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Abstract: The high-frequency isolation (HFI) charging DC port can serve as the interface between
unipolar/bipolar DC buses and electric vehicles (EVs) through the two-power-stage system structure
that combines the front-end three-level converter with the back-end logical link control (LLC)
resonant converter. The DC output voltage can be maintained within the desired voltage range by
the front-end converter. The electrical isolation can be realized by the back-end LLC converter, which
has the bus converter function. According to the three-level topology, the low-voltage rating power
devices can be adapted for half-voltage stress of the total DC grid, and the PWM phase-shift control
can double the equivalent switching frequency to greatly reduce the filter volume. LLC resonant
converters have advance characteristics of inverter-side zero-voltage-switching (ZVS) and rectifier-side
zero-current switching (ZCS). In particular, it can achieve better performance under quasi-resonant
frequency mode. Additionally, the magnetizing current can be modified following different DC
output voltages, which have the self-adaptation ZVS condition for decreasing the circulating current.
Here, the principles of the proposed topology are analyzed in detail, and the design conditions of
the three-level output filter and high-frequency isolation transformer are explored. Finally, a 20 kW
prototype with the 760 V input and 200–500 V output are designed and tested. The experimental results
are demonstrated to verify the validity and performance of this charging DC port system structure.

Keywords: electric vehicle station; charging DC port; high-frequency isolation (HFI); three-level
buck converter; LLC resonant converter

1. Introduction

As solutions of energy crisis and environmental pollution, EVs that can run on alternative
resources of energy have increasingly attracted attention for investigations of decreasing fossil fuel
consumption and reducing greenhouse gas emissions [1,2]. The commercial success of EVs relies
heavily on the presence of high-efficiency charging stations to increase mileage and shorten charging
time [3–5]. Electric vehicle technologies involved with hybrid electric vehicles (HEVs), plug-in hybrid
electric vehicles (PHEVs), and plug-in pure electric vehicles (PPEVs), such as the Toyota Prius and
Lexus RX 400h, have been commercialized and are available in the market. A large number of
high-power charging stations need to be constructed to solve consumers’ need for long-distance
transport with electric vehicles (EVs). The construction of these facilities is a key factor in attracting
more consumers to the use of EVs [6–10].

Recently, a distributed generation system, including the solar photovoltaic and wind power
generation system as green energy, is playing an increasingly important role in energy structures.
The combination of renewable energy sources with EV charging stations and energy storage systems is
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inevitable [11–15]. A high-efficiency, high-power-density, high-reliability, and cost-effective charging
station, depicted in Figure 1, has been designed [16–18]. Additionally, a power electronics transformer
(PET) can serve as the interface between medium- and low-voltage levels [19].
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Chargers can be classified by two types—the on-board charger, located on the vehicle itself,
and the off-board charger, which is distinct from the actual vehicle—each of which can be classified
into three power levels reflecting charging characteristics shown in Table 1 by the Society of Automotive
Engineers (SAE) [20–23]. It can be found that the on-board charger can draw AC current from any
available power outlet and can efficiently charge the batteries. However, drawbacks, including a long
charging time, low efficiency, and low reliability, are apparent. In addition, the on-board charger
located on the vehicles can add volume and weight. Since a normal 3.3 kW charging power requires
a 6–8 h charging time, most users have no choice but to recharge overnight. The off-board charger,
called a fast-charger, can directly draw power from the DC bus, which can provide sufficient power
for vehicles within a short period of time. For a normal 50 kW charging power, the Nissan Leaf,
with its 24 kWh battery pack, takes only half an hour to recharge. The off-board charger has certain
advantages compared with the on-board charger, such as a high power density and a high efficiency.
The high-frequency-isolated DC-DC converters with a high power capacity are preferable to EVs’
off-board chargers in terms of satisfying the safety requirements of charging multiple EVs within an
acceptable period of time [24–30].

Table 1. Converter specifications and requirements.

