76 1.00 0.36
W3 0.64 0.36 1.00

Table 8. Buses in each area (modified IEEE 118-bus test system).

Area Bus Number

Area 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 113, 114, 115, 117

Area 2 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 116

Area 3 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 118

Table 9 shows the results obtained using different methods. It can be seen that all of the APE
values obtained using the proposed method are much smaller than those obtained using UCCM and
CCCM. The APE values of voltage angle, voltage magnitude, active power generation and reactive
power generation are presented as box plots in Figures 7 and 8. It can be seen from Figures 7 and 8
that the box plots associated with the proposed method are below those associated with UCCM and
CCCM, which indicates that results of the proposed method have much smaller APE values than those
obtained using UCCM and CCCM. In Figure 7, for active power generation obtained using UCCM and
CCCM, some mean APE values are even more than 50%. For reactive power generation obtained using
UCCM and CCCM, some mean APE values exceed 20%. In Figure 8, most output variables obtained
using UCCM and CCCM have large standard deviation APE values, most of which are more than
10%. These show that UCCM and CCCM are not suitable for solving the P-OPF problem with large
fluctuations of stochastic variables. Figures 9 and 10 show PDFs of active power generation at bus
100 and reactive power generation at bus 4. It can be seen that the curves obtained using the proposed
method are closer to the MCS histograms than those obtained using UCCM and CCCM, especially at
the tails of curves. For other system variables, similar results can be obtained.

Meanwhile, the computation time using the proposed method is about dozens of times less
than that using MCS, as shown in Table 10. It should be pointed out that the proposed method
takes more time than UCCM and CCCM. That is because the proposed method conducts P-OPF
many times according to the number of clusters, and UCCM and CCCM only conduct P-OPF once.
For the proposed method, the number of calculations depends on the distributions and correlations
of stochastic variables, as well as the accuracy requirements (discussed in Section 4.3). The proposed
method is superior in view of the fact that UCCM and CCCM cannot handle large fluctuations of input
variables. In summary, the proposed method performs better, based on the accuracy, than traditional
CM and requires much less computation time than MCS.

Table 9. Comparison of generation cost (modified IEEE 118-bus test system).

Algorithm Mean Mean APE Standard Deviation Standard Deviation APE

MCS 124,281.33 \ 11,864.39 \
UCCM 124,093.19 0.15% 10,969.98 7.54%
CCCM 124,093.19 0.15% 11,961.51 0.82%

Proposed
Method 124,244.89 0.03% 11,884.53 0.17%
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Table 10. Computation time table for the modified IEEE 118-bus test system.

Algorithm Time (s)

MCS 6195.28
UCCM 13.24
CCCM 13.46

Proposed
Method 171.48

4.3. Discussions about Number of Clusters

It is obvious that the proposed method with more clusters generally has better performance,
based on the accuracy, at the expense of time. Therefore, it is desirable to select an appropriate number
of clusters for the proposed method, which has acceptable accuracy and computation time.

The appropriate number of clusters can be obtained by measuring the performance of K-means.
The weighted average radius is proposed to measure the performance of clustering:

R =
k

∑
i=1

pi × ri (21)

where R is the weighted average radius, pi is the proportion of the number of elements in cluster i to
the total samples, and ri is the radius of cluster i [43].

Figure 11 shows the relation curves between weighted average radius and number of clusters
for the above two cases. It can be observed that the curve for the modified IEEE 9-bus test system
changes very slowly, when the number of clusters exceeds 25. Similarly, the curve for the modified
IEEE 118-bus test system changes very slowly, when the number of clusters exceeds 100. Therefore,
the appropriate values of k for the modified IEEE 9-bus and 118-bus test system are suggested to be
25 and 100, respectively.

As discussed in Sections 4.1 and 4.2, the proposed method with the suggested value of k performs
well, based on the accuracy and computation time. If decision makers want to get more accurate
results, a larger value of k should be selected. For example, for the modified IEEE 9-bus test system,
the mean APE value of reactive power at bus 2 is improved from 11.75% to 7.81% by the proposed
method with 50 clusters.
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5. Conclusions

This paper proposes a novel method to solve P-OPF problems with consideration of correlations
and large fluctuations of stochastic variables, which can be applied to power systems with large-scale
wind power integration. In the process, the K-means algorithm is introduced to group input variables
into a number of clusters. In order to obtain the moments for the total samples, the total probability
formula is used to combine the moments computed in each cluster using CM. IEEE 9-bus and 118-bus
test systems are modified to analyze the performance of the proposed method. It should be pointed out
that the historical data of wind speeds and loads can be directly used for clustering, and the samples
of wind speeds and loads will not need to be generated. Some conclusions are summarized as follows:

1. When input variables have large fluctuations, P-OPF results obtained using the traditional
CM have large APE values and significant errors at the tails of PDFs, which indicates
that the traditional CM is not suitable to solve P-OPF problems with large fluctuations of
stochastic variables.

2. The proposed method can handle correlations and large fluctuations of input variables. Case
studies indicate that the proposed method has more accurate results than traditional CM and is
more efficient than MCS.

