
energies

Article

Design of a Fractional Order Frequency PID
Controller for an Islanded Microgrid:
A Multi-Objective Extremal Optimization Method

Huan Wang 1,2, Guoqiang Zeng 2,*, Yuxing Dai 1,2, Daqiang Bi 3, Jingliao Sun 4

and Xiaoqing Xie 2

1 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China;
wh83@wzu.edu.cn (H.W.); daiyx@hnu.edu.cn (Y.D.)

2 National-Local Joint Engineering Laboratory of Digitalize Electrical Design Technology, Wenzhou University,
Wenzhou 325035, China; xiaoqingxie@stu.wzu.edu.cn

3 State Key Laboratory of Power Systems and Department of Electrical Engineering, Tsinghua University,
Beijing 100084, China; bidaqiang@tsinghua.edu.cn

4 State Grid Wenzhou Electric Power Supply Company, Wenzhou 325000, China; sunjingliao@163.com
* Correspondence: zeng.guoqiang5@gmail.com; Tel.: +86-159-6740-5738

Received: 23 August 2017; Accepted: 22 September 2017; Published: 1 October 2017

Abstract: Fractional order proportional-integral-derivative(FOPID) controllers have attracted
increasing attentions recently due to their better control performance than the traditional integer-order
proportional-integral-derivative (PID) controllers. However, there are only few studies concerning
the fractional order control of microgrids based on evolutionary algorithms. From the perspective
of multi-objective optimization, this paper presents an effective FOPID based frequency controller
design method called MOEO-FOPID for an islanded microgrid by using a Multi-objective extremal
optimization (MOEO) algorithm to minimize frequency deviation and controller output signal
simultaneously in order to improve finally the efficient operation of distributed generations and
energy storage devices. Its superiority to nondominated sorting genetic algorithm-II (NSGA-II) based
FOPID/PID controllers and other recently reported single-objective evolutionary algorithms such as
Kriging-based surrogate modeling and real-coded population extremal optimization-based FOPID
controllers is demonstrated by the simulation studies on a typical islanded microgrid in terms of
the control performance including frequency deviation, deficit grid power, controller output signal
and robustness.

Keywords: microgrid; fractional order controller; frequency control; multi-objective optimization;
extremal optimization

1. Introduction

Microgrids have been widely considered as a building block of future smart grid [1], so there
have been many real islanded microgrid systems developed for rural and distant areas [2–5]. However,
how to control the voltage and frequency of a microgrid in an islanded model has been one of the major
challenges for researchers recently [6], because it is often more difficult than—in grid-connected mode.
More specifically, when the microgrids operate in the grid-connected mode, the control of voltage
and frequency depends on the regulation of the main utility grid. While the microgrids are in the
islanded mode, the distributed components should regulate the stochastic and determinate fluctuation
caused by some distributed generations, e.g., wind turbine generator and solar photovoltaics,
and demand-side loads.

In recent years, some frequency control methods for microgrids or hybrid power systems
have been proposed by using traditional proportional-integral-derivative (PID) controllers or robust
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controllers [7–16]. For example, a hybrid method by combining particle swarm optimization (PSO)
and fuzzy logic [11] is proposed to design proportional-integral (PI)-based frequency controllers for an
alternating current microgrid. Another genetic algorithm (GA)-based frequency PID controller has
been developed for a solar thermal diesel wind hybrid energy generation and storage system [13].
Singh et al. [14] present a robust PSO-based H∞ method for the frequency control of a hybrid power
system. Similar research works include robust H∞ and structured singular value µ-based control
synthesis approaches for microgrids [15]. Bendato et al. [16] proposed an effective two-step procedure
to optimize a real-time energy management system by integrating economic aspects and power quality
objectives including reactive power, voltage and frequency. Its effectiveness has been demonstrated on
a microgrid system called “University of Genoa Smart Polygeneration Microgrid”.

Fractional order controllers have attracted increasing attentions recently due to their better control
performance compared to traditional integer-order controllers [17–24]. Consequently, there are some
recently reported frequency control methods based on fractional order proportional-integral-derivative
(FOPID) controllers for islanded microgrids by using some intelligent optimization algorithms,
e.g., Kriging-based surrogate modeling, called the KSM method [25], chaotic PSO based fractional
order fuzzy PID controller [26]. In addition, Pan and Das [27] utilized a chaotic nondominated sorting
genetic algorithm-II (NSGA-II) algorithm to design fractional order PID controllers for load-frequency
control of two interconnected power systems by considering the two conflicting time domain objectives,
including the integral of time multiplied squared error of frequency deviation, and the integral of the
squared deviation in the controller output. These research results have also shown that the proposed
chaotic NSGA-II-based FOPID controller performs better than the standard PID controller under
nominal operating and perturbed operating conditions. On the other hand, these research works
have also indicated that the optimization algorithms play critical roles in the performance of FOPID
controllers. Consequently, how to design intelligent optimization methods especially multi-objective
evolutionary algorithms to further improve the comprehensive performance of FOPID controllers for
frequency control of islanded microgrids is of great practical significance.