Charger Location Level 1 Level 2 Level 3

On-board chargers
Vac 120 V 240 V -
Iac 12 A 80 A -

Plevel 1.4 kW <19.2 kW >20 kW

Off-board chargers
Vdc (V) Vdc ≤ 450 Vdc ≤ 450 Vdc ≤ 600
Idc (A) Idc ≤ 80 Idc ≤ 200 Idc ≤ 400

Plevel (kW) Plevel ≤ 36 Plevel ≤ 90 Plevel ≤ 240

In recent years, phase-shift full-bridge (PSFB) has become a popular topology for charging,
but there are some obvious defects for a traditional zero-voltage-switching (ZVS) PSFB DC-DC
converter. One is that ZVS cannot be achieved under light load conditions due to the limited ZVS
range for lagging-leg switches. Another defect is the excessive conduction loss caused by the primary
reflected current from the output inductor current [30]. The dual active bridge (DAB) converter is also
a useful topology for high-power applications. It is difficult to achieve the ZVS of all active switches in
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the DAB converter, as the switch stress is raised in this condition. Although some switching control
strategies can improve this problem, this complex modulation increases the burden for the controller
and for researchers [31–33].

This paper proposes a high-frequency isolation (HFI) charging DC port topology. It can serve as the
interface between unipolar/bipolar DC buses and electric vehicles (EVs) through the two-power-stage
system structure, which combines a front-end three-level buck converter with a back-end LLC resonant
converter. The DC output voltage can be regulated within the desired voltage range by the front-end
three-level buck converter. Zero-voltage switching (ZVS) for the inverter side and zero-current switching
(ZCS) for the rectifier side can be realized by the back-end LLC resonant converter. In Section 2,
principles of the proposed charging port topology are explored in detail. In Section 3, the features
and characteristics are analyzed. In Section 4, the design conditions of the three-level output filter
and high-frequency isolation transformer are explored. In Section 5, a 20 kW prototype is designed
and tested. The experimental results are presented to verify the validity and performance of the
proposed fast-charging DC port system structure.

2. High-Frequency-Isolation Charging Port Topology

The structure of the proposed two-power-stage system for the EV’s HFI charging port is shown
in Figure 2. It combines the front-end three-level buck converter, which has the ability of regulating
the output DC voltage, with the back-end LLC resonant converter, which experiences high-frequency
electrical isolation. Additionally, the input terminals (T, M, B) of the three-level converter can flexibly
fit the bipolar DC bus or unipolar DC bus.
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three-level converter and a back-end LLC resonant converter.

The main features of the system are illustrated as follows:

(1) According to the three-level converter, the low-voltage level rating power switches can be
adapted/selected for the half-voltage stress of total DC bus. Additionally, the proposed system
structure can be practical under high-voltage and high-power conditions.

(2) The PWM phase-shift control for the front-end three-level buck converter can double the
equivalent switching to greatly reduce the intermediate output LC filter volume.

(3) The proposed structure can regulate the DC power balance without extra balancing circuits when
the input terminals (T, M, B) are interfaced with the bipolar DC bus.

(4) The back-end LLC resonant converters have the advance characteristics of zero-voltage switching
(ZVS) of the inverter side and zero-current switching (ZCS) of the rectifier side. In particular,
it can achieve better performance under quasi-resonant frequency mode, which greatly decreases
the loss of switches.
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(5) The magnetizing current of LLC high-frequency transformer can be automatically modified by
following the different DC output voltages, which have the self-adaption ZVS condition for
decreasing the circulating current.

