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Abstract: Wind turbine blades are easily struck by lightning, a phenomenon that has attracted
more and more attention in recent years. On this subject a large current experiment was conducted
on three typical blade sandwich structures to simulate the natural lightning-induced arc effects.
The resulting damage to different composite materials has been compared: polyvinyl chloride (PVC)
and polyethylene terephthalate (PET) suffered pyrolysis and cracks inside, while the damage to balsa
wood was fibers breaking off and large delamination between it and the resin layer, and only a little
chemical pyrolysis. To analyze the damage mechanism on sandwich structures of different materials,
a finite element method (FEM) model to calculate the temperature and pressure distribution was built,
taking into consideration heat transfer and flow expansion due to impulse currents. According to the
simulation results, PVC had the most severe temperature and pressure distribution, while PET and
balsa wood were in the better condition after the experiments. The temperature distribution results
explained clearly why balsa wood suffered much less chemical pyrolysis than PVC. Since balsa wood
had better thermal stability than PET, the pyrolysis area of PET was obviously larger than that of balsa
wood too. Increasing the volume fraction of solid components of porous materials can efficiently
decrease the heat transfer velocity in porous materials. Permeability didn’t influence that much.
The findings provide support for optimum material selection and design in blade manufacturing.

Keywords: wind turbine blade; lightning strikes; materials damage; finite element method (FEM);
temperature distribution; airflow pressure

1. Introduction

Wind energy exploitation is seeing rapid development due to its renewable and environmentally-friendly
characteristics. However, lightning strikes on wind turbines, especially on the blades, have become
an urgent problem as wind turbines have become higher [1–4]. Blade repair is very costly because of
the required disassembly and transport, and it influences the continuity of the power supply too.

Wind turbine blades are composite structures made of laminates with sandwich configurations
made from individual sub-components joined together with adhesives. A real blade is shown in Figure 1a,
and the cross-section of the blade is shown in Figure 1b. It can be seen in Figure 1b that the blade
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consists of two coverings (upper and lower covering stuck together) and two webs inside to hold
up the blade structure. The green parts are the main beam and the back trailing edge made of very
thick glass fiber to guarantee blade strength. The green-yellow parts are porous sandwich structures,
with polyvinyl chloride (PVC), polyethylene terephthalate (PET) or balsa wood fused together to
reduce the weight of the whole blade, and usually two layers of glass fiber outside. There are two webs
inside the chamber to hold up the blade too.
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possible breakdown positions, and the results showed that the breakdown points were mostly 
located in the sandwich areas, so the performance of the sandwich structure under the thermal effect 
of lightning-induced arcs is of great importance from a blade material selection viewpoint. 

Large current experiments were introduced and laid down in the IEC 61400-24: 2010 standard 
to verify the performance of metal receptors under the thermal impact of natural lighting [13], and 
current experiments used to study the damage characteristics of wind turbine blades were also 
reported in [14–19]. Especially, in [20], the performance of PVC and balsa wood under lightning 
currents was studied by large current experiments, and their damage mechanisms were explained 
via molecular dynamics simulation from the angle of chemical pyrolysis. However, studies on the 
damage characteristics of whole sandwich structures haven’t been reported yet. Actually, material 
damage under large current conditions is mainly attributed to the thermal impact and airflow 
pressure inside the porous materials (PVC, PET and balsa wood), so it is essential to study the 
temperature and pressure distribution inside the sandwich structure. Numerical calculation is an 
effective way to study the instantaneous impact which is really difficult using experimental methods. 
finite element method (FEM) simulation of thermal and electrical fields under lightning strikes has 
been proposed by different researchers [21–23], but heat transfer and air flow pressure inside porous 
materials need to be included too so as to study the whole damage process of sandwich structures. 

Figure 1. Blade structure: (a) real blade; (b) cross-section of blade.

When receptors on a blade fail to intercept a lightning strike downward leader, the blade
materials could suffer breakdown as the lightning-induced arc goes through the sandwich structure.
Then blade materials would be burnt up, leading to the layers pulling apart and even the whole
blade breaking off [5–9]. A lot of research on lightning strike position has been done by experimental
and numerical methods recently [10,11]. In [12], high voltage experiments were conducted to study
possible breakdown positions, and the results showed that the breakdown points were mostly located
in the sandwich areas, so the performance of the sandwich structure under the thermal effect of
lightning-induced arcs is of great importance from a blade material selection viewpoint.

