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Abstract: The emergence of plug-in electric vehicles (PEVs) is unveiling new opportunities to
de-carbonise the vehicle parcs and promote sustainability in different parts of the globe. As battery
technologies and PEV efficiency continue to improve, the use of electric cars as distributed energy
resources is fast becoming a reality. While the distribution network operators (DNOs) strive to
ensure grid balancing and reliability, the PEV owners primarily aim at maximising their economic
benefits. However, given that the PEV batteries have limited capacities and the distribution network
is constrained, smart techniques are required to coordinate the charging/discharging of the PEVs.
Using the economic model predictive control (EMPC) technique, this paper proposes a decentralised
optimisation algorithm for PEVs during the grid-to-vehicle (G2V) and vehicle-to-grid (V2G)
operations. To capture the operational dynamics of the batteries, it considers the state-of-charge
(SoC) at a given time as a discrete state space and investigates PEVs performance in V2G and G2V
operations. In particular, this study exploits the variability in the energy tariff across different periods
of the day to schedule V2G/G2V cycles using real data from the university’s PEV infrastructure.
The results show that by charging/discharging the vehicles during optimal time partitions, prosumers
can take advantage of the price elasticity of supply to achieve net savings of about 63%.

Keywords: plug-in electric vehicle; economic model predictive control (EMPC); vehicle-to-grid (V2G);
grid-to-vehicle (G2V); optimisation; smart grid; vehicle-to-grid (V2G)

1. Introduction

Energy and mobility have become entwined in new and interesting ways. While energy and
transport are generally responsible for some of the main challenges confronted within the current
century, sustainability, electrification of transport, climate change and renewable energy dominate
many debates. For example, electricity and transportation jointly account for about 60% of global
primary energy demand [1], and there are ongoing efforts aimed at relying less on non-renewable
resources.

According to the United Nations Environment Program (UNEP) report [2], district energy systems,
such as the virtual power plant (VPP), can create a pathway to transit from intense use of fossil fuel
and achieve a 30–50% reduction in primary energy consumption by harnessing renewable resources.
This is also in line with regional mandates such as the European Commission’s 20-20-20 strategic
objective to increase renewable uptake by 20% by the year 2020 and ensure a low-carbon economy
by 2050 [3,4]. Although renewable uptake is increasingly explored [5], its sources are intermittent
in nature, which can lead to voltage fluctuations and loss of loads. This can be compensated by
energy storage systems [6] including battery banks in plug-in electric vehicles (PEVs). VPP provides a
platform for smart coordination of distributed energy sources and loads in geographically-dispersed
environments such as educational campuses, industrial parks and small communities. By integrating
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distributed energy resources (DERs) such as wind-turbine, micro-CHP, hydro-sources, photovoltaic
systems (PV), storage and PEVs, the resulting network of energy resources and loads can be managed
as a single entity.

In this work, the coordinating unit is called the central controller (CC), for simplicity. The role
of the CC is to optimise energy generation, storage and consumption. Therefore, throughout this
paper, VPP controller and CC are used interchangeably. PEVs are gaining acceptance as sources
of dispatchable energy [7–9]. Their ability to release stored energy to the grid empowers end users
hitherto considered as mere consumers to become active stakeholders as producers and consumers
(prosumers) of electricity. This paradigm shift allows bi-directional power flow between the grid
and prosumers. This study is carried out within the Triangulum; one of the lighthouse projects
funded by the European Union (EU) aimed at transforming designated European cities into smart
quarters. The test bed comprises Manchester, Eindhoven and Stavanger with Prague, Leipzig and
Sabadell as the follower cities. The project has been organised into mobility, energy and information
and communications technology (ICT). Within the mobility work stream, this paper investigates
the economic benefits of smart decentralised coordination of PEV power flow by optimising the
grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operations in the VPP. As a deviation from most
existing work in the area, this paper focuses on optimal power flow from the prosumer’s point of view
to maximise the economic benefits using price as the main driver. Therefore, issues such as voltage
and loading constraints are not addressed here.

While transport already accounts for about 25% of global energy consumption [10], it is also
responsible for 23% of emissions [11]. Therefore, the adoption of PEVs as energy sources in the smart
grid is a major step in the journey toward sustainability and greener energy. It has been predicted that
PEVs will constitute 7% of global vehicle sales by 2020 [3]. However, as more PEVs are deployed on
the roads, unmanaged G2V could have adverse effects on the distribution network which could result
in undesirable consequences. The effects could range from occasional brownouts to outright blackouts
at peak demands. Hence, the suppliers, prosumers and distribution network operators (DNOs) have
the joint responsibility of ensuring that the connection of PEVs does not undermine the stability of
the grid.

