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Abstract: In this study, the p-type Ga-doped Cu3Sb1−xGaxSe4 compounds were fabricated by
melting, annealing, grinding, and spark plasma sintering (SPS). The transport properties of Ga-doped
Cu3Sb1−xGaxSe4 compounds were investigated. As Ga content increased, the hole concentration
of Cu3Sb1−xGaxSe4 compounds increased, which led to an increase in electrical conductivity.
Meanwhile, the Seebeck coefficient of the Cu3Sb1−xGaxSe4 compounds decreased as Ga content
increased. The extra phonon scattering originating from Ga-doping effectively depressed the lattice
thermal conductivity of the Cu3Sb1−xGaxSe4 compounds. The ZT value of Cu3SbSe4 markedly
improved, which is primarily ascribed to the depressed lattice thermal conductivity and the increased
electrical conductivity. The highest ZT value for the Cu3Sb0.985Ga0.015Se4 compound was 0.54 at
650 K, which is two times higher than that of a pure Cu3SbSe4 compound.
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1. Introduction

With the global environmental issue and energy crisis becoming more and more serious,
developing renewable and eco-friendly technologies for the sustainable development has gained more
attention. Moreover, substantial amounts of waste heat from industrial, private, and transport sectors
in modern society should be effectively recovered. Thermoelectric material provides a possibility to
solve the issues mentioned above. Thermoelectric material is a kind of energy conversion material,
which can realize the conversion between heat energy and electric energy. Thermoelectric material is
expected to play a significant role in the field of electronic cooling, power generation, and waste heat
recovery. The efficiency of thermoelectric material is usually characterized by the dimensionless figure
of merit ZT. The ZT value can be calculated using the equation ZT = σα2T/κ, where κ, T, α, and σ are
the total thermal conductivity, absolute temperature, Seebeck coefficient, and electrical conductivity,
respectively [1–5]. The total thermal conductivity consists of a carrier part (κc) and a phonon part
(κl). Therefore, a large ZT requires the thermoelectric material to have a low κ, a high α, and a high
σ. Nowadays, developing high ZT material has been a research focus in the field of thermoelectric
materials. As the α, σ, and κe of a material are associated closely with carrier concentration, how to
optimize the carrier concentration to realize the maximum ZT is a key issue in this field. To improve
ZT, many feasible methods have been developed and applied. Band engineering including electric
band structure and valley degeneracy has been regarded as an efficient approach to improve the power
factor (PF = α2σ), thereby enhancing the ZT. Doping or nanostructuring are also effective ways of
enhancing the ZT by introducing extra phonon scattering centers [6–10].

Recently, copper-based chalcogenide semiconductors have attracted much attention because of
their relatively high carrier mobility (µH) and low κ, such as CuGa(In)Te2, Cu2CdSnX4 (X = Se, S),
Cu2SnSe3, and Cu3SbSe4 [11–14]. Among these compounds, ternary Cu3SbSe4 semiconductor has
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emerged as a promising thermoelectric material because of its narrow band gap and large carrier
effective mass. Cu3SbSe4 has a superlattice of a zinc-blended structure and is of the type Cu2FeSnS4

with space group I-42m. The Cu/Se atoms form an electrically conductive framework and the
remaining Sb atoms form the one- dimensional [SbSe4] tetrahedra. This special tetrahedra in the
Cu3SbSe4 crystal structure can enhance phonon scattering, similar to the “rattling atom” in skutterudite,
resulting in a decrease in lattice thermal conductivity. Therefore, Cu3SbSe4 has a relatively low thermal
conductivity. However, the electrical properties of intrinsic Cu3SbSe4 is poor due to its low hole
concentration (p), which decreases the thermoelectric performance and leads to a low ZT value in the
middle temperature range [15–18]. Theoretically, partial substitution on the Sb site of the Cu3SbSe4

can tune its electrical conductivity so as to enhance the thermoelectric performance. Previous studies
about doping on the Sb site have been carried out, and some valuable work has been achieved [19,20].
Qin et al. synthesized the Al-doped Cu3Sb1−xAlxSe4 compounds and the maximum ZT reached
0.58 @ 600 K [21]. Similarly, Ge-doping or In-doping on the Sn site of Cu3SbSe4 was carried out, and
the ZT value was enhanced to some extent [22,23]. Gallium has been shown to be a promising dopant
in copper-based chalcogenide systems [24], but very little literature on Cu3SbSe4 has been reported.
In the present work, the Ga substation on the Sb site is investigated in synthesized Cu3Sb1−xGaxSe4

compounds, and our experimental results demonstrate that Ga-doping can effectively optimize carrier
concentration (p) and decrease κ simultaneously. The paper investigated the phase composition,
microstructure, and transport properties of Cu3Sb1−xGaxSe4 compounds. The highest ZT of 0.54 was
obtained for the Cu3Sb0.985Ga0.015Se4 compound.