Extremal optimization (EO) [28,29] is a novel evolutionary optimization framework differing from
traditional optimization algorithms due to its prominent far-from-equilibrium characteristics, imitating
the theory of self-organized criticality [30]. In contrast to favoring the good in traditional evolutionary
algorithms, EO always selects the bad elements or individuals for mutation based on a whole
random or power-law probability distribution. Consequently, EO has attracted increasing attention
recently for its wide applications in various benchmark and real-world engineering optimization
problems [31,32]. However, there are only few multi-objective evolutionary algorithms based
on the EO mechanism [33–37]. An individual elitist (1+λ) multi-objective extremal optimization
algorithm [33] is based on a single solution and a hybrid mutation operator combining Gaussian
mutation with Cauchy mutation to enhance the exploratory capabilities. In our recent research
work, a modified multi-objective extremal optimization based on individual iterated optimization
mechanisms has been presented to design FOPID controllers for automatic voltage regulator
systems [37]. On the other hand, another version called multi-objective population-based extremal
optimization (MOPEO) is proposed by combining population-based optimization mechanism and a
popular mutation operator called non-uniform mutation [34]. Furthermore, an improved version is
proposed by adopting population-based iterated optimization, a more effective mutation operation
called polynomial mutation, and a novel and more effective mechanism for generating new
population [36].

Unfortunately, to the best of our knowledge, there are few reported research works concerning
the application of EO into the control of microgrids and other power systems, let alone multi-objective
EO algorithms into microgrids. This paper proposes a multi-objective extremal optimization
(MOEO)-based FOPID method called MOEO-FOPID for the fractional order frequency control of
an islanded microgrid in order to improve the efficient operation of distributed generations and
energy storage devices. Its superiority to other recently reported single-objective evolutionary
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algorithms-based FOPID [22,25], and NSGA-II-based FOPID/PID controllers [20,38] will be
demonstrated by the simulation results for the typical case of an islanded microgrid.

The rest of this paper is structured as follows. Some basic definitions of a FOPID controller and
multi-objective optimization are introduced briefly in Section 2. Section 3 presents a small-signal model
of an islanded microgrid. Then, a MOEO-FOPID method for the frequency control of an islanded
microgrid is proposed in Section 4. Section 5 gives the simulation results for a typical microgrid to
demonstrate the superiority of MOEO-FOPID to other reported optimization algorithms-based FOPID
and PID controllers. Finally, some concluding remarks are presented in Section 6.

2. Preliminaries

2.1. FOPID Controller

As one of three widely used definitions for fractional differentiation and integration, the Riemann
Liouville (RL) definition is presented as follows [19]:

aDr
t f (t) =

1
Γ(n− r)

dn

dtn

∫ t

a

f (τ)

(t− τ)r−n+1 dτ, n− 1 < r < n (1)

where Γ(.) is the Gamma function. The Laplace transform of Equation (1) is defined as the
following form: ∫ ∞

0
e−st

aDr
t f (t)dt = srF(s)−

n−1

∑
k=0

sk
0Dr

t f (t)|t=0 (2)

Figure 1 shows a block diagram of a closed-loop control system with a FOPID controller called a
PIλDµ controller [17]. Its transfer function model is defined as follows:

Definition 1. The transfer function Gc(s) of a FOPID controller is described as follows:

Gc(s) =
U(s)
E(s)

= Kp + Kis−λ + Kdsµ (3)

where U(s) and E(s) are the transfer functions of control signal and error signal, respectively; and Kp, Ki and
Kd are the gains of proportional, integral, and derivative, respectively. λ and µ are the order numbers of the
fractional order integrator and differentiator, respectively. Generally, the domain of λ and µ are defined as:
0 ≤ λ ≤ 2 and 0 ≤ µ ≤ 2. It is clear that the traditional PID controller is one special case of a FOPID controller
when λ = 1 and µ = 1.
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The control signal u(t) from the output of the PIλDµ controller is computed as the
following Equation:

u(t) = Kpe(t) + KiD−λe(t) + KdDµe(t) (4)

where e(t) is the error signal.
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2.2. Multi-Objective Optimization

Formally, a multi-objective unconstrained minimization problem is defined as the following
Equation [39]:

minimize F(x) = ( f1(x), f2(x), . . . , fm(x))
s.t. L ≤ x ≤ U

(5)

where x = (x1, x2, . . . , xn)∈Ω is a decision vector consisting of n decision variables x1, x2, . . . , xn,
Ω ⊆ Rn is the decision space, m is the number of objective functions, L and U represent the lower and
upper bounds of vector x, respectively, F: Ω→ Rm consists of m real-valued objective functions and
Rm is defined as the m dimensions objective space.

An objective vector u = (u1, u2, . . . , um) ∈ Rm is considered to dominate another objective vector
v = (v1, v2, . . . , vm)∈Rm, which is denoted as u ≺ v if and only if the following two conditions are
satisfied simultaneously: (1) ∀i ∈ {1, 2, . . . , m}, ui ≤ vi, and (2) ∃i ∈ {1, 2, . . . , m}, ui < vi A decision
vector x∈Ω is defined to be non-dominated or Pareto optimal if and only if there does not exist another
decision vector x∗∈Ω such that F(x∗) ≺ F(x). The Pareto-optimal set is defined as all Pareto optimal
solutions in Ω. The set of m objective functions values corresponding to the Pareto-optimal set are
called Pareto front.