2.1. Front-End Three-Level Buck Converter

Figure 3 shows the circuit diagram of the front-end three-level buck converter, which consists
of two power switches (Q1, Q2) with the freewheeling diodes (Ds1, Ds2), the split DC-link capacitors
(Cin1, Cin2), and the intermediate LC filter (Lf1, Lf2, Cf).
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2.1.1. Operating Principle

As shown in Figure 3, two switches (Q1, Q2) of the three-level buck converter are modulated by
the PWM phase-shift control with the same duty cycle D. Figure 4a shows the converter operating
waveforms for D < 0.5. Figure 4b shows the operating waveforms for D = 0.5, and Figure 4c shows the
operating waveforms for D > 0.5. It can be found in Figure 4 that the equivalent frequency of filter
inductor current iL is twice the device switching frequency. When D = 0.5, this feature can reduce the
output filter volume when the current ripple ∆iL for the filter inductor is nearly zero.
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Figure 5 shows the four operating stages’ ((A) t0–t1, (B) t1–t2, (C) t2–t3, (D) t3–t4) equivalent
circuits for D > 0.5. It can be found that there are three switching modes:

Mode 1: When Q1 is turned on and Q2 is turned off, the generated voltage VAB is half of the DC side
voltage 0.5 Vdc;

Mode 2: When Q1 and Q2 are turned on at the same time, the generated voltage VAB is the total DC
side voltage Vdc;

Mode 3: When Q1 is tuned off and Q2 is turned on, the generated voltage VAB is half the DC side
voltage 0.5 Vdc.
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Figure 6 shows the equivalent circuits of two stages ((A) t0–t1, (B) t1–t2) in the half cycle for
D = 0.5. Q1 and Q2 are conducting alternatively. Hence, the generated voltage VAB is half of the DC
side voltage 0.5 Vdc.
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Figure 7 shows the four operating stages ((A) t0–t1, (B) t1–t2, (C) t2–t3, (D) t3–t4) equivalent circuits
for D < 0.5. The three models are as follows:

Mode 1: When Q1 is turned off and Q2 is turned off at the same time, the generated voltage VAB is 0;
Mode 2: When Q1 is turned off and Q2 is turned on, the generated voltage VAB is half of the DC side

voltage 0.5 Vdc;
Mode 3: When switch Q1 is turned on and Q2 is turned off, the generated voltage VAB is half of the

DC side voltage 0.5 Vdc.
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2.1.2. The Inductor Current Ripple Analysis

The converter output inductor current ripple ∆iL is derived for D > 0.5 and D < 0.5, respectively,
through the operating waveforms, as shown in Figure 4 [34,35].

∆iL =


(1−D)(2D−1)VdcT

2(L1−L2)
D ≥ 0.5

(1−2D)Vdc
2(L1+L2)

DT D < 0.5
(1)

where T is the switching period, and D is the duty cycle.
Thus, the maximum output inductor current ripple ∆iLmax can be expressed as follows:

∆iLmax =
VdcT

16(L1 + L2)
(2)

Figure 8 shows the graph for the relation between the duty cycle D and the output inductor
current ripple ∆iL. As can be seen, the output inductor current ripple can reach the peak value ∆iLmax

for D = 0.75 and D = 0.25, while the output inductor current ripple ∆iL is nearly zero for D = 0.5.
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2.2. Back-End HFI LLC Resonant Converter

The structure of the back-end LLC resonant converter is demonstrated in Figure 9. The structure
consists of the full-bridge inverter, a resonant tank, and a rectifier, which can achieve the high-frequency
isolation (HFI) between the common DC bus and the EVs. The full-bridge inverter contains two parallel
legs with four power switches S1–S4 including their anti-parallel diodes D1–D4 and parallel capacitors
C1–C4. Meanwhile, the resonant tank is composed of the resonant capacitor Cr, the series resonant
inductor Lr, and the high-frequency isolation (HFI) transformer, while the rectifier is composed of four
diodes DR1–DR4. The resonant inductor Lr can be replaced by the leakage inductor of the transformer.
The resonant capacitor Cr can also filter the DC component and prevent DC magnetic bias. The LLC
resonant converters have advance characteristics of zero-voltage switching (ZVS) of inverter side and
zero-current switching (ZCS) of the rectifier side. In particular, it can achieve better performance under
quasi-resonant frequency mode and greatly reduce switching losses and improving system efficiency.
The features of the back-end LLC resonant converter stated above have great advantages for power
electronics transformer (PET) applications under high-voltage and high-power conditions.
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2.2.1. Operating Principle