3. The performance of the proposed method is influenced by the number of clusters. Generally, the
proposed method with more clusters has more accurate results, but will require more computation
time. The appropriate number of clusters can be determined by the weighted average radius.
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Nomenclature

CM cumulant method
OPF optimal power flow
PLF probabilistic load flow
P-OPF probabilistic optimal power flow
KKT Karush–Kuhn–Tucker
CDFs cumulative distribution functions
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PDFs probability density functions
IS importance sampling
LHS Latin hypercube sampling
LSS Latin supercube sampling
NPNT ninth-order polynomial normal transformation
PEM point estimation method
UTM unscented transformation method
LT Laplace transform
FFT fast Fourier transform
FOSMM First-Order Second-Moment Method
GMM Gaussian mixture model
LBIPM Logarithmic Barrier Interior Point Method
APE absolute percent error
PGi, QGi the active and reactive power generation of conventional generator at bus i
a2i, a1i, a0i cost coefficients of generator at bus i
PWi the active power output of wind farm at bus i
QCi the reactive power injected by compensation device at bus i
PDi, QDi the active and reactive loads at bus i
Vi the magnitude of voltage at bus i
δij the phase angle difference between bus i and j
Gij, Bij the real and imaginary parts of the element in bus admittance matrix
Tl the complex power flow of branch l
Pmin

Gi , Pmax
Gi the lower and upper bounds of PGi

Qmin
Gi , Qmax

Gi the lower and upper bounds of QGi
Vmin

i , Vmax
i the lower and upper bounds of Vi

Tmax
l the line rating of branch l

N the number of buses
NT the number of branches
F the set of equations defining the KKT first-order conditions

Y
a vector consisting of magnitude and angle of voltage at each bus, active and reactive
generation of each conventional generator, slack variables and Lagrange multipliers

L the vector of load at each bus
W the vector of wind power output at each bus
H the Hessian of the Lagrangian function with respect to Y when the optimization is completed
∆Y, ∆L, ∆W vectors of the changes in Y, L and W
HL, HW matrixes obtained by taking the partial derivatives with respect to L and W
H1 = −H−1HL

H2 = −H−1HW

yi an unknown variable
yi0 the value of yi evaluated by the deterministic OPF
∆yi the change of yi
h1ij, h2ij the values at row i and column j of H1 and H2

lj, wj the j-th variables in L and W
lj0, wj0 the mean values of lj and wj
NL, NW the number of load variables and wind power variables

ysi0 = yi0 −
NL
∑

j=1
h1ijlj0 −

NW
∑

j=1
h2ijwj0

γ
yi
v the v-th order cumulant of yi

γ
lj
v ,γ

wj
v the v-th order cumulants of lj and wj

SWi the wind speed of wind farm at bus i
Pr the rated power of a wind farm
Vci the cut-in speed of a wind farm
Vr the rated speed of a wind farm
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Vco the cut-out speed of a wind farm
A1, B1, C1 coefficients of wind power output model
M0 a multi-dimensional vector comprised of initial mean values of all clusters
k the pre-set number of clusters
mj the mean value vector of cluster j
x0

ij the mean value of variable i in cluster j
d(l, j) the Euclidean distance from point l to the mean of clusters j
wi a variable in W
W′ the standardized vector corresponding to W
w,

i the standardized variable corresponding to wi
Ewi the mean of wi
δwi the standard deviation of wi
CW′ the correlation matrix of W′

D a diagonal matrix
G′ a lower triangular matrix
N = DG′

E
[
EW1 , EW2 , · · · , EWl

]T

U an uncorrelated vector
αi

v the v-th order moment of a variable for cluster i
γi

v the v-th order cumulant of a variable for cluster i
Cj

v−1 a combination of j elements from v − 1 different elements
αv the v-th order moment of a system variable for the total samples
pi the proportion of the number of elements in cluster i to the total samples
γv the v-th order cumulant of a system variable for the total samples
R the weighted average radius
ri the radius of cluster i
X a random variable
fX(x) the probability density function of X
ΦX(s) the moment generating function of X
ΨX(s) the cumulant generating function of X
γX

v the v-th order cumulant of X
Z a linear combination of independent variables
γZ

v the v-th order cumulant of Z

Appendix

The CM for P-OPF is based on the property of cumulants. This appendix provides a brief introduction to
cumulants. More detailed information can be found in [36,37,45].

Assume that X is a random variable and fX(x) is its probability density function. The moment generating
function ΦX(s) is defined as the integral:

ΦX(s) = E
[
esX
]
=
∫ ∞

−∞
fX(x)esxdx (A1)

The cumulant generating function is obtained by Equation (A2), which is the natural logarithm of the
moment generating function:

ΨX(s) = ln(ΦX(s)) (A2)

The cumulants of the random variable X are generated by the derivatives of ΨX(s) at s = 0

γX
v =

dvΨX(0)
dsv (A3)

where γX
v is the v-th order cumulant of X.

For solving probabilistic problems of power systems using the cumulant method, the relationship between
output random variables and input random variables is approximated as a linear relationship. It is assumed
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that an unknown variable Z is a linear combination of independent and known variables, (X1, X2, · · · , Xn),
as expressed by the following equation:

Z = a1X1 + a2X2 + · · ·+ anXn (A4)

where a1, a2, · · · , an are coefficients.
The v-th order cumulant of Z can be computed from the v-th order cumulants of known variables using the

following equation:
γZ

v = av
1γX1

v + av
2γX2

v + · · ·+ av
nγXn

v (A5)
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