Large current experiments were introduced and laid down in the IEC 61400-24: 2010 standard
to verify the performance of metal receptors under the thermal impact of natural lighting [13],
and current experiments used to study the damage characteristics of wind turbine blades were
also reported in [14–19]. Especially, in [20], the performance of PVC and balsa wood under lightning
currents was studied by large current experiments, and their damage mechanisms were explained via
molecular dynamics simulation from the angle of chemical pyrolysis. However, studies on the damage
characteristics of whole sandwich structures haven’t been reported yet. Actually, material damage
under large current conditions is mainly attributed to the thermal impact and airflow pressure inside
the porous materials (PVC, PET and balsa wood), so it is essential to study the temperature and
pressure distribution inside the sandwich structure. Numerical calculation is an effective way to study
the instantaneous impact which is really difficult using experimental methods. finite element method
(FEM) simulation of thermal and electrical fields under lightning strikes has been proposed by different
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researchers [21–23], but heat transfer and air flow pressure inside porous materials need to be included
too so as to study the whole damage process of sandwich structures.

This paper deals with the damage characteristics of sandwich structures with different core
materials using large current experiments, and a FEM model was built to calculate the temperature
and pressure distribution. Based on the above results, the damage characteristics for different materials
were studied experimentally and comparatively. The findings provide important advice for blade
material selection during the turbine blade manufacturing process.

2. Large Current Experiments

2.1. Experimental Methods

In the experiments the blade was simplified into an F-structure (a simplified model of the blade
covering and two webs to hold up the covering) as shown in Figure 2, and the covering was made
of resin and porous materials (PVC, PET and balsa wood) by a vacuum casting method. The overall
size of all samples is 80 cm × 99 cm, and the heights of each part are 10, 42, 35 and 12 cm, respectively
(up to down). In the sandwich structure, 0.6 cm thick PVC, PET and balsa wood were parceled
in the middle, with two layers of 0.9 mm thick glass fiber reinforced epoxy resin wrapped outside.
The material parameters are listed in Table 1. For the porous materials (PVC, PET and balsa wood),
the thermal conductivity, specific heat at constant pressure and density in the table show volume
averaging values considering the air component. Balsa wood has different thermal conductivities
in different orientations because of its anisotropic characteristics (significantly larger along the fiber
direction), so the values in Table 1 are the extreme values. Holes were drilled in the samples and
a 0.01 cm diameter nickel chrome wire was passed through each hole to conduct a large current in
the different positions shown as red points in Figure 2d (bigger size and number mean larger current
values). The pulse current generator is shown in Figure 3. The capacitor voltage (u) was charged to 7.5,
15 and 30 kV, respectively, to generate large pulse currents with parameters (intensity and duration)
of 6.28 kA (peak value of current), 7.7 (time to peak)/18.1 (half peak time) µs, 12.56 kA, 6.7/15.5 µs
and 21 kA, 5.1/13.1 µs. According to W = 1/2 Cu2 (C = 15.96 µF, is the capacitor charging value),
the current energy can be obtained as 798, 1795.5 and 3192 J. Then the damage characteristics were
comparatively studied.
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Table 1. Material parameters.

Materials Type
Thermal

Conductivity,
k, W/(m·K)

Specific
Heat, C,
J/(kg·K)

Density,
ρ, kg/m3

Glass
Transition

Degree, Tg, K

Solid
Fraction
θ (%)

Epoxy resin SWANCOR
2511-1A/1BS 0.4749 989.58 1200 363 100

PVC 3A C70.55 0.0331 1003 66 355 8

PET 3A T92.100 0.0399 1166 98 340 13

Balsa wood 3A SB100 0.0803/0.0661 1047 92 543 11
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2.2. Results and Discussion