The operating principle and the key waveforms of the proposed back-end LLC resonant is
shown in Figure 10, including the gate signals of active switches (S1–S4), the series resonant inductor
current ipri, the magnetizing inductor current im, and the output current isec on the secondary side.
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As for the resonant circuit, there are eight operation modes dependent on the direction of the
primary current ipri and the inverter working conditions.

(1) Mode 1 (t0–t1)

This mode begins when S2 and S3 are turned off at t0, when the resonant inductor Lr current ipri

flows in the negative direction. Meanwhile, the C1 and C4 discharge until Vce1 and Vce4 reach zero and
the primary current ipri decreases. In this period, the magnetizing inductor current im is equivalent
to ipri; thus, there is no induced current on the secondary side. The stored energy acquired by the
output capacity CO is transferred to the load.

(2) Mode 2 (t1–t2)

In this mode, the ipri is still negative and will flow via the anti-parallel diodes of D1 and D4.
The ZVS condition is achieved for S1 and S4. The magnetizing inductor current im increases linearly
when isec begins to increase.

(3) Mode 3 (t2–t3)

This mode begins when the resonant inductor current ipri becomes positive. Now, the magnetizing
inductor current im linearly increases with the resonant Lr while the resonant capacitor Cr works in a
series-resonant condition. This mode ends when im and ipri are equal at t3. At the same time, the output
current isec decays to zero. Both rectifier diodes DR1 and DR4 are turned off and ZCS is achieved.

(4) Mode 4 (t3–t4)

This mode begins when the resonant inductor current ipri is equal to the magnetizing inductor
current im at t3, and both of them increase linearly while the isec is equal to zero. In this mode,
the output is separated from the high-frequency transformer and the stored energy acquired by the
output capacity CO is transferred to the load. This mode ends when S1 and S4 are turned off at t4.

For the next half cycle, the operation is opposite to the analysis above.
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2.2.2. Voltage Gain Characteristics of the LLC Resonant Converter

As can be seen from Figure 11, the equivalent circuit diagram works under quasi-resonant
frequency, in which Req is equivalent to the AC load of DC load R. The output DC load R is replaced
by the equivalent AC load Req expressed as follows [36]:

Req =
8n2R

π2 (3)

where n is the transformer turn ratio.
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To simplify the analysis, the input voltage can be equivalent to a square-wave voltage source
Usquare, which needs to be Fourier-transformed:

Usquare(ωt) =
∞

∑
k=1

usin(kωt) =
4Um

π
(sin ωt +

1
3

sin 3ωt + · · · ) (4)

Sinusoidal steady-state analysis is required for the equivalent electrical circuit. The output voltage
.

Ukout under the kω frequency condition can be obtained by

.
Ukout =

.
Um(xLm//Req)

XCr + XLr + (XLm//Req)
=

Usinkω
jkωLmReq

jkωLm+Req

1
jkωCr

+ jkωLr +
jkωLmReq

jkωLm+Req

(5)

Then, the instantaneous value of the output voltage uout(t) is given by

uout(t) =
∞

∑
k=1

ukout(kωt) (6)

The RMS of output voltage Uout yields

Uout =
√

U2
1out + U2

2out + U2
3out + · · · (7)

Hence, the LLC resonant converter voltage gain G is

G =
Uout

Um
(8)

where Um is the RMS of the square-wave voltage source.
The value of Lr is the intrinsic parameter of the transformer, and the values of Lm and Cr are

calculated by Equation (11). An LLC resonant converter with a 44 kHz resonant frequency has been
designed, and the key parameters are Lr = 9.7 µH, Lm = 230 µH, and Cr = 1.32 µH. The experimental
voltage gain characteristics of the LLC resonant converter under different load scenarios are shown
in Figure 12 through the frequency response analyzer (VENABLE Model 3120). As can be observed
in Figure 12, the LLC resonant converter shows the voltage gain characteristics, which are almost
independent of the load when the switching frequency f s is around the resonant frequency f r called
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a quasi-resonant frequency. This is a distinct advantage of LLC resonant converter compared to the
other DC-DC converters.
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3. Features and Characteristics