2. Experimental Procedures

Cu3Sb1−xGaxSe4 (x = 0, 0.005, 0.010, 0.015) compounds were conventionally synthesized via
melting, annealing, grinding, and spark plasma sintering (SPS). The stoichiometric mixtures of pure
elements Cu (powder, 99.98%), Sb (powder, 99.998%), Ga (granule, 99.998%), and Se (granule, 99.998%)
were loaded in a graphite crucible. Then, the graphite crucible was sealed in a quartz tube, heated to
1173 K, and left for 720 min. The quartz tube was slowly cooled to 773 K at the rate of 0.5 K/min and
subsequently quenched in salt water. Then, the sample was annealed at 573 K and the holding time is
48 h to ensure homogeneity. Lastly, the resultant alloys were ground in ethyl alcohol in an agate mortar.
The obtained powder was sintered via SPS at 683 K in a vacuum of 0.1 Pa. The axial pressure and
holding time were 50 MPa and 5 min, respectively. The Archimedes method was adopted to measure
the density (d) of samples.

X-ray diffractometer equipment with Cu Kα radiation (Rigaku Rint 2000) was used to analyze the
phase composition of the Cu3Sb1−xGaxSe4 samples. Scanning electron microscopy (SEM, JXA-8200,
JEOL, Tokyo, Japan) was employed to characterize the microstructure of Cu3Sb1−xGaxSe4 samples.
ZEM-3 apparatus (ULVAC-RIKO, Yokohama, Japan) was used to measure the σ and α in the
temperature range of 300–650 K in an argon atmosphere. The measurement of thermal diffusivity (λ)
of Cu3Sb1−xGaxSe4 compounds was carried out using a laser flash equipment (Netzsch, LFA427)
in an argon atmosphere under a vacuum of 0.001 Pa. A differential scanning calorimetry
(Netzsch, DSC404, Munich, Germany) was used to measure the specific heat capacity (Cp) of
Cu3Sb1−xGaxSe4 compounds. The thermal conductivity was then obtained by the equation κ = dλCp.
Van der Pauw’s method was adopted to measure the Hall coefficient (RH). Hall measurement was
carried out in a vacuum of 0.1 Pa with a constant magnetic strength of 0.5 T. The p can be calculated
using the equation pH = 1/(RHe), where e is the electron charge. The µH was obtained using the
equations of µH = RHσ.
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3. Results and Discussion

3.1. XRD Analysis and Microstructure

The X-ray diffraction patterns of Cu3Sb1−xGaxSe4 (0 ≤ x ≤ 0.015) compounds is present
in Figure 1. All major XRD peaks coincide well with the stand JCPDS card of Cu3SbSe4

(No. 01-085-0003). Therefore, the Ga-doped Cu3Sb1−xGaxSe4 compounds are single phase and have
the same crystallographic structure with a pure Cu3SbSe4 phase. In addition, no impurity phase
was detected in the XRD results, suggesting the amount of Ga-doping in this study is within the
doping limit. However, as the Ga content in Cu3Sb1−xGaxSe4 increases, no obvious peak shift is
found. On the one hand, the Ga content is very low; on the other hand, it is possibly related with
the similar atomic radius of Ga and Sb. Chen et al. synthesized the Cu3Sb1−xGexSe4 compounds and
the small atomic radius of Ge resulted in a decrease in the lattice constant of the Cu3Sb1−xGexSe4

compounds [22]. The SEM image and elemental distribution maps, including Cu, Sb, and Se elements
for the Cu3Sb0.985Ga0.015Se4 compound is displayed in Figure 2. It can be seen that each element
(Cu, Sb and Se) was uniform with no notable brighter regions, indicating that all elements distributed
homogeneously in the matrix. Meanwhile, no visible other phase can be found in the SEM, which is
also in agreement with the XRD result above.
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3.2. Electrical Performance