3. Microgrid Models Based on Small-Signal Analysis

There are some reported research works concerning small-signal analysis for hybrid distributed
generation systems or microgrids [8–10]. Figure 2 presents a block diagram of a typical islanded
microgrid [25]. The transfer functions and model parameters of distributed energy power generations
including wind turbine generator (WTG), solar photovoltaic (PV) system, diesel engine generator
(DEG), fuel cell (FC), and energy storage systems, e.g., battery energy storage system (BESS) and
flywheel energy storage system (FESS) are described as Table 1. Here, ∆f is the frequency deviation; u is
the control signal from FOPID based frequency controller; Psol and PW are the input stochastic power
of PV and WTG, respectively; PPV, PWTG, PDEG, PFC, PBESS and PFESS are the output power of PV, WTG,
DEG, FC, BESS and FESS, respectively, and PL is the variable load power. Some intermediate variables
are computed as follows: Pt = PPV + PWTG, PS = Pt + PFC + PDEG − PBESS − PFESS, and Pe = PL − PS.
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Figure 2. Block diagram of an islanded microgrid with small-signal models.
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We consider large deterministic drift and random fluctuations for solar photovoltaic generation,
wind generation, and demand-side loads, which are described as the following general model [13]:

P =

(
φη
√

β(1− G(s)) + β
)
Γ

β
= χΓ (6)

where P is the stochastic power, φ represents the stochastic component and β is a parameter that
contributes to the mean value of the power, respectively. G(s) denotes the transfer function of a low
pass filter; η is a normalized parameter to make the generated or demand power χ match the per
unit (pu) level; and Γ describes a time-variable signal of fluctuation for stochastic power output.
The detailed parameters of stochastic models for distributed generators and demand load are given
as Table 2. Here, U(−1, 1) presents random uniform function between −1 and 1, and H(t) denotes
Heaviside step function. Figure 3 illustrates the realization of the stochastic powers of WTG, PV and
demand-side loads.

Table 1. The small-signal analysis models and parameters of the components of an islanded
microgrid [25].

Component Transfer Function Parameters

Wind turbine generator (WTG) GWTG(s) =
∆PWTG

∆PW
= KW

1+sTW
KW = 1, TW = 1.5 s

Solar photovoltaic (PV) GSTPG(s) =
∆PPV
∆Psol

= 1
(1+sTIN)(1+sTIC)

TIN = 0.04 s, TIC = 0.004 s

Fuel cell (FC)
GFC(s) =

∆PFC
∆u =

1
(1+sTFC)(1+sTIN)(1+sTIC)

KFC = 1, TFC = 0.26 s

Diesel energy generator (DEG) GDEG(s) =
∆PDEG

∆u = 1
(1+sTG)(1+sTT)

TG = 0.08 s, TT = 0.4 s

Microgrid system GS(s) =
∆ f
∆Pe

= 1
D+2Hs

D = 0.015 pu/Hz, H = 1/12 pu.sec,
R = 3 Hz/pu

Flywheel energy storage
system (FESS)

GFESS(s) =
∆PFESS

∆ f = KFESS
1+sTFESS

KFESS = 1, TFESS = 0.1 s

Battery energy storage
system (BESS)

GFESS(s) =
∆PBESS

∆ f = KBESS
1+sTBESS

KBESS = 1, TBESS = 0.1 s

Table 2. The parameters of stochastic models for distributed generators and demand load.

Stochastic Models Model Parameters

Wind power generation φ~U(−1, 1), η = 0.8, β = 10, G(s) = 1/(104s + 1), Γ = 0.24H(t) −
0.04H(t − 140)

Solar power generation φ~U(−1, 1), η = 0.1, β = 10, δ = 0.1, G(s) = 1/(104s + 1), Γ = 0.05H(t) +
0.02H(t − 180)

Demand loads
φ~U(−1, 1), η = 0.9, β = 10, G(s) = (300/(300s + 1)) + (1/(1800s + 1)),

Γ = (1/χ)[0.9H(t) + 0.03H(t − 110) + 0.03H(t − 130) + 0.03H(t − 150) −
0.15H(t − 170)+ 0.1H(t − 190)] + 0.02H(t)
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4. Multi-Objective Extremal Optimization Based FOPID Method for the Frequency Control of
Islanded Microgrids

In order to obtain good frequency control performance for an islanded microgrid, both the
frequency deviation (∆f ) in the microgrid and the control output signal (u) of the FOPID controller
are expected to be minimized, yet these two objectives are generally conflictive. Consequently,
the frequency control problem of an islanded microgrid based on a FOPID controller is formulated to a
typical multi-objective optimization problem. The detailed formulation is as follows.