3.1. Three-Level Buck Converter Working at Higher DC Modulation Index

The three-level buck converter is placed in front of the LLC resonant converter, which can help
to obtain the desired output voltage with the higher modulation index D1 expressed in Equation (9)
comparison to the other DC-DC converters:

D1 =
Vo

Vdc
n (9)

The DC modulation index D2 of the traditional DC converter given by

D2 =
Vo

Vdc
(10)

where Vo is the output voltage, Vdc is the input voltage, and n is the transformer turn ratio. A step-down
transformer (n > 1) has been used; hence, D1 > D2.

Taking the input voltage Vdc = 760 V and the output voltage Vo range from 200 to 500 V of the
HFI DC–DC converter as an example. If n = 760/500, after the aforementioned calculation, the range
of DC modulation index D1 is from 0.4 to 1, while the range of the DC modulation index D2 is from
0.26 to 0.65. Thus, the front-end three-level buck converter working at higher DC modulation index
increases the voltage utilization ratio and improves efficiency.

3.2. The Proposed DC Charging Port Having Different Power Balancing Capability for a Bipolar DC Bus

The split DC-link capacitors (Cin1, Cin2) connected on three-level buck converter are used as
the interface between the bipolar DC buses. If there is a power imbalance in the bipolar DC bus,
changing the DC modulation index of the upper and lower legs can balance the power between the
DC buses. Figure 13 shows a diagram of power balance management. If the power on the positive DC
side is higher than the negative DC side, it is necessary to increase the DC modulation index of the
upper leg and reduce the DC modulation index of the lower leg. Therefore, the fast charger discharges
more power from the positive to balance the bipolar DC bus. Alternatively, if the power on the positive
DC side is less than the power on the negative DC side, it can balance the bipolar DC bus by adjusting
the modulation index of the upper and lower legs.
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3.3. LLC Resonant Converter Having ZVS Conditions with Different Magnetizing Current at Different
Output Voltages

There is a condition for achieving ZVS:
The energy stored in the magnetizing inductor is larger than the energy stored in the switch

parallel capacitance. According to [37], a generalized expression for magnetizing inductance is
derived as

Lm <
vin

Nvout
· td

16C1 f
(11)

where td is the dead-time interval, N is the ratio of transformer, and C1 is the parasitic capacitance.
The structure of the proposed HFI charging port is shown in Figure 2. When the DC modulation

index of front-end three-level buck converter was charged, the middle voltage Vm will also be changed,
causing the magnetizing inductor current im to change. The simulation waveforms of magnetizing
inductor im under different inverter output voltages (VCD) are shown in Figure 14. It can be clearly
seen that im is changing with VCD, but the ZVS can be achieved by the magnetizing inductor Lm by
drawing energy from the parallel capacitors C1–C4 until the energy stored in the parallel capacitance
discharged thoroughly. This is because the voltage of parallel capacitor Vcex decreases to zero during
the dead time, as the converter has the self-adaption ZVS condition.
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3.4. LLC Resonant Converter Containing Constant Current at Different Output Voltages with the Same
Charging Current Command

As the proposed back-end LLC resonant converter directly transfers power to the EV’s batteries,
the output current remains constant whenever the output voltage changes in constant-current charging
mode. The battery terminal voltage increases when the output current remains constant, while the
input voltage Vm of LLC resonant converter increases along with the output voltage Vo, causing the
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magnetizing inductor current im to also increase. In order to maintain the output current io constant
following the output voltage increasing, the resonant current ipri increases a little along with the
magnetizing inductor current im. Therefore, the resonant current waveform is not affected by the
output voltage Vo. On the contrary, if the LLC resonant converter is placed at the front end and is
connected directly to the DC bus, the LLC input voltage Vin is clamped at the DC bus voltage Vdc.
Thus, it keeps constant and the waveform of magnetizing inductor current is also constant. In this
condition, the input current inevitably changes with the output voltage fluctuates in constant-current
charging mode. Thus, the whole resonant process could not be optimized in different power conditions.