PEVs are already playing a critical role in ensuring a cleaner environment. In the U.K. for example,
it is predicted that by 2030, about 60% of all new car sales will be PEVs, and there is an ambitious plan
to de-carbonise the U.K. vehicle parc by 2050 [12]. The concept of V2G allows PEVs to be active players
in grid operations. Though still in its early stage [13], V2G can play a vital role in the economics,
environmental sustainability and the reliability of grid systems [14]. In addition, this role is expected
to become more significant as PEV wireless charging technology becomes accessible [15,16]. It will
also come in handy in peer-to-peer energy trading and applications [17].

As the electricity demand for PEV charging grows, developments in V2G technology will play a
vital role in the grid modernisation strategy. In the U.S. for example, if the current trend is sustained,
no fewer than 160 new power plants will be required to meet the PEV load demand if every vehicle
is to be charged at peak periods [14]. However, smart grid technologies, with a bi-directional flow
of electricity, can be explored to distribute charging over off-peak periods. The energy stored in the
PEV batteries when the electricity cost is lowest can then be transferred back to the grid at peak times
when the price is the highest. This will contribute to the de-carbonisation of the electricity system by
harnessing opportunities such as low-carbon night-time generation [18].

It has also been argued that the economic performance of PEVs could be greatly enhanced
through value-added utilisation of their energy storage capability [19]. In [19], a test bed was used
to demonstrate the feasibility and benefits of harnessing the storage capabilities of PEVs and used
PEV batteries in small-scale energy management systems. However, as the interplay between supply
and demand becomes more dynamic, tariff regimes will respond appropriately. There may also be
the need for the PEV user to have preferences and control over the sale or purchase of energy for
his/her PEV. A legitimate source of concern is the profitability of V2G due to the effects of charging
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and discharging on battery life cycle. Previous studies on battery behaviour have shown that V2G if
properly implemented is profitable [20,21].

PEVs can be considered as loads, generating sources, energy storage or small portable power
plants [22,23]. These can be achieved through opportunistic charging in surface parking garages
in workplaces and municipal parking decks [24]. These parking facilities have in-built refuelling
(charging) stations, which derive their energy from renewable sources such as solar roofs [25].
The PEVs can also discharge their energy back to the grid during peak demand. Therefore, to properly
exploit the opportunities offered, it is imperative to develop smart and optimal vehicle charging and
V2G scheduling schemes. Intermittent changes in demand necessitate that these schemes are adaptable
and can be updated in real time based on electricity prices and prosumer behaviour. The predominant
approach in the literature is to have a central controller that coordinates the charging. An alternative
approach, which is explored in this work, is to have a charging algorithm for individual vehicles,
thereby accommodating individual prosumer behaviour and preferences.

V2G has received significant attention from the research community [26–30]. In particular,
a detailed review of V2G operation is given in [29]. In [31], stochastic mean field game theory was used
to provide an optimal charging strategy for PEVs by controlling battery charging speed. Vehicles target
scheduled times in a central charging station, and charging is dynamically controlled to minimise
the total cost of charging. In [27], a central charging station was also considered. Stochastic linear
programming was used to minimise the short-term cost of energy to the dispatching system by the
integration of G2V and V2G operations.

Another strategy that is explored in PEV scheduling is model predictive control (MPC), used in [7]
to minimise the cost of energy. PEV charging with V2G operation was presented as a mixed integer
linear programming problem. Similarly, an optimised charging scheme using economic MPC (EMPC)
was presented in [9]. While the work in [7,27,31] considered the charging problem as a centralised
one, the work in [9] applied a decentralised approach, which is suitable for VPP. It was formulated
as a linear programming problem; however, V2G operation was not considered. A study of the
optimal charging strategy for lithium-ion batteries was also presented in [32]. Another work [33]
presented the coordination of PEV charging and discharging using particle swarm optimisation and
fuzzy decision making. However, the advantage of MPC lies in its ability to incorporate predictions
and constraints in the optimisation process. As such, historic (or other) sources of energy price can be
used for optimisation, which can be updated in real time to reflect actual prices. All the methods for
optimising V2G discussed so far considered the problem from the perspective of other stakeholders
such as the aggregators or retailers [34,35]. There is the need to develop a prosumer-focused charging
schedule that will allow for more flexibility and profit for the vehicle owner.