Definition 2. The following two objectives F1 and F2 subject to some given constraints are defined to evaluate
the performance of a FOPID controller x = (Kp, Ki, Kd, λ, µ) for the frequency control of an islanded microgrid.

min{F1(x)}, min{F2(x)}, x = (Kp, Ki, Kd, λ, µ) (7)

F1(x) =
∫ Tmax

Tmin

(∆ f )2dt (8)

F2(x) =
∫ Tmax

Tmin

u2dt (9)

s.t.



|PFESS| < PFESSmax, |PBESS| < PBESSmax,
0 < PFC < PFCmax, 0 < PDEG < PDEGmax,
|PFESSr| < PFESSrmax, |PBESSr| < PBESSrmax,
|PFCr| < PFCrmax, |PDEGr| < PDEGrmax,
L ≤ x ≤ U

(10)

where PFESSmax, PBESSmax, PFCmax, PDEGmax are the output saturations (in pu) of PFESS, PBESS, PFC, PDEG,
respectively; PFESSr, PBESSr, PFCr, PDEGr are the rate of PFESS, PBESS, PFC, PDEG, respectively; PFESSrmax,
PBESSrmax, PFCrmax, PDEGrmax are the maximum constraints of PFESSr, PBESSr, PFCr, PDEGr, respectively; and L
and U represent the lower and upper bounds of the FOPID controller parameters, respectively.

In this paper, a multi-objective extremal optimization based FOPID method, called MOEO-FOPID,
is proposed to solve the aforementioned multi-objective optimization problem. Figure 4 presents the
flowchart of the proposed MOEO-FOPID-based frequency controller optimal design algorithm for an
islanded microgrid.
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in the MOEO-FOPID algorithm, including the maximum number of iterations Imax, the maximum size
of external archive Amax, and the shape parameter q used in mutation operation.

Output: The best non-dominated solutions for the designed FOPID-based frequency controller and
the corresponding best Pareto front found so far.

Step 1: Generate a real-coded solution S = (s1,s2, s3, s4, s5) representing the control parameters of a
FOPID-based frequency controller (Kp, Ki, Kd, λ, µ) in an islanded microgrid subject to the
given constraints (10) randomly, and set the external archive A as empty and SC = S.

Step 2: By mutating each variable si (i = 1, 2, 3, 4, 5) of the current solution SC one-by-one based on
multi-non-uniform mutation (MNUM)while keeping other variables unchanged, generate five
candidate solutions{Si, i = 1, 2, 3, 4, 5}. The detailed process is formulated as follows:

Si =

{
SC + (U− SC)× A(t), if r < 0.5,
SC + (SC − L)× A(t), if r ≥ 0.5.

(11)

A(t) =
[

r1

(
1− IC

Imax

)]q
(12)

where IC is the number of current iterations in the optimization process, both r and r1 are
uniform random numbers between 0 and 1, and q is the shape parameter used in MNUM.



Energies 2017, 10, 1502 8 of 18

Step 3: Rank five solutions {Si, i = 1, 2, 3, 4, 5} based on the non-dominated sorting strategy, where the
two objective functions F1 and F2 are evaluated by Definition 2.

Step 4: If the number of non-dominated solutions is just one, then select the only non-dominated
solution Snd as the new solution SN; otherwise, select one from several non-dominated
solutions randomly, and set this one as the new solution SN.

Step 5: Update A by algorithm “Update_Archive (SN, Achieve)” [37] shown in Algorithm 1.
Step 6: Accept SC = SN unconditionally.
Step 7: If the predefined stopping criteria, e.g., maximum number of iterations Imax is met, then return

to Step 2; otherwise, go to Step 8.
Step 8: Return external archive A as the best non-dominated solutions for the FOPID controller for

the frequency control of an islanded microgrid, and output the best Pareto front found so far
and the corresponding control performance.

Algorithm 1 The Pseudo-Code of Algorithm “Update_Archive (SN, Archive)” [37]

1: Begin
2: If the solution SN is dominated by at least one member of the archive, then
3: The archive keeps unchanged
4: Else if some members of archive are dominated by SN, then
5: Remove all the dominated members from the archive and add SN to the archive
6: End if
7: Else
8: If the number of archive is smaller than Amax, i.e., the predefined maximum number of the archive, then
9: Add SN to the archive
10: Else
11: If SN resides in the most crowded region of the archive, then
12: The archive keeps unchanged
13: Else
14: Replace the member in the most crowded region of the archive by SN

15: End if
16: End if
17: End if
18: End

5. Simulation Results

5.1. Performance Comparison in Nominal Microgrid Conditions

This section presents the simulation results for an islanded microgrid in order to demonstrate the
superiority of the proposed MOEO-FOPID method to the NSGA-II-based FOPID/PID [20,38] and the
reported single-objective-optimization-algorithms-based FOPID method [22,25,40]. The parameters of
the output saturations and rate constraints for the different elements in this microgrid are set as
PFESSmax = PBESSmax = 0.11, PFCmax = 0.48, PDEGmax = 0.45, PFESSrmax = PBESSrmax = 0.05, PFCrmax = 1,
and PDEGrmax = 0.5. For the sake of fair comparison, the lower and upper bounds of the
FOPID controller parameters are set the same as in [25]: L = [0, 0, 0, 0, 0] and U = [5, 5, 5, 2, 2].
The parameters for MOEO and NSGA-II used in the experiments are shown in Table 3.Note that
there are three main differences between MOEO-FOPID and NSGA-II-FOPID. Firstly, MOEO-FOPID
adopts an individual-based iterated optimization mechanism, while NSGA-II-FOPID uses a
population based optimization mechanism. Secondly, MOEO-FOPID has only selection and
mutation operations while NSGA-II-FOPID has more operations including selection, crossover and
mutation. Thirdly, MOEO-FOPID has fewer adjustable parameters than NSGA-II-FOPID. As a
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consequence, MOEO-FOPID is considered to be simpler than NSGA-II-FOPID from the perspective of
algorithm design.