4. Design Conditions

4.1. Front-End Three-Level Buck Converter Inductor Filter Design

The maximum value of the filter inductor current ripple ∆iLmax can typically be 10–30% of the
peak current:

∆iLmax =
VdcT

16(L1 + L2)
(12)

Thus, the total filter inductor Lf can be derived as

Lf = L1 + L2 =
VdcT

16∆ILmax
(13)

The ∆iL reaches the maximum value for the duty cycle D = 0.25 and D = 0.75. A 20 kW prototype
with a 760 V input DC voltage and a 200–500 V output DC voltage with a working frequency of
f s = 20 kHz was built and tested. Based on the calculation above ∆ILmax = 6 A, the filter inductor
L1 = L2 = 200 µH can be derived. The next step is to select a suitable magnetic core and calculate the
desirable turns N.

The front-end three-level buck converter can increase the equivalent switching twice using the
PWM phase-shift control, so the frequency of inductor current ripple is 40 kHz. The formula of the
Kool Mu window area Wa is derived as follows [38]:

Wa Ae ≥
LIrms Ipk

JBmKu
104 (14)

where the utilization rate of the window Ku is 0.5, and the maximum magnetic flux density Bm is 0.45 T.
The current density J is 400 A/cm2. Aε is the cross area of the wire.

Hence, according to Wa1Ae1 > 341 cm4, Wa1Ae1 = 350 cm4 is better for designing a necessary
inductor in the Power Electronics Laboratory based on actual engineering problems. A magnetic core
K8020E060 was selected, of which the window area Wa2 is 11.1 cm2, and the cross-sectional area Ae2 is
3.89 cm2. The number of magnetic core S can be shown to be

S = Wa1 Ae1/Wa2 Ae2 (15)

Based on Equation (15), the number S is 8. The inductor L can be denoted as

L = SALN2 (16)

where AL is 190 nH; thus, the number of turns N = 17.
The experimental filter inductor prototype in accordance with the theoretical analysis mentioned

above is presented in Figure 15.
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4.2. Back-End LLC Converter ZVS Condition

For the back-end LLC resonant converter switches (S1–S4), the ZVS condition can satisfy from
zero to full-load conditions because the magnetizing current im shown in Equation (17) is independent
of the loads:

im =
Vin
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The input voltage Vin of the LLC resonant converter is clamped to the front-end buck converter
regulated by the DC modulation index. The energy stored in the magnetizing inductor is sufficient for
achieving ZVS for switches (S1–S4) within the voltage range. In this condition, another key point is
regulating the dead time to satisfy the condition under which the energy stored in parallel capacitance
can decay thoroughly.

4.3. High Frequency LLC Transformer Design

The high-frequency electrical isolation can be realized by the high-frequency transformer, which is
the main component of the back-end LLC resonant converter with the bus converter function. The turn
ratio n and the number of turns N are the key parameters for designing a high-frequency transformer.
A 20 kW prototype with a 760 V input and a 200–500 V output DC voltages with a working frequency
f s = 40 kHz was designed, so the turn ratio n (760/500) was adopted. The peak value of input voltage
E1 can be calculated as follows:

E1 = 4 f N1Bm Acore (18)

where N1 is number of turns on the primary side, Acore is the cross-sectional area of the main magnetic
circuit of the magnetic core, Bm is the maximum flux density, and f is the working frequency.