For ease of integration into the VPP and customer flexibility, a decentralised approach based
on [9] is adopted in this paper. The main contribution of this is two-fold:

• First is in the structure of the problem: To the best of our knowledge, charge coordination strategies
presented in the literature focus on coordination at the aggregator layer or other higher layers
in the control hierarchy. In this paper, another layer of optimisation was added, which handles
charging with the prosumer as the main deciding entity. This is a departure from the norm where
the prosumer is not an active player in the dynamic market.

• Second is in the development of the charging algorithm with V2G capabilities: A V2G strategy
using model predictive control that can be embedded in PEVs was developed using real data from
the Triangulum project. To ensure additional flexibility for the prosumer, a weighting parameter,
q, was introduced.
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The proposed algorithm supports an autonomous operation of VPP and can be adopted for group
selling strategies [36] to reduce the cost of grid balancing and PEV maintenance. Since the algorithm
can be embedded within the PEV, it is also suitable for wireless vehicle charging.

The rest of the paper is structured as follows. The system model is presented in Section 2. The MPC
formulation used in this work is given in Section 3. In Section 4, the simulation and discussion of
results are presented, and the paper is concluded in Section 5.

2. System Model

Figure 1 illustrates the information exchange between the energy distribution network and the
various PEVs through the CC in a manner that is similar to [37]. However, in this figure, the CC
aggregates the contributions from DERs, coordinates the charging/discharging of PEVs, as well as
exploits opportunities for arbitrage between prosumers and the energy market. In the model, the CC
reads information from the optimisation module embedded in the PEV. Such information includes [37]
battery size, distance driven since the last charge, state of charge (SoC), owner’s preferred buying or
selling price and willingness to participate in V2G/G2V activities. Based on the information obtained,
the CC activates the appropriate charging schedule for each group of PEVs. However, actual charging
of the vehicle is finally achieved using the algorithm developed in this work, which can be embedded
in the vehicles.
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Figure 1. A model of bi-directional coordination of PEVs and their interactions with the network.

Generally, the complexity and accuracy of a model depend on the requirements of the considered
application. However, for linear control techniques such as MPC, it is often sufficient to use the
simplest model that can capture the dominant dynamics of the considered process. In most cases,
the effects of model inaccuracies can be compensated through the combined effects of feedback and
optimisation [7]. Therefore, this work employs a linear time-invariant (LTI) discrete state space model
for the SoC of the PEV battery.
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2.1. Discrete State Space Model of the SoC

The SoC of the battery at any given time step k can be modelled as the sum of the SoC at time
k− 1 and the charge due to power flow to/from the battery. This effectively captures the dynamics of
lithium-ion (Li-ion) batteries [38]. The dynamics of the SoC is described by (1). A similar formulation
was used in [7].

x(k) = x(k− 1) + TsPn, (1)

where x(k) ∈ [0, 1] is the SoC, Ts is the sampling time, Pn = Pt
Qmax

is the normalised power flow to
the battery and Qmax is the maximum capacity of the battery. The power, Pt = ηcPc − ηdPd + ηevd′,
where Pc ≥ 0 is charging power with efficiency ηc, Pd ≥ 0 is the power when the battery discharges
to the grid with efficiency ηd, d′ ≤ 0 is the power demand due to driving and ηev is the PEV
energy efficiency. It should be noted that energy efficiency here is defined as energy consumed
per km. If we assume that the charging and discharging efficiencies are the same, then ηc = ηd = η.
This restricting assumption is relaxed using weighting matrices to penalize V2G operation in the
charging algorithm. Hence, the total power, Pt, is given as:

Pt = η(Pc − Pd) + ηevd′. (2)

Since the battery cannot be charging and discharging concurrently, Pc > 0 ⇐⇒ Pd = 0 and
Pd > 0 ⇐⇒ Pc = 0. Then,

P =

{
Pc : Pd = 0
−Pd : Pc = 0

(3)

and P = 0 if Pc = 0 and Pd = 0; such that (2) can be written as:

Pt = ηP + ηevd′. (4)

The state space model for the SoC can be written as:

x(k) = A x(k− 1) + B u(k) + E d(k), (5a)

y(k) = C x(k), (5b)

state matrices, A, B, C and E are defined as:

A = 1, B = Ts
η

Qmax
, C = 1 and E = −Ts,

where the manipulated variable, u = P, is the charging/discharging power and the power usage from
driving d = ηevd′

Qmax
is the disturbance variable. The SoC of the battery is the state variable x, which is also

the output y. Therefore, at any time instance k, the SoC at time instance k + 1 can be estimated based
on the predicted user behaviour (power usage for driving) and power flow into the system using (5).