Table 3. The parameters for MOEO-FOPD/PID and NSGA-II-FOPID/PID used in the experiments.

Algorithm Parameters

NSGA-II-FOPID/PID [20,38]
Imax = 500, population size NP = 30, crossover probability pc = 0.9,
mutation probability pm = 1/n, distribution indexes ηc = 20and ηm = 20
for simulated binary crossover (SBX) and PLM

MOEO-FOPID/PID Imax = 500, Amax = 30, q = 6

The statistical performance metrics of each algorithm were obtained by 30 independent runs.
Table 4 shows the statistical results for the Pareto fronts obtained by MOEO and NSGA-II for the
microgrid. More specifically, these metrics include the minimum, median, maximum, mean values
and standard deviation of the hypervolume indicator (HI), spacing metric (SP), inertia-based diversity
metric (I), and inverted generational distance (IGD), which are defined in [27,39]. It is obvious that
MOEO-FOPID performed best in terms of the minimum, median, maximum, mean values of all the
four metrics.

Table 4. Comparison of the statistical performance metric for Pareto fronts obtained by
MOEO-FOPD/PID and NSGA-II-FOPID/PID for microgrid.

Performance Metrics Algorithm Minimum Median Maxmum Mean Standard
Deviation

Hypervolume
indicator (HI, min)

NSGA-II-PID 1.83 × 10−4 2.07 × 10−4 2.26 × 10−4 2.06 × 10−4 1.15 × 10−5

MOEO-PID 1.26 × 10−4 2.16 × 10−4 3.92 × 10−4 2.24 × 10−4 7.78 × 10−5

NSGA-II-FOPID 1.56 × 10−4 2.03 × 10−4 3.35 × 10−4 2.13 × 10−4 5.08 × 10−5

MOEO-FOPID 1.04 × 10−4 1.63 × 10−4 2.20 × 10−4 1.63 × 10−4 2.95 × 10−5

Spacing metric
(SP, max)

NSGA-II-PID 5.41 × 10−3 9.93 × 10−3 1.50 × 10−2 1.00 × 10−2 2.69 × 10−3

MOEO-PID 4.28 × 10−3 1.20 × 10−2 2.32 × 10−2 1.26 × 10−2 5.43 × 10−3

NSGA-II-FOPID 6.93 × 10−3 1.59 × 10−2 2.84 × 10−2 1.52 × 10−2 4.56 × 10−3

MOEO-FOPID 1.91 × 10−3 4.24 × 10−3 7.97 × 10−3 4.61 × 10−3 1.22 × 10−3

Inertia-based
diversity metric

(I, max)

NSGA-II-PID 7.07 × 10−2 0.107 0.120 0.103 1.30 × 10−2

MOEO-PID 6.50 × 10−2 6.15 × 10−2 4.35 × 10−2 6.01 × 10−2 4.28 × 10−3

NSGA-II-FOPID 0.131 0.103 5.78 × 10−2 0.103 2.14 × 10−2

MOEO-FOPID 0.135 0.117 8.10 × 10−2 0.113 1.69 × 10−2

Inverted generational
distance (IGD, min)

NSGA-II-PID 7.00 × 10−3 8.08 × 10−3 9.58 × 10−3 8.09 × 10−3 6.16 × 10−4

MOEO-PID 9.52 × 10−3 1.07 × 10−2 1.38 × 10−2 1.08 × 10−2 9.43 × 10−4

NSGA-II-FOPID 3.43 × 10−3 5.52 × 10−3 9.22 × 10−3 5.66 × 10−3 1.17 × 10−3

MOEO-FOPID 3.16 × 10−3 4.39 × 10−3 1.20 × 10−2 4.68 × 10−3 1.59 × 10−3

The best Pareto fronts for the FOPID/PID controllers, corresponding to the best HI values
obtained by NSGA-II and MOEO, are compared in Figure 5. Clearly, the Pareto front obtained by
MOEO-FOPID is closer to the “real” Pareto front. Furthermore, Table 5 shows the best FOPID/PID
controller parameters and the best fitness values corresponding to the best HI performance obtained
by MOEO and NSGA-II. It is evident that MOEO-FOPID has the best fitness values of F1 and F2.
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Figure 5. Comparison of Pareto fronts for PID/FOPID controllers obtained by NSGA-II and MOEO for
the microgrid under the minimum values of HI.

Table 5. Best FOPID/PID controller parameters and performance obtained by MOEO and NSGA-II
under the minimum values of HI.