Thus, the number of turns on the secondary side N2 can be obtained:

n =
N1

N2
(19)

The experimental high-frequency LLC transformer is presented in Figure 16.
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5. Experimental Results

The 20 kW prototype with an input voltage of 760 V and an 200–500 V output voltage,
which integrates with the front-end three-level buck converter working at a frequency of 20 kHz
and the back-end LLC resonant converter working at a frequency 40 kHz, was designed and tested.
The experimental results are presented here to verify the validity and performance of the proposed
fast-charging DC port system structure.

The photograph of the hardware prototype is shown in Figure 17, and the specifications of the
prototype are shown in Table 2.
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Table 2. Circuit parameters of the HFI fast-charging DC port system.

Description Parameters

Input voltage Vdc 760 V (DC)
Output voltage Vo 200–500 V (DC)

Transformer turn ratio n 17:12
Three-level buck converter working frequency f 20 kHz
LLC resonant converter working frequency f s 40 kHz

Resonant frequency f r 44 kHz

In the power electronics laboratory, the ITEM number of the resonant capacitor is C4BSYBX3330Z_F_,
the manufacturer is KEMET, Un = 3000 V, and the value is 0.33 µF. The ITEM number of the rectifier diode
is DSEI2X101-12A, and the manufacturer is IXYS. The ITEM number of the IGBT is SKM200GB125D,
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and the manufacturer is SEMIKRON INTERNATIONAL. The ITEM number of the voltage capacitance is
SHK-700-540-FS, and the manufacturer is EACO. The ITEM number of the transformer core is K8020E060.

Figure 18 shows the waveforms of the proposed HFI charging DC port with D = 0.75; the total
input voltage Vdc = 760 V, the LLC resonant converter input voltage Vin = 570 V, and the output voltage
Vo = 400 V; the total input current idc = 26 A, the inductor current iL = 35 A, and the output current
io = 50 A with the resistive DC load R0 = 8 Ω; the output power is about 20 kW. It can be seen that the
system performs well while working in the steady-state operation and the experimental results are
consistent with the theoretical analysis above.
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5.1. In Steady-State Operation

Figure 19 shows the experimental waveforms of the front-end three-level buck converter output
voltage VAB and inductor current iL under different DC modulation indices (D = 0.4, D = 0.5, D = 0.75).
The input voltage Vdc = 760 V and the load R0 = 8 Ω. As seen from Figure 20a, the VAB voltage is
changed between 0 (Q1 and Q2 are off-state, D1 and D2 are on-state) and 380 V (Q1 and D2 are on-state
or Q2 and D1 are on-state) for D = 0.4 and the output power is about 5.7 kW. The inductor current ripple
∆iL = 3.8 A is very close to the result of Equation (1). From Figure 20b, VAB is fixed at 380 V (Q1 and D2

are on-state or Q2 and D1 are on-state), and the inductor current ripple ∆iL almost reaches zero. This is
because there is no voltage ripple on the filter inductors with D = 0.5, and the output power is nearly 9
kW. As can be seen from Figure 20c, VAB is changed between 380 V (Q1 and D2 are on-state or Q2 and
D1 are on-state) and 760 V (both Q1 and Q2 are on-state) for D = 0.75 with about 20 kW of the output
power. It can be found that the value of the output inductor current ripple reaches the maximum value
∆iLmax, which is about 6 A.
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(c) D = 0.75.

Figure 20 shows the experimental waveforms of the intermediate filter inductor current iL, the LLC
primary side current ipri, the LLC secondary side current isec, and the LLC inverter-side output voltages
(VCD) under different front-end modulation indices (with D = 0.4 having an output power of about
5.7 kW, D = 0.5 having an output power of about 9 kW, and D = 0.75 having an output power of about
20 kW). The input voltage, Vdc = 760 V, and the load, R0 = 8 Ω. It can be found that the primary side
current ipri, secondary side current isec, and inverter-side output voltages VCD are changed due to
different modulation indices. Additionally, the LLC resonant converter has good characteristics of
zero-voltage switching (ZVS) with a different magnetizing inductor current im. The current waveforms
on the primary side and secondary side present smooth curves that are consistent with the simulation
results; thus, the viability and performance of the two power-stage system structure has been proved.
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Figure 20. Experimental results of the back-end HFI LLC resonant converter (a) D = 0.4; (b) D = 0.5; (c)
D = 0.75.