2.2. System Configuration

The IEEE 1547-2011 [39] standard provides a general guide for the design, operation and
integration of DERs with electric power systems. The DERs could be distributed generators or
storage systems. Adopting the layout in [40], the conceptual integration of DERs, PEVs and other
loads in the VPP domain with the local distribution network is illustrated in Figure 2.
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Figure 2. Integration of DERs and loads within the Triangulum project.

In the Triangulum project, the CC connects to all energy assets to optimise energy generation,
storage and consumption. The energy intervention component (EIC) is installed on each distributed
generation (DG) and distributed storage (DS) unit. For control purposes, the CC sends a request
(control signal) to a DER; the EIC interprets the signal and adapts its operation to reflect the request.
Such communication can be done directly between CC and the DERs or through the local building
management system (BMS) as the gateway.

As shown in the figure, the VPP controller monitors and controls the operations of the DER
assets (DG and DS) within the VPP domain. On the other hand, it is also responsible for monitoring
the interconnection switch at point of common coupling (PCC)between the transformer and the AC
bus-bar connected to the DERs and loads. The purpose of these signalling events with respect to
PEV is to coordinate the uptake of energy (as DS) and release of energy (as DG) to the grid without
compromising the system safety and reliability. Hence, before the EMPC can take or release energy to
this grid, constraints as set by the VPP must be satisfied. The details of this are not within the scope of
this paper. Apart from the mains, a workplace parking garage with embedded PV roof allows PEVs to
connect to the available DC bus to store excess energy generated by the PV array. This provides an
opportunity to use renewable energy without significantly impacting the grid.

2.3. Case Study and Model Parameters

Within the Triangulum project, various datasets were generated from the existing PEVs and
charging stations at Manchester Metropolitan University (MMU) over a period of four months.
The information is summarised in Table 1.

The power flowing in to/out of the battery due to charging/discharging is bounded by the
maximum charging/discharging current as:

Pmin ≤ P ≤ Pmax. (6)

We assume here that the maximum charging and discharging currents are equal in magnitude,
i.e., imax = −imin. Then, Pmin = −Pmax, and for a grid voltage of Vg = 230 V, assuming a maximum
allowable current of 10 A, the maximum power is given as:

Pmax = Vg imax = 2300 W. (7)
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The two vehicles with the highest mileage were the mail and security vans with average mileages
of about 64 km and 54 km, per day, respectively. Note that the mail van and security vehicles are used
seven days a week, while the other vehicles are used only five days. This table shows that a total of
7884.33 kWh was used over the four-month period considered. Analysis of Table 1 is presented later in
this section.

Table 1. PEV charge and mileage summary.

Car Battery Range Range/kW Range per Cost per
Name (kW) (km) (km/kW) Charge (km) Charge

Maple (Pool) 24 840 6.44 96 2.4
Oak (Pool) 24 737 6.44 96 2.4

Willow (Pool) 30 494 6.44 123 3.0
Holly (Pool) 24 813 6.76 129 3.0
Larch (Pool) 30 402 6.44 123 3.0

Sec1 (Security) 24 1622 4.83 74 2.4
Mail (Mail) 24 1931 5.47 82 2.4

Crewe (Van) 24 822 5.15 77 2.4
Repro (Van) 24 713 4.51 67 2.4

Data on vehicle charging were collected to investigate energy usage based on the tariff periods.
Although a variable tariff can be realized in multiple time bands, this paper uses the contractual tariff
of MMU with the energy supplier, and the energy price varies with time of the day, day of the week
(weekday vs. weekend) and campus location. However, for the ease of understanding, a summary
of the tariff schedule is presented in Table 2. It should be noted that Table 2 is for calculating the
consumption element and does not include the standing, capacity and the transmission network use
of system (TNUoS) triad charges, which are computed separately.

This tariff, shown in Table 2, is applied throughout this paper. The distribution of this energy
usage across the different tariff regimes is presented in Figure 3. The figure reveals that within the
charging duration, red, amber and green tariffs account for 10%, 51% and 39% of the total charging
period, respectively. However, analysis of the tariff shows that the red, amber and green periods
accounted for 6%, 37% and 57% of the total duration of a typical tariff week. One expects that the
vehicle charging distribution would at least follow the same pattern as tariff periods; in reality, that was
not the case. The distribution of charging duration across tariff regimes for individual vehicles in
Figure 4 shows that some of the PEVs follow a charging trend similar to the tariff period distribution.
Oak, for example, had 9%, 35% and 56% of its charge duration during the red, amber and green tariff
periods, respectively.