Algorithm F1 F2 Kp Ki Kd λ µ

NSGA-II-PID 8.3877 × 10−4 1.4204 × 10−3 4.78192 4.76904 0.95045 1 1
MOEO-PID 8.1589 × 10−4 1.4250 × 10−3 4.53357 4.85426 1.05329 1 1

NSGA-II-FOPID 7.8307 × 10−4 1.4198 × 10−3 5 4.99475 0.54391 1.00950 1.20039
MOEO-FOPID 7.2219 × 10−4 1.4174 × 10−3 4.90695 4.16141 0.78012 1.00730 1.13911

Figure 6 compares the frequency deviation (∆f ), control signal (u) and deficit power deviation
(∆P) of the microgrid with the best FOPID/PID controllers obtained by NSGA-II and MOEO. Clearly,
MOEO-FOPID performed better than NSGA-II-FOPID/PID and MOEO-PID due not only to its smaller
frequency fluctuation, grid power deficit and control signal, but also to its faster transient response.
Similarly, the individual powers of the different components of the microgrid with the best FOPID/PID
controllers obtained by NSGA-II and MOEO are compared in Figure 7. It is clear that the individual
power fluctuations obtained by MOEO-FOPID are also the smallest.

2017, 10, 1502 10 of 18 

 

 
Figure 5. Comparison of Pareto fronts for PID/FOPID controllers obtained by NSGA-II and MOEO 
for the microgrid under the minimum values of HI. 

Table 5. Best FOPID/PID controller parameters and performance obtained by MOEO and NSGA-II 
under the minimum values of HI. 

Algorithm F1 F2 Kp Ki Kd λ μ 
NSGA-II-PID 8.3877 × 10−4 1.4204 × 10−3 4.78192 4.76904 0.95045 1 1 
MOEO-PID 8.1589 × 10−4 1.4250 × 10−3 4.53357 4.85426 1.05329 1 1 

NSGA-II-FOPID 7.8307 × 10−4 1.4198 × 10−3 5 4.99475 0.54391 1.00950 1.20039 
MOEO-FOPID 7.2219 × 10−4 1.4174 × 10−3 4.90695 4.16141 0.78012 1.00730 1.13911 

Figure 6 compares the frequency deviation (Δf), control signal (u) and deficit power deviation 
(ΔP) of the microgrid with the best FOPID/PID controllers obtained by NSGA-II and MOEO. Clearly, 
MOEO-FOPID performed better than NSGA-II-FOPID/PID and MOEO-PID due not only to its 
smaller frequency fluctuation, grid power deficit and control signal, but also to its faster transient 
response. Similarly, the individual powers of the different components of the microgrid with the 
best FOPID/PID controllers obtained by NSGA-II and MOEO are compared in Figure 7. It is clear 
that the individual power fluctuations obtained by MOEO-FOPID are also the smallest. 

 
(a) Frequency deviation ∆f

0.5 1 1.5 2 2.5 3

x 10
-3

1.4

1.405

1.41

1.415

1.42

1.425

1.43

1.435

1.44

1.445
x 10

-3

F1

F 2

 

 

NSGA-II-PID
NSGA-II-FOPID
MOEO-PID
MOEO-FOPID

100 120 140 160 180 200 220
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Δf

Time (Second)

 

 
NSGA-II-PID
NSGA-II-FOPID
MOEO-PID
MOEO-FOPID

170.6 170.8 171 171.2 171.4
-0.1

-0.05

0

 

 

190.6 190.8 191 191.2 191.4

0

0.02

0.04

0.06

 

 

150.6 150.8 151 151.2
0

10

x 10
-3

 

 

130.5 131 131.5
0

10

20
x 10

-3

 

 

Figure 6. Cont.



Energies 2017, 10, 1502 11 of 182017, 10, 1502 11 of 18 

 

 
(b) Control signal u

 
(c) Deficit power deviation ∆P

Figure 6. Comparison of frequency deviation ∆f (a), control signal u(b) and deficit power deviation 
∆P(c) of the test microgrid with the best FOPID/PID controllers obtained by the NSGA-II and MOEO 
algorithms. 

 
(a) Power of FESS labeled as PFESS

100 120 140 160 180 200 220
-0.5

0

0.5

1

u

Time (Second)

 

 
NSGA-II-PID
NSGA-II-FOPID
MOEO-PID
MOEO-FOPID

170.5 171 171.5
-0.5

0

0.5

 

 

190.6 190.8 191 191.2 191.4

0.2

0.4

0.6

0.8

 

 

100 120 140 160 180 200 220
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

ΔP

Time (Second)

 

 

NSGA-II-PID
NSGA-II-FOPID
MOEO-PID
MOEO-FOPID

190.5 191 191.5

-0.05

0
0.05

0.1

 

 

170.6 170.8 171 171.2 171.4
-0.2

-0.1

0

0.1

 

 

100 120 140 160 180 200 220
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

P
FE

S
S

Time (Second)

 

 
NSGA-II-PID
NSGA-II-FOPID
MOEO-PID
MOEO-FOPID

150 150.2 150.4 150.6 150.8
0
5

10

x 10
-3

 

 

170 170.2 170.4 170.6 170.8
-0.08

-0.06

-0.04

-0.02

0

 

 

190 190.2 190.4 190.6 190.8
0

0.02

0.04

 

 

130 130.2 130.4 130.6 130.8
0
5

10

x 10
-3

 

 

Figure 6. Comparison of frequency deviation ∆f (a), control signal u (b) and deficit power deviation
∆P (c) of the test microgrid with the best FOPID/PID controllers obtained by the NSGA-II and
MOEO algorithms.
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Figure 7. Comparison of individual powers in the different components of the test microgrid with the
best FOPID/PID controllers obtained by the NSGA-II and MOEO algorithms.