The ZVZCS characteristic curves of the back-end HFI LLC resonant converter under different
modulation indices are shown in detail in Figure 21. The input voltage VCD = 760 V and the load,
R0 = 8 Ω. Vce1 is the voltage of switch S1 and Vgs1 is the gate signal; ipri is the primary side current
and isec is the secondary side current. It can be seen from Figure 21 that Vgs1 begins to turn on
switch S1 after the Vce1 decreases to zero; thus, ZVS can be achieved from zero to full-load conditions.
Additionally, ZCS can be achieved when isec reaches zero at the end of the resonant process under
different output voltages conditions.



Energies 2017, 10, 1462 18 of 23
Energies 2017, 10, 1462 18 of 23 

 

Vce1(200V/div)
VgS1(5V/div)

isec(20A/div)

ipri(20A/div)

isec(20A/div)
ipri(20A/div)

VgS1(5V/div)

isec(20A/div)

ipri(20A/div)

(a)D=0.4

(b)D=0.5

(c)D=0.75

ZVSZCS

ZVSZCS

ZVSZCS

VgS1(5V/div)Vce1(200V/div)

Vce1(200V/div)

 

Figure 21. Back-end HFI LLC resonant converter ZVZCS characteristic curves (a) D = 0.4; (b) D = 0.5; 
(c) D = 0.75. 

Figure 22 shows the experimental results of magnetizing inductor im current under different 
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Figure 21. Back-end HFI LLC resonant converter ZVZCS characteristic curves (a) D = 0.4; (b) D = 0.5;
(c) D = 0.75.

Figure 22 shows the experimental results of magnetizing inductor im current under different
modulation indices D in detail under different power conditions. When the resonant process of Cr and
Lr ends, the LLC primary-side ipri is the same as the magnetizing inductor current im. It can be seen
that im is changing with the inverter-side output voltage VCD, the ZVS can be achieved adaptively and
the circulating current is also decreased.
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5.2. In the Load-Step Operation

In order to verify the viability and performance of the fast-charging DC port, dynamic-state
experiments have been designed with changing loads. Figures 23 and 24 show the transient
experimental waveforms of the front-end three-level buck converter output voltage VAB, the inductor
current iL, the LLC inverter-side output voltage VCD, and the primary side current ipri during a load
step-up of the resistive load from 16 to 27 Ω and a load step-down of the resistive load from 27 to
16 Ω. As can be seen, the output voltages VAB and inverter output voltage VCD are independent of the
resistive load, while the inductor current iL and the primary side current ipri reach a new stable state in
a short time. Experimental results have shown that the proposed system structure can perform well
under the conditions of a transient operation.
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Finally, the experimental results above have shown the characteristic of the front-end three-level
buck converter and the back-end LLC resonant converter in a steady-state operation and in a load-step
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operation. The validity and performance of the proposed HFI fast-charging DC port system structure
has thus been proved.

6. Conclusions

A high-frequency-isolation (HFI) charging DC port can serve as the interface between
unipolar/bipolar DC buses and electric-vehicles (EVs) based on a double power-stage system structure,
which combines a front-end three-level converter with a back-end LLC resonant converter. Principles
of the proposed charging port topology are studied in detail, while the features and characteristics
are analyzed. Then, the design conditions of the three-level output filter and high-frequency isolation
transformer are explored. Finally, a 20 kW prototype is designed and tested. The experimental results
are presented to verify the validity and performance of the proposed HFI fast-charging DC port
system structure.
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