Table 2. Electricity tariff schedule.

Time Weekday Weekend

Price (£/kWh) Tariff Period Price (£/kWh) Tariff Period

21:00–09:00 0.08–0.10 Green 0.07–0.08 Green
09:00–16:30 0.10–0.11 Amber 0.09–0.10 Green
16:30–18:30 0.19–0.24 Red 0.10–0.11 Amber
19:00–21:00 0.10–0.11 Amber 0.09–0.10 Green
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Figure 3. Charging distribution according to the tariff.

Maple Oak Willow Holly Larch Sec Van Mail Crewe Repro

Vehicle name

0

10

20

30

40

50

60

70

80

C
h

a
rg

in
g

 d
u

ra
ti
o

n
 (

in
 p

e
rc

e
n

ta
g

e
)

Red

Amber

Green

Figure 4. PEV charging by vehicle.

Charging distribution across energy regimes for individual vehicles, presented in Figure 4,
shows that vehicles charged during peak periods for a relatively shorter duration. This is expected
because the peak period constitutes only about 6% of the hours in a typical week. Therefore, a majority
of the vehicles charged for a longer duration during the least-tariff period (green period), which
is also expected because the green period accounts for a higher percentage of the weekly hours.
However, three of the vehicles (Maple, Willow and Mail) had longer charging periods during the
amber period. This observation combined with the overall distribution of vehicle charging suggests
that some improvements can be made to save cost. This can be achieved by maximizing PEV charging
during green periods while minimising charging during the red period. Any balance of PEV charging
left can then be shifted to the amber period. Details of the exact energy usage are given in Table 3.
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Table 3. Tariff period of charging by vehicle.

Vehicle
Charging Duration

Red Amber Green Total (hrs)
hrs % hrs % hrs %

Maple 15.96 12.28 95.78 73.67 18.27 14.05 130.01
Oak 69.05 8.63 280.20 35.01 451.14 56.37 800.39

Willow 20.74 13.96 75.69 50.95 277.41 35.09 148.56
Holly 48.12 9.11 201.83 38.39 277.41 52.50 528.36
Larch 49.49 9.00 204.44 37.16 296.54 53.84 550.13

Security 92.21 7.96 444.35 38.33 622.54 53.71 1159.1
Mail 119.23 22.41 261.11 49.07 151.73 28.51 532.07

Crewe 27.35 8.88 112.45 36.52 168.12 54.60 307.92
Repro 44.32 12.43 104.21 29.25 207.80 58.32 356.33

In this study, vehicles are classified into three types based on usage. The first type of vehicles is
personal PEVs driven to work in the morning at 8:00 a.m. and back home at 5:00 p.m. For this class of
PEVs, data from a national travel survey showed that the average daily driving distance of workers is
in the range of 40–50 km [41]. To allow some tolerance and account for unplanned trips, a daily travel
of 65 km is considered in this work. This is split into two trips on a workday to distances of 30 km
and 35 km. The second vehicle class is the pool vehicles. According to Table 1, for a pool vehicle, the
average daily trip ranges between 20 km and 42 km. The third PEV type is the utility vehicles such
as security and mail vans having average daily mileages of 54 km and 64 km, respectively. In each
case, travel distance is considered to be uniformly distributed over the specified range. Among the
three types of PEVs, the utility vehicles offer the least flexibility, as they may be requested at any time
without prior notice.

Typically for PEVs, ηev ∈ [120, 180] Wh/km [9]. Hence, in the case of personal PEVs driven
to work, an average value of ηev = 150 Wh/km is used. For the pool vehicles studied in this work,
ηev ∈ [148, 155], Wh/km resulting in an average value of ηev = 151.5 Wh/km. An average value
of ηev = 150 Wh/km is used for the pool vehicles. For the utility vehicles, ηev ∈ [182, 222] Wh/km,
resulting in an average value of ηev = 202 Wh/km, an average value of ηev = 205 Wh/km is employed.
A summary of the parameters used for the model is given in Table 4. The motivation for using these
values is discussed in the next section.

Table 4. Model and optimisation parameters.