The temperature dependence of σ for the Cu3Sb1−xGaxSe4 (0 ≤ x ≤ 0.015) compounds is present
in Figure 3. As the temperature increases, the σ of the Cu3Sb1−xGaxSe4 samples increases, indicating
typical heavily doped semiconducting behavior. Moreover, the σ of these samples increases as the Ga
content increases. The improvement in σ for Cu3Sb1−xGaxSe4 should be ascribed to an increase in
carrier concentration (p) resulting from the Ga-doping. The calculated carrier concentration of pure
Cu3SbSe4 was about 1.90 × 1018 cm−3. The thermoelectric properties and structural parameters of
Cu3Sb1−xGaxSe4 compounds at room temperature are listed in Table 1. The hole concentration of
Ga-doped Cu3Sb1−xGaxSe4 is higher than that of pure Cu3SbSe4. The hole concentration increases
rapidly from 1.90 × 1018 to 12.7 × 1018 cm−3 when the Ga content increases from 0 to 0.015.
Meanwhile, the corresponding µH decreases from 76.2 cm2/Vs for pure Cu3SbSe4 to 30.8 cm2/Vs for the
Cu3Sb0.985Ga0.015Se4 sample. The extra ionized impurity scattering and alloy scattering should result
in a decrease in µH. The µH of the Cu3Sb1−xGaxSe4 (0 ≤ x ≤ 0.015) compounds is present in Figure 4.
It can be seen that the µH of these compounds shows a gradual downward trend with the increase
in temperature. In addition, the relationship of µH ∞ T−3/2 can be found at high temperature, which
indicates that the dominant scattering mechanism of Cu3Sb1−xGaxSe4 (0 ≤ x ≤ 0.015) compounds is
phonon scattering. As the Ga content increases, the relationship of µH ∞ T−3/2 of these compounds
becomes weak, indicating that the dominant mechanism is mixed scattering for the Cu3Sb1−xGaxSe4

compounds at high temperature [8]. Moreover, the µH of Ga-doped Cu3Sb1−xGaxSe4 samples in
this study is between 30 and 40 cm2 V−1 s−1 at room temperature. Shi et al. calculated the µH of
Cu2SnSe3 materials, and the results showed that the µH was about 52 cm2 V−1 s−1 at room temperature.
The similar Hall mobility is possibly related to the similar density of states effective mass [25,26].
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Figure 3. Electrical conductivity of Cu3Sb1−xGaxSe4 (0 ≤ x ≤ 0.015) compounds.

Table 1. Thermoelectric properties and structural parameter of Ga-doped Cu3Sb1−xGaxSe4

(0 ≤ x ≤ 0.015) compounds at room temperature.

x κL (W m−1 K−1) Relative Density α (µV/K) σ (Ω−1 cm−1) p (1018 cm−3) µH (cm2/Vs) m* (m0)

0 3.19 98.5% 405 23.2 1.90 76.2 1.2
0.005 2.71 98.7% 244 50.8 8.01 39.2 1.4
0.010 2.54 98.3% 222 55.9 9.84 35.5 1.6
0.015 2.29 98.8% 208 62.7 12.7 30.8 1.5
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Figure 5 demonstrates the Seebeck coefficients for Cu3Sb1−xGaxSe4 (0 ≤ x ≤ 0.015) compounds.
All of the Cu3Sb1−xGaxSe4 samples exhibit a p-type character, and the major charge carriers are holes.
As the temperature increases, the α of the pure Cu3SbSe4 samples decreases, from 405 µV/K at 300 K
to 291 µV/K at 650 K. Nevertheless, the α of Ga-doped samples firstly increases approximately linearly
to a maximum value, and then decreases, suggesting a heavily degenerate semiconductor behavior.
For example, the peak value of α for the Cu3Sb0.985Ga0.015Se4 compound is 295 µV/K at 500 K. The α

decreases linearly to 260 µV/K at 650 K. Similar behaviors have been reported in In-doped Cu3SbSe4

samples [26]. In addition, the α of Ga-doped samples decreases as the Ga-doped content increases
because of the increase in hole concentration. Generally, the Seebeck coefficient can be written as:

α = ± kB
e

[
2 + ln
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3
2

h3 p

]
(1)

where m* is the density of states effective mass, h is Planck’s constant, and kB is Boltzmann
constant [4–6]. As the increase in hole concentration has a more significant effect than the increase in
the density of states effective mass (m*, Table 1), the α of the Ga-doped Cu3Sb1−xGaxSe4 compounds
decreases as Ga-doped content increases.
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3.3. Thermal Conductivity

Figure 6a,b show the temperature dependences of the total thermal conductivity κ and the phonon
part κl for Cu3Sb1−xGaxSe4 (0 ≤ x ≤ 0.015) compounds, respectively. The κ of all Cu3Sb1−xGaxSe4

compounds decreases as the temperature increases. In addition, the κ of Ga-doped Cu3Sb1−xGaxSe4

samples is markedly lower that of pure Cu3SbSe4, which should be attributed to the decrease in κl,
resulting from the increase of point defect scattering. The κ of the material consists of a carrier part (κc)
and a lattice part (κl). The electron part (κc) can be obtained using the Wiedemann–Franz equation,
κc = L0σT, where L0 is the Lorenz number. As the Lorenz number varies with the temperature and
the composition of materials, the precise Lorenz number is adopted according to the method in [27].
Therefore, the κl can be obtained by subtracting the κc from the κ. The κl of Ga-doped Cu3Sb1−xGaxSe4

compounds drastically decreases with increasing Ga content, as shown in Figure 6b. In addition,
the κl shows a temperature dependence of T−1, as illustrated by the blue dotted line, indicating
that phonon–phonon scattering is the dominant scattering for the pure Cu3SbSe4 sample and the
Ga-doped Cu3Sb1−xGaxSe4 samples. For the Cu3Sb0.985Ga0.015Se4 sample, the κl is 2.27 W/mK at
room temperature, which is reduced by 30% than that of pure Cu3SbSe4. The minimum κl of the
Cu3Sb0.985Ga0.015Se4 sample in this study is 0.62 W/mK at 650K. As far as is known, the theoretical
minimal value of lattice thermal conductivity, κlmin, can be evaluated according to the equation
κlmin = 1/3lνmCv, where l, Cv, and νm are the mean free path of the phonon, the isochoric specific
heat, and the mean sound velocity, respectively. The red dashed line in Figure 6b presents the
theoretical minimal value of lattice thermal conductivity for pure Cu3SbSe4 and the obtained κlmin is
0.47 W m−1 K−1, as shown in the red dashed line. It also can be concluded from Figure 6b that there is
still a potential possibility to further decrease the κl of the Cu3SbSe4 compound.
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3.4. Figure of Merit

The ZT value for Cu3Sb1−xGaxSe4 (0 ≤ x ≤ 0.015) compounds is present in Figure 7. The ZT value
of Cu3SbSe4 sample increases from 0.02 to 0.18 in the temperature ranged from room temperature
to 650 K. Compared with the ZT value of pure Cu3SbSe4, the ZT of Ga-doped Cu3Sb1−xGaxSe4

sample is obviously improved. For example, the ZT of the Cu3Sb0.995Ga0.005Se4 compound is
0.36 at 650 K, which is one higher than the ZT of pure Cu3SbSe4. The maximal ZT value of the
Cu3Sb0.985Ga0.015Se4 compound can reach 0.54 at 650 K, which is about 3 times as large as that of the
pure Cu3SbSe4 compound.
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4. Conclusions

In this study, p-type Ga-doped Cu3Sb1−xGaxSe4 compounds were fabricated by melting,
annealing, and SPS. Compared with a pure Cu3SbSe4 compound, Ga-doped Cu3Sb1−xGaxSe4

compounds showed a large increase in electrical conductivity resulting from the substantial increase
in carrier concentration. However, the Seebeck coefficient of the Cu3Sb1−xGaxSe4 compounds
decreased as the Ga content increased. The Seebeck coefficient of Ga-doped samples firstly increased
approximately linearly to a maximum value and then decreased. Meanwhile, the thermal conductivity
of the Cu3Sb1−xGaxSe4 compounds markedly decreased because of the extra phonon scattering
originating from the Ga-doping on the Sb site. Therefore, the increased electrical conductivity and the
depressed lattice thermal conductivity effectively enhanced the ZT value of Cu3SbSe4. The maximum
ZT value for the Cu3Sb0.985Ga0.015Se4 compounds was 0.54 at 650 K, which is around two times larger
than that of pure Cu3SbSe4 compounds.
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