All the samples were damaged to, different degrees as shown in Figure 4. To see the inside
condition clearly, damaged parts were cut down and pulled apart as shown in Figure 5. PVC and PET
sandwich samples displayed different damage types with respect to balsa wood. They were burnt,
with a black coloration near the metal wire, and a large lighter colored area as shown in Figure 4 which
indicated delamination between resin and porous materials because of airflow expansion damage.
Balsa wood was not burnt severely because of its higher pyrolysis temperature, its fibers broke off near
the metal wire and large scale delamination between the interface of the balsa wood and resin can be
seen in Figure 4c. The sizes of the (approximately circular) chemical damage (cd, chemical pyrolysis of
core materials which appears as black color in Figures 4 and 5) and mechanical damage (md, material
disappearance in light colored area, shown in Figure 5 and the delamination area between the resin
and core materials shown in Figure 4) areas were measured in all cases as shown in Table 2. The data
reflects that PVC and PET had similar chemical damage radii, but the cd of balsa was very small.
This is because balsa wood has higher thermal stability (glass transition temperature) than PVC and
PET. In the aspect of md, balsa wood had the biggest delamination size between the resin and balsa
wood. Mechanical damage of PVC, PET and balsa wood under pulsed currents is mainly caused by the
high temperature and airflow expansion inside, which are hard to measure in experiments, thus a FEM
simulation study on the damage characteristics of the sandwich structures was done to quantitatively
calculate the temperature and pressure distribution.

Table 2. Damage radius (cm).

Current Peak Value
(kA)

6.28 12.56 21

cd md cd md cd md

PVC 0.11 0.50 0.35 3.5 1.7 6.10
PET 0.07 0.45 0.21 3.0 1.5 5.50

Balsa wood 0.01 0.75 0.09 4.1 0.39 7.50
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3. Numerical Study on the Temperature and Pressure Distribution

A FEM model in COMSOL 5.2a was built to calculate temperature and pressure distribution in
the sandwich structures [24].
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3.1. Simulation Model

3.1.1. Geometry Model

As can be seen from the experimental results, the damage is distributed in a circular area,
so experimental samples to be simulated by the FEM model were simplified into a 2-D axysymmetric
model with a proper radius, as shown in Figure 6.
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3.1.2. Large Current Source

The heat source was given as a large current in the FEM model. The current conservation
Equation (1) was applied to calculate the current density, by which resistive heat can be obtained as
heat source by Equation (2). Scalar electric potential is provided as the dependent variable as shown
in (3):

J = (σ + ε0εr
∂

∂t
) E (1)

Q =
J2

σ
(2)

E = −∇V (3)

where J, current density; σ, conductivity of nickel-chrome wire; ε0, permittivity of vacuum; εr, relative
permittivity of nickel-chrome wire; E, electrical field intensity; V, electric potential which was applied
on the top of nickel-chrome wire, and simplified to be a linear piecewise function, (see Equation (4))
where A = 6.28 kA, 12.56 kA and 21 kA, are peak values of pulse current and R = 0.78 Ω is the resistance
of nickel chrome wire:

V =


RA× 105t

R
(
−A× 105t + 2A)

t < 10−6

10−5 s < t < 20−6 s
(4)

3.1.3. Heat Transfer in Solids, Porous Materials

The first law of thermodynamics, commonly referred to as the principle of conservation of energy
was used to calculate the heat transfer in different areas. For the nickel-chrome wire and resin parts,
the equation for heat transfer in solids was applied as Equation (5):

ρC
∂T
∂t
−∇ · (k∇T) = Q (5)

where T, temperature; t, time; ρ, density; C, heat capacity; k, thermal conductivity; Q, heat source.
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The first term on the left is the energy increase of the whole system, and the second term is
the heat flux by conduction from neighboring elements because of the temperature gradient. PVC,
PET and balsa wood are porous materials, and they have a similar conservation of energy expression
as shown in Equation (6). Comparing Equations (6) and (5) for a solid material, ρgCgu·∇T was added
to describe the heat flux by gas convection from neighboring elements. Since there is gas fraction in
the porous materials, heat transfer by gas convection should be included too.

Heat capacity and thermal conductivity of porous materials were calculated by volume averaging
of gas and solid components, as shown in Equations (7) and (8):

ρC
∂T
∂t

+ ρgCgu · ∇T −∇ · (k∇T) = Q (6)

ρC = θρgCg + (1− θ)ρsCs (7)

k = θkg + (1− θ)ks (8)

where u, velocity field; ρs, solid density; Cs, solid heat capacity; ks, solid thermal conductivity; ρg,
air density, it changes with temperature T and pressure P, that is ρg = PMg/(RT). Mg = 28.97 g/mol,
is the air molar mass and R = 8.314 J/(mol·K), is the gas constant; Cg, gas heat capacity; kg, gas thermal
conductivity; ρ, C and k are density of porous matrix; θ is porosity.