Symbol Parameter Value (Unit)

Vg Grid voltage 230 (V)
x SoC [0, 1]
imax Maximum charge current 10 (A)
imin Minimum charge current −10 (A)
Qmax Nominal battery capacity 24/30 (kWh)
Ts Sample time 1 (h)
Np Prediction horizon 24 (Samples)
ηev Battery efficiency 150/205 (Wh/km)
η Charging/discharging efficiency 90 (%)
p Electricity price variable (£/kWh)

3. Economic Model Predictive Control

MPC is a finite horizon optimal control scheme. At each sampling instance, MPC computes an
optimal sequence of control moves by optimising an objective over a fixed horizon. Only the first move
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in the computed sequence is applied to the process. MPC has a number of advantages over traditional
control schemes including its ability to explicitly cater for system constraints, optimisation in the loop,
natural handling of multi-variable systems and ability to handle dead-time [42]. As such, MPC has
found widespread applications in advanced process control and manufacturing [43,44]. MPC typically
minimises the error from a set-point using a cost function, such as [44]:

f (u, y) =
1
2

N−1

∑
k=0
‖y(k)− yss‖2

Q + ‖u(k)− uss‖2
R , (8)

where yss and uss are the steady state set-points of the output and input, respectively, ‖x‖2
P := xT Px.

The need for optimisation in large-scale systems with optimal economic performance requirements
and goals, such as reduced operational costs and improved efficiency, has motivated the application of
MPC in the area of large-scale and networked systems. A variant of MPC commonly used to optimise
operational and other costs is the EMPC. With the EMPC technique, the cost can generally be expressed
as [9]:

f (u, v) =
Np−1

∑
k=0

p(k)u(k) (9)

where p is the cost of the manipulated variable u. Minimising the cost function ensures that optimal
decisions are made based on available resources, future prediction, constraint (system and operation)
and the current state of the system. The cost function used in this work is:

minimize f =
Np−1

∑
k=0

p(k)q(k)u(k) + ωv(k) (10a)

subject to the constraints:

x(k + 1) = Ax(k) + Bu(k) + Ed(k), (10b)

y(k) = Cx(k), (10c)

umin(k) ≤ u(k) ≤ umax(k), (10d)

y(k) ≥ ymin − v(k), (10e)

y(k) ≤ ymax + v(k) and (10f)

v(k) ≥ 0. (10g)

The term q was introduced as a tuning parameter to penalise the effect of the current or
future tariff on the optimisation problem. Equal penalisation of future and current prices means
q(0) = q(1) = . . . = q(np − 1) = q. q is also used to penalise V2G operation so as to account for
the difference in charging and discharging efficiencies. The output is constrained by the allowable
battery charge limits [ymin, ymax] = [0.2, 0.9] as described in Section 2.3. Infeasibility is avoided by
including the slack variable vk, which is discouraged using a large penalty, ω. The constraints on u are
time-varying and are defined as:

umin(k) =

{
Pmin for dk = 0
0 otherwise

(11a)

umax(k) =

{
Pmax for dk = 0
0 otherwise

(11b)

To disable V2G operation, the lower constraint is specified as zero in the MPC formulation, i.e.,
umin(k) = umin = 0, which is not time-varying. The same constraint could be dynamically used to
ensure no V2G operation during green tariff regimes. As with the normal MPC scheme, only the
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first decision in the optimal charging plan is applied. Any fluctuations in the price of energy can be
captured as a feedback to the finite horizon economic MPC scheme. The amount of power consumed
while driving acts as a disturbance and can be predicted based on customer behaviour. This allows
for optimal charging that ensures the rejection of disturbance forecast (i.e., the next vehicle trip).
The algorithm for the proposed EV charging scheme is given in Algorithm 1.

Algorithm 1 Vehicle charging using MPC.

Input: Current (initial) state of charge SoC, x0, prediction horizon, Np, sample time, Ts, vehicle usage
pattern and electricity price.

Output: Input sequence, U =
{

u(1), u(2), . . . u(Np)
}

i.e., charging power
Compute prediction and constraint matrices
while PEV is connected to charger do

Update vehicle usage
Update electricity price
Update prediction and constraint matrices and weights
Solve constrained optimisation problem to obtain input sequence, U.
Apply only the first element in the sequence, u(1).
Update state of charge

end while

It should be noted that all the tariffs used in the algorithm are derived from actual values presented
in Table 2. For each of these vehicle categories, the PEV charging scheme is designed to support the
following features.

1. Fixed price: For this scenario, the charging schedule was developed using a fixed price of
electricity throughout the day.