It should be noted that the FOPID based on Kriging-based surrogate modeling, called KSM-FOPID,
with a spline correlation model has been demonstrated to be superior to KSM-FOPID with other
correlation models, GA-FOPID and GA-PID [25]. In order to further demonstrate the effectiveness
of MOEO-FOPID, Table 6 presents the comparative results of MOEO-FOPID with recently reported
single-objective evolutionary algorithms, e.g., KSM-FOPID [25] and real-coded population-EO-based
FOPID called RPEO-FOPID [22]. In this experiment, the population size and maximum generations
used in RPEO-FOPID are the same as KSM-FOPID, which are set as 10 and 15, respectively, and the
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mutation parameter used in RPEO-FOPID is set as two. In the sake of fair comparison, the performance
metric J was adopted as the same as that defined in [25].

J =
∫ Tmax=220

Tmin=100

[
w(∆ f )2 + ((1− w)/Kn)u2

]
dt (13)

where the weighted parameter w is set as 0.7, and the normalizing constant Kn is set as 104.

Table 6. Best FOPID controller parameters and performance obtained by MOEO-FOPID, RPEO-FOPID
and KSM-FOPID.

Algorithm Jmin Kp Ki Kd λ µ

KSM-FOPID [25] 0.00382 0.950 4.350 1.250 0.660 0.700
RPEO-FOPID [22] 0.00181 3.7923 3.0424 0.5407 1.3496 1.0358

MOEO-FOPID 0.00051 4.9070 4.1614 0.7801 1.0073 1.1391

Figure 8 presents the comparison of frequency deviation, control signal and power deviation
of the microgrid with FOPID controllers obtained by MOEO, KSM and RPEO. The corresponding
individual powers of different components are shown in Figure 9. It is clear that MOEO-FOPID
performed better than KSM-FOPID [25] and RPEO-FOPID [22].

2017, 10, 1502 13 of 18 

 

( )max

min

220 2 2

100
( ) (1 ) /

T

nT
J w f w K u dt

=

=
 = Δ + −   (13) 

where the weighted parameter w is set as 0.7, and the normalizing constant Kn is set as 104.  

Table 6. Best FOPID controller parameters and performance obtained by MOEO-FOPID, 
RPEO-FOPID and KSM-FOPID. 

Algorithm Jmin Kp Ki Kd λ μ 
KSM-FOPID [25] 0.00382 0.950 4.350 1.250 0.660 0.700 
RPEO-FOPID [22] 0.00181 3.7923 3.0424 0.5407 1.3496 1.0358 

MOEO-FOPID 0.00051 4.9070 4.1614 0.7801 1.0073 1.1391 

Figure 8 presents the comparison of frequency deviation, control signal and power deviation of 
the microgrid with FOPID controllers obtained by MOEO, KSM and RPEO. The corresponding 
individual powers of different components are shown in Figure 9. It is clear that MOEO-FOPID 
performed better than KSM-FOPID [25] and RPEO-FOPID [22]. 

 
(a) Frequency deviation ∆f

 
(b) Control signal u

100 120 140 160 180 200 220
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Δf

Time (Second)

 

 

KSM-FOPID
RPEO-FOPID
MOEO-FOPID

100 120 140 160 180 200 220

-0.2

0

0.2

0.4

0.6

0.8

1

u

Time (Second)

 

 

KSM-FOPID
RPEO-FOPID
MOEO-FOPID

Figure 8. Cont.



Energies 2017, 10, 1502 14 of 182017, 10, 1502 14 of 18 

 

 
(c) Deficit power deviation ∆P

Figure 8. Comparison of frequency deviation ∆f(a), control signal u(b) and deficit power deviation 
∆P(c) of the test microgrid with FOPID controllers obtained by the MOEO algorithm and 
single-objective optimization algorithms including KSM and RPEO. 

 
Figure 9. Comparison of individual powers in different components of the test microgrid with 
FOPID controllers obtained by MOEO and single-objective optimization algorithms including KSM 
and RPEO. 

5.2. Robustness Tests under Perturbed System Parameters 

It has been demonstrated that the parametric robustness of FOPID controllers is better than that 
of PID controllers for the frequency control of an islanded microgrid [25]. In this subsection, the 
robustness of the best FOPID controllers obtained by MOEO and NSGA-II under perturbed system 
parameters are compared. Figures 10 and 11 present the comparison of frequency deviation under 
both increased and decreased system parameters, e.g., D, H, R, TFC, Tg and Tt, respectively. Clearly, 
the frequency deviations with the FOPID controller optimized by MOEO were still smaller than 
those by NSGA-II in all the cases. In other words, MOEO-FOPID is superior to NSGA-II in terms of 
parametric robustness. 