To simulate practical conditions, all outer boundaries were set as Equation (9) considering the
convection process between samples and the external atmosphere:

− n · q = h(Text − T) (9)

where n is the normal vector; q is the heat flux on the boundaries; h = 15 W/(m2·K) is the heat transfer
coefficient on the materials’ surface; Text is the atmosphere temperature.

3.1.4. Fluid Dynamics in Porous Materials

Brinkman equations was adopted to calculate the fluid dynamics in porous materials. The flow
in porous media is governed by a combination of the continuity Equation (10) and the momentum
conservation Equation (11), which together form the Brinkman equations. Pressure P and velocity
vector u are independent variables:

∂

∂t
(θρg) +∇ · (ρgu) = Qbr (10)

ρg
ε (

∂u
∂t + (u · ∇)u

ε ) = −∇P +∇ ·
{

1
ε [µ(∇u + (∇u)T)− 2

3 µ(∇ · u)I]
}

−(κ−1µ + Qbr
ε2 )u + F

(11)

where µ, dynamic viscosity of air in porous materials; u, velocity vector; P, pressure; κ = 1 × 10−13 m2,
permeability tensor of the porous medium; Qbr = 0, mass source or mass sink; F, force term, influence
of gravity and other volume forces, and it was neglected in this model. To simulate real conditions,
the right boundary was set as the outlet boundary, and u = 0 for other boundaries to baffle the
expansion flow.

3.1.5. Multi-Physics Coupling

The above discussed calculation procedure involving a coupled threefold physics, as shown in
Figure 7, allowed us to obtain the temperature T and pressure P. A damage process lasting 1000 µs
was simulated.
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permeability tensor of the porous medium; Qbr = 0, mass source or mass sink; F, force term, influence 
of gravity and other volume forces, and it was neglected in this model. To simulate real conditions, 
the right boundary was set as the outlet boundary, and u = 0 for other boundaries to baffle the 
expansion flow. 

3.1.5. Multi-Physics Coupling 

The above discussed calculation procedure involving a coupled threefold physics, as shown in 
Figure 7, allowed us to obtain the temperature T and pressure P. A damage process lasting 1000 μs 
was simulated. 
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very big fluid velocity resulting from an impulse energy of thousands of degrees. The resin layer 
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damage in this area. 
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3.2. Simulation Results

3.2.1. Temperature Distribution

Temperature distributions after calculations inside the sandwich materials are shown in Figure 8.
It can be seen that heat is transferred much quicker in porous materials than in resin. It is because that
airflow convection promotes the heat transfer inside the porous material, especially under the very big
fluid velocity resulting from an impulse energy of thousands of degrees. The resin layer conducted
heat slowly and most of the heat is released to the atmosphere, so there was no serious damage in
this area.

PVC porous material had smallest solid fraction, that is, the highest air fraction, so its high
temperature scale was obviously larger than others. Simulation areas with temperatures above the
glass transition temperature were considered as chemical damage areas, which turned black in practice.
Then the chemical damage radius of different materials was estimated with respect to time as shown
in Figure 9. The last data connected by dotted lines is the experimental results in Table 2. It can be
seen that the simulation data trend fitted well with the experimental results. The chemical damage
radius increased quickly when the current peak value was raised. Balsa wood had smallest chemical
damage radius among the three materials because of its highest glass transition temperature. PVC had
the largest radius because of its higher temperature distribution.Energies 2017, 10, 1594  8 of 14 
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3.2.2. Pressure Distribution 

Porous materials also suffer severe physical damage from inner flow pressure. The pressure 
distribution at 200 μs is shown in Figure 10. Consistent with the temperature distribution, PVC is 
expected to suffer a much more severe fluid impact pressure than PET and balsa wood because of 
high temperature and large air fraction. The peak value of pressure in different points on the center 
line in the r-direction is shown in Figure 11. In the case of balsa wood, it performs better inside, but 
when high pressure occurred at its interface with resin, large delamination happened because of the 
weak bonding between the wood and the resin. 
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3.2.2. Pressure Distribution