2. Variable price without V2G.
3. Variable price with V2G.

4. Simulations and Results

The results discussed in this section broadly cover two scenarios; basic and optimised charging.
Both scenarios are investigated in the three categories of PEVs outlined in Section 2.3. A fixed-tariff is
employed in the basic charging scheme such that PEVs are expected to start charging immediately
once they are connected to the grid. In this scheme, PEVs are uncoordinated and have no recourse
to an optimisation protocol. This is logical given that the price is the same for all the hours of the
day; hence, there is neither incentive to shift the charging nor opportunity for arbitrage. On the other
hand, the optimised charging scheme employs an optimisation protocol to coordinate the charging
and discharging of PEVs relative to the grid in the most economically-efficient manner.

4.1. Personal Vehicles

This section considers a worker who commutes to work in the morning and returns back after
work. The plots of daily electricity tariff and energy demand for the trips are presented in Figure 5.
The plots show that the period of energy demand corresponds to times of the day in which the
electricity tariff is high (amber period), and the journey back from work in the evening is typically
completed just before the peak tariff period.

The plots showing the SoC of the vehicle battery and energy consumption during the day for
the fixed tariff (i.e., without optimisation) and actual tariff without V2G are presented in Figure 6.
The results show that for the algorithm with a fixed tariff, charging occurred even during the peak
period. However, for the algorithm with a varying tariff, charging occurred only during periods of
low tariff (mostly before 9:00 a.m.). This will ensure a reduction in energy cost for vehicle charging.
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Figure 6. Charge schedule with fixed and variable tariffs.

The optimal SoC and energy usage curves for a typical day with and without V2G are shown in
Figure 7. The plots illustrate that charging mostly occurred during the green tariff period for both
schedules. However, for the schedule with V2G, charging also occurred during the amber tariff period,
while V2G operation occurred during the red tariff period. This ensures that the cost of energy for
battery charging was minimised while the revenue from V2G was maximised. The use of PEVs in
V2G/G2V operations encourage prosumers’ participation in the energy value chain, but with different
objectives from other actors [45,46]. This is desirable because it also ensures that the user contributes
to the grid when electricity is needed the most, thereby maximizing the economic benefits while
contributing to the power balance. For optimisation with a fixed tariff, charging operation occurred
irrespective of energy prices. This will result in non-optimal charging, allowing the battery to charge
even when energy price is highest. This may also result in more demand from the grid when the effect
of a large parc of vehicle is consolidated.
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Figure 7. Charge schedule with and without V2G.

To account for non-work-related journeys (e.g., shopping and leisure), it was further assumed
that the PEVs embarked on longer trips once every month on weekends. The schedule for weekends
is different. Moreover, the availability of charging stations in shopping and other leisure areas is not
always guaranteed. However, for easier analysis and to allow for some allowance, the same schedule is
assumed during weekends. A breakdown of energy usage for vehicle charging across the tariff regimes
is presented in the bar chart presented in Figure 8. The positive bars show the percentage distribution
of total energy usage for the different charge schedules. The negative bars on the other hand show
the energy transferred to the grid as a percentage of the total energy used in battery charging. For the
fixed price schedule (without optimisation), the red, amber and green tariff periods accounted for 14%,
27% and 59% of PEV charging energy. This is similar to the usage of vehicles (such as Oak, Holly,
larch, Sec van and Crewe) in the Triangulum fleet as shown in Figure 4. For the optimised scheme
with actual variable electricity price without V2G (variable, no V2G), no charging occurred during the
red tariff period. The amber and green tariff periods accounted for 7% and 93% of the PEV charging
duration, respectively. For the optimised scheme with V2G, no charging occurred during the red tariff
period. The amber and green charging periods accounted for 24% and 76% of the charging energy.
V2G operation occurred only during the red tariff period, and 19% of the energy used in charging
was transferred back to the grid. This resulted in average savings of 63% and 55% in the cost of PEV
charging for the optimised charging with and without V2G, respectively.
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Figure 8. Energy usage across tariff regimes for personal PEV.
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4.2. Pool Vehicles

In the case of pool vehicles, Monte Carlo simulation was applied. To achieve this, 1000 different
coordinating unit patterns uniformly distributed between distances of 20 km and 42 km, i.e., U(20, 42),
were generated. The timings for driving out and back to the station were also generated (also uniformly
distributed between 9:00 a.m. and 4:00 p.m.), i.e., U(9, 16), to reflect the collected data in Section 2.3.
For this class of vehicles, usage was restricted to weekdays. Using a fixed price, a variable price
without V2G and a variable price with V2G, an algorithm was developed for each scheme to charge
the PEVs. Each of the charging schemes was applied to the 1000 samples of vehicle usage patterns.
Average energy usage for the three charging schemes (fixed, optimal without V2G and optimal with
V2G) across the three tariff periods is shown in Figure 9.
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Figure 9. Energy usage across tariff regimes for pool PEVs.