  

100 120 140 160 180 200 220
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

ΔP

Time (Second)

 

 

KSM-FOPID
RPEO-FOPID
MOEO-FOPID

100 120 140 160 180 200 220

-0.05

0

0.05

P
FE

S
S

Time (Second)
100 120 140 160 180 200 220

-0.05

0

0.05

P
B

E
S

S

Time (Second)

100 120 140 160 180 200 220
0.1

0.2

0.3

0.4

Time (Second)

P
FC

100 120 140 160 180 200 220

0.25

0.3

0.35

0.4

Time (Second)

P
D

E
G

 

 

KSM-FOPID RPEO-FOPID MOEO-FOPID

Figure 8. Comparison of frequency deviation ∆f (a), control signal u (b) and deficit power deviation ∆P
(c) of the test microgrid with FOPID controllers obtained by the MOEO algorithm and single-objective
optimization algorithms including KSM and RPEO.

2017, 10, 1502 14 of 18 

 

 
(c) Deficit power deviation ∆P

Figure 8. Comparison of frequency deviation ∆f(a), control signal u(b) and deficit power deviation 
∆P(c) of the test microgrid with FOPID controllers obtained by the MOEO algorithm and 
single-objective optimization algorithms including KSM and RPEO. 

 
Figure 9. Comparison of individual powers in different components of the test microgrid with 
FOPID controllers obtained by MOEO and single-objective optimization algorithms including KSM 
and RPEO. 

5.2. Robustness Tests under Perturbed System Parameters 

It has been demonstrated that the parametric robustness of FOPID controllers is better than that 
of PID controllers for the frequency control of an islanded microgrid [25]. In this subsection, the 
robustness of the best FOPID controllers obtained by MOEO and NSGA-II under perturbed system 
parameters are compared. Figures 10 and 11 present the comparison of frequency deviation under 
both increased and decreased system parameters, e.g., D, H, R, TFC, Tg and Tt, respectively. Clearly, 
the frequency deviations with the FOPID controller optimized by MOEO were still smaller than 
those by NSGA-II in all the cases. In other words, MOEO-FOPID is superior to NSGA-II in terms of 
parametric robustness. 

  

100 120 140 160 180 200 220
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

ΔP

Time (Second)

 

 

KSM-FOPID
RPEO-FOPID
MOEO-FOPID

100 120 140 160 180 200 220

-0.05

0

0.05

P
FE

S
S

Time (Second)
100 120 140 160 180 200 220

-0.05

0

0.05

P
B

E
S

S

Time (Second)

100 120 140 160 180 200 220
0.1

0.2

0.3

0.4

Time (Second)

P
FC

100 120 140 160 180 200 220

0.25

0.3

0.35

0.4

Time (Second)

P
D

E
G

 

 

KSM-FOPID RPEO-FOPID MOEO-FOPID

Figure 9. Comparison of individual powers in different components of the test microgrid with FOPID
controllers obtained by MOEO and single-objective optimization algorithms including KSM and RPEO.

5.2. Robustness Tests under Perturbed System Parameters

It has been demonstrated that the parametric robustness of FOPID controllers is better than
that of PID controllers for the frequency control of an islanded microgrid [25]. In this subsection,
the robustness of the best FOPID controllers obtained by MOEO and NSGA-II under perturbed
system parameters are compared. Figures 10 and 11 present the comparison of frequency deviation
under both increased and decreased system parameters, e.g., D, H, R, TFC, Tg and Tt, respectively.
Clearly, the frequency deviations with the FOPID controller optimized by MOEO were still smaller
than those by NSGA-II in all the cases. In other words, MOEO-FOPID is superior to NSGA-II in terms
of parametric robustness.
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Figure 11. Comparison of the robustness against decreased system parameters obtained by
MOEO-FOPID and NSGA-II-FOPID.
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6. Conclusions

In this paper, an effective fractional order frequency PID controller design method called
MOEO-FOPID was proposed for an islanded microgrid, by using a multi-objective extremal
optimization algorithm to improve the efficient operation of distributed generations and energy
storage devices. The simulation studies for the case of islanded microgrid showed that the proposed
MOEO-FOPID outperforms NSGA-II-based FOPID/PID controllers [20,38], a MOEO-based PID
controller, and also other reported single-objective optimization methods, e.g., Kriging-based surrogate
modeling and real-coded population-EO-based FOPID controllers [22,25] in terms of smaller frequency
deviation, grid power deficit, and control signal. Furthermore, MOEO-FOPID had stronger robustness
against perturbed system parameters than NSGA-II-based FOPID controllers. The reasons for the
superiority of MOEO-FOPID compared to NSGA-II-FOPID are that MOEO-FOPID has an efficient
individual based iterated optimization mechanism with simpler operations and it has more possibility
to search the real Pareto-optimal set. Consequently, the proposed MOEO-FOPID can be considered
as a competitive multi-objective optimization method for the fractional order frequency control of an
islanded microgrid from the perspective- of the complexity of algorithm design and computational
efficiency. Of course, the frequency control performance of an islanded microgrid can be further
improved by other improved multi-objective evolutionary algorithms and advanced control structures,
e.g., robust loop shape controllers and model predictive controllers. Furthermore, the basic idea
behind the proposed MOEO-FOPID method can be extended to the optimal control of more complex
power systems.
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