Porous materials also suffer severe physical damage from inner flow pressure. The pressure
distribution at 200 µs is shown in Figure 10. Consistent with the temperature distribution, PVC is
expected to suffer a much more severe fluid impact pressure than PET and balsa wood because of high
temperature and large air fraction. The peak value of pressure in different points on the center line in
the r-direction is shown in Figure 11. In the case of balsa wood, it performs better inside, but when
high pressure occurred at its interface with resin, large delamination happened because of the weak
bonding between the wood and the resin.Energies 2017, 10, 1594  10 of 14 
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3.2.3. Influence of Porosity, Permeability

Solid materials’ volume fraction (θ) and permeability are the main parameters for porous materials
in heat transfer and fluid dynamics process. Based on the above model, the roles of porosity and
permeability were analyzed which helped materials designing for wind turbine blade. Since permeability
hardly influenced the thermal conducting and airflow expansion process because of the very small
dynamic viscosity of air (see Equation (11)), only results for different porosities will be presented.

Glass transition scale and area radius where P > 100 Pa were set as standards for thermal and
fluid dynamics results. θ of real value as shown in Table 1, where two times the real value, three times
the real value and five times the real value were used to compare their influence, as shown in Tables 3
and 4. It is indicated that increasing the solid fraction obviously decreases the damage area. This can be
explained in the following way: when a large current goes through a porous material, the heat transfers
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through three ways: heat conduction by the solid fraction, heat convection by the gas fraction and heat
going out by the current channels to the outside environment. Compared to the heat conduction by the
solid fraction (PVC, PET and balsa wood are not very good at conducting heat), the heat convection by
the gas fraction and heat going out play more important roles in the heat transfer because the airflow
has a very large velocity. Heat convection by the gas fraction accelerates heat to be transferred to
a larger porous material region to cause more severe damage, so if the gas fraction of a porous material
is decreased, that is, the solid fraction is increased, the damaged area can be decreased, and more
energy goes out by the current channels to the outside environment.

Table 3. Glass transition scale reduction (%) with θ.

Solid Fraction 1 Time 2 Times 3 Times 5 Times

PVC 0 22.5 68.7 72.6
PET 0 17.7 70 73.3

Balsa wood 0 30.7 49.3 86.7

Table 4. Pressure (>100 Pa) area radius reduction (%) with porosities.

Solid Fraction 1 Time 2 Times 3 Times 5 Times

PVC 0 2.6 5.1 23.1
PET 0 3.6 22.1 26.3

Balsa wood 0 3.2 20.6 25.9

4. Conclusions

Large current experiments to compare the damage characteristics of turbine blade sandwich
structures with different core materials were conducted in this experimental study, and a FEM
simulation was used to reveal the damage mechanism. Combining the experiments and simulation
results, the following can be concluded:

1. PVC, PET and balsa wood all underwent severe damage under a large current, but their damage
types were different: PVC and PET suffered serious pyrolysis and cracks inside, while the damage
of the balsa wood sample involved fibers breaking off and large delamination at its interface with
the resin layer. Balsa wood was burnt only in a little under the experimental current used.

2. Porous materials transferred heat much faster than the resin layer, because the fast air-flow
convection under the thermal impact from lightning strongly promoted heat transfer in the
porous material layer.

3. PVC sample had highest average value of temperature and pressure because of its highest air
fraction and airflow convection, so it suffered the biggest mechanical damage and chemical
damage; and balsa wood suffered relatively less chemical damage because of its higher glass
transition temperature. Balsa wood is very soft, which makes it good at reducing the expansion
pressure inside, while bad bonding between it and resin layer resulted in large delamination at
the interface with the resin. However, when the energy of the lightning current is extremely large,
balsa wood usually catches fire more likely than PVC and PET because of its own characteristics,
and under the worst conditions, this fire can last for a long time and cause a serious fire hazard.

4. If the gas fraction of the porous materials is decreased, that is, the solid fraction is increased,
the heat transfer by gas convection in the porous materials can be decreased. Then the damaged
area can be reduced and more energy goes out by the current channels to the outside environment
in practice. This is a good way to reduce the scale of damage to porous materials under lightning
strike conditions.
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