A large penalty was used in the formulation of the optimisation to discourage charging during
peak tariff. The results show that for the fixed-tariff scheme, green, amber and red tariff periods
accounted for 62%, 32% and 6% of the total PEV charging energy, whereas in the variable-tariff
schemes, 100% of the charging occurred when electricity was the least expensive. The variable scheme
with V2G further transferred 45% of the energy back to the grid, of which 21% was during the peak
(red) period and 24% during the amber period. This resulted in average savings of about 38% and 14%
of PEV charging cost for the charging scheme with and without V2G, respectively.

4.3. Utility Vehicles

Similar to the pool vehicles, the utility vehicles also employed Monte Carlo simulation by
generating 1000 distances, uniformly distributed, i.e., U(50, 70). This comprised several short trips
without the opportunity for connection to the charging stations. To capture short trips within the
campus where connection to the charging station is still possible, a second set of distances distributed
over U(5, 7) was also generated. The timings for the burst of short trips (external and intra-campus)
were also generated both according to a uniform distribution U(7, 24), i.e., between 7:00 a.m. and
midnight (here, 24 represents midnight). Utility vehicles differ from other PEVs in the sense that
they are subject to more intensive use (including weekends). The trips by these vehicles are more
frequent, but over shorter distances. Overall, the utility vehicles cover more mileage than personal
and pool vehicles. These characteristics were considered by applying uniformly-distributed usage
patterns. The energy usage distribution across tariff period for the developed charge scheme is shown
in Figure 10.
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Figure 10. Energy usage across tariff regimes for utility PEVs.

The results show that the red, amber and green tariff periods account for 7%, 37% and 56% of
total PEV charging energy respectively, with a fixed electricity price. For a variable price without
V2G, the amber and green tariff periods accounted for 10% and 90% of the PEV charging, respectively.
Finally, the amber and green tariff periods respectively accounted for 22% and 78% of charging for the
scheme with V2G. In addition, 15% and 4% of the energy was transferred back to the grid during the
red and amber tariff periods, respectively. A look at the SoC in the battery reveals that the charging
algorithm maintains the PEV battery charge to a value around 50% of total charge capacity. This means
that there is always enough energy to cater to any emergency use of a vehicle that may arise as shown
in Figure 11.

00:00 05:00 10:00 15:00 20:00

Time of the day

0

10

20

30

40

50

60

70

80

90

100

S
o

C

Variable

Variable with V2G

(a) State of charge

Figure 11. Cont.



Energies 2017, 10, 1507 17 of 20

00:00 05:00 10:00 15:00 20:00

Time of the day

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

P
o

w
e

r 
fl
o

w
 (

W
)

Variable

Variable with V2G

(b) Power flow

Figure 11. Charge schedule with and without V2G for utility vehicles.

According to Figure 11, V2G only occurred during the peak price. The average savings in the cost
of PEV charging due to optimised charging with and without V2G was 31% and 14%, respectively.

5. Conclusions

This paper investigated the optimal scheduling of PEVs in the V2G and G2V operations. Using the
EMPC formulation, an optimisation algorithm was developed that ensures that G2V and V2G occur
at optimal times of the day. This work employs the data from MMU’s PEV infrastructure within
the Triangulum project, and the result has shown that employing the proposed scheme can result in
significant benefits to the prosumers. The developed scheme ensured that charging was scheduled
when the tariff was least expensive, and V2G operation occurred during peak prices. Savings of up to
63% in electricity costs can be realised for the scheme with V2G, and up to 38% is achievable without
V2G. The inclusion of feedback in the optimisation algorithm means that the real-time changing tariff
is easily accommodated. The decentralised approach applied in this work also lends itself to easy
adoption in larger VPP with multiple DERs, and this is one of the objectives of ongoing research.
Future work will investigate the effect of changing customer behaviour and the effect of the renewable
contribution on the tariff. The aggregated effects of prosumers on grid stability and constraints are
also investigated as part of ongoing research.
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Abbreviations

The following abbreviations are used in this manuscript:

DNO distribution network operator
EMPC economic model predictive control
EU European Union
DER distributed energy resources
DG distributed generation
DR demand response
DS distributed storage
G2V grid-to-vehicle
ISO independent system operator
PEV plug-in electric vehicle
RTP real-time pricing
SoC state of charge
TOU time-of-use
LTI linear time-invariant
MPC model predictive control
UNEP United Nations Environmental Program
V2G vehicle-to-grid
VPP virtual power plant
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