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Abstract: The forecasting of energy consumption in China is a key requirement for achieving national
energy security and energy planning. In this study, multi-variable linear regression (MLR) and
support vector regression (SVR) were utilized with a gated recurrent unit (GRU) artificial neural
network of Chinese energy to establish a forecasting model. The derived model was validated
through four economic variables; the gross domestic product (GDP), population, imports, and
exports. The performance of various forecasting models was assessed via MAPE and RMSE, and
three scenarios were configured based on different sources of variable data. In predicting Chinese
energy consumption from 2015 to 2021, results from the established GRU model of the highest
predictive accuracy showed that Chinese energy consumption would be likely to fluctuate from
2954.04 Mtoe to 5618.67 Mtoe in 2021.

Keywords: energy consumption; gated recurrent unit; forecasting scenarios; energy planning; energy
consumption; China

1. Introduction

Energy is a vital resource needed for socio-economic development, and it is increasingly of
concern to more and more governments and economic sectors because of its extensive application
and the strong dependency on it in the processes of production and consumption [1]. In recent years,
with the rapid development of the Chinese social economy and increase of population, there has
been a rapid upward trend in Chinese energy demand and consumption [2]. Chinese main energy
sources include hard coal, lignite, hydropower, oil, natural gas, geothermal, solar, wind, nuclear,
etc., but efficiency of energy production and utilization is too low. In order to meet domestic energy
demand, energy import trade volume is increasing year by year. Therefore, China should develop its
own corresponding energy production plan to meet the rising domestic energy demand. To ensure
energy security, it is important to predict annual energy consumption for a 5- to 10-year period to
establish an appropriate energy plan. Energy consumption forecasting is affected by various aspects
of socio-economic factors, among which the gross domestic product (GDP), population, import and
export trade and other factors are particularly important [3].

The energy consumption model is usually based on historical consumption data and historical
data related to energy consumption, such as the economy, population, climate, etc. [4]. At present,
energy consumption forecasting in the world has three mainstream research methods: planning
models, economic models, and machine learning models. The planning model uses linear and
nonlinear programming to find the parameters that fit based on historical data. It was O’Neill
who first applied the planning model to predict energy consumption in US [5]. Meanwhile, this
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method has also been applied in coal, oil, natural gas, power demand and other fields [6]. The
economic model combines energy demand with other microeconomic variables and realizes the
prediction of future energy demand through the inherent interaction between economic variables. The
choice of economic variables is the key to the predicted accuracy [7]. The machine learning model
breaks through the constraints of the original mathematical calculation in terms of the accuracy of
prediction. It realizes and identifies the relationship between the data characteristics through artificial
intelligence and realizes the prediction of future energy consumption through the modeling of a
large amount of historical data. It identifies the relationships between the various data features by
means of artificial intelligence. Therefore, the machine learning model realizes the prediction of future
energy consumption based on the training of a large number of historical data. Moreover, there are
many models of machine learning. The application of energy consumption includes Autoregressive
Integrated Moving Average (ARIMA) model [8], Artificial Neural Network (ANN) model [9], Ant
Colony Optimization (ACO) model [10], Particle Swarm Optimization (PSO) model [11] and so on.

In view of the dynamic change of energy consumption, Gated Recurrent Unit (GRU) can effectively
solve the problem of error caused by the spatiotemporal evolution of energy consumption. It has gating
units that modulate the flow of information inside the unit. Compared with the original machine
learning method, GRU belongs to a deep learning method, as it can use the memory units in a network
to deal with any data sequence of input. Therefore, the ability to learn time series of GRU is greatly
superior [12]. The GRU may not only study the time series of long spans but also automatically
determine the optimal time lag for prediction. In recent years, GRU has been successfully applied
to handwriting recognition, human motion identification and robot control, etc. [13], but it is rarely
applied in the field of economic forecasting. In this study, we selected three energy consumption
forecasting models: multivariable linear regression (MLR), support vector regression (SVR) and Gated
Recurrent Unit (GRU). By comparing these three models, we verified the superiority of the GRU model
in the simulation of energy consumption from 2008 to 2015 in China. Then, we designed various
scenarios to forecast Chinese primary energy consumption from 2015 to 2021. The results will help
government to develop a reasonable energy plan.

2. Literature Review

2.1. Energy Consumption Forecast

In recent years, scholars from all over the world have studied the prediction of energy supply and
consumption in the country and the region [14]. Sözen (2006) employed the artificial neural network
method to obtain the formula to predict the net consumption of energy. The results showed that the
error of the net consumption of energy consumption obtained via artificial neural network method
was very small [15]. Deka (2016) compared five different forecasting technologies using economic
and demographic factors to simulate US energy needs with in-depth discussion [16]. Torrini (2016)
proposed a fuzzy logic approach to extract rules from input variables and to provide Brazil’s long-term
annual electricity demand forecast [17]. Philip (2012) used ARDL and PAM to measure the short-term
and long-term influencing factors of energy consumption in Ghana and forecasted Ghana’s energy
consumption in 2020 [18]. Gokhan (2015) predicted Turkey’s primary energy consumption (PEC),
which provided a predictive derivative model of population, gross domestic product (GDP) and energy
consumption by regression analysis [19]. Some scholars combine energy consumption with carbon
dioxide emissions to establish a correlation forecasting model. Hasiao (2012) applied the improved
nonlinear gray model (Bernoulli) to analyze the characteristics of carbon dioxide emissions, energy
consumption and actual output in China and to establish a predictive model of numerical iteration [20].
Pani (2010) applied correlation analysis to study the correlation of energy consumption, GDP and
carbon emissions [21]. Wenying (2015) conducted a bottom-up analysis of energy consumption and
carbon dioxide emissions from the Chinese steel industry [22]. Jain’s (2014) findings suggested that
the sensor-based energy prediction model was suitable for multi-family residential buildings [23].
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Wang (2011) analyzed the impacts of implementing new and expected energy and environmental
policies with the Long-range Energy Alternatives Planning (LEAP) modeling tool [24]. Blanca Moreno
(2016) used the combined model of grey neural network and input-output to predict primary energy
consumption in the Spanish economic sector [25]. Xie (2015) applied the optimized single variable
discrete grey prediction model to predict China’s total energy production and consumption, and
proposed a new Markov method based on the quadratic programming model to predict the trend of
China’s energy production and consumption structure [26].

2.2. Multiple Linear Regression

Multiple Linear Regression (MLR) is an important method in multivariate statistical analysis. It
makes it possible to estimate the future regression coefficients and model accuracy without sampling
the future system. At present, MLR is widely used in the research of many disciplines. Prakasvudhisarn
(2015) predicted the electricity consumption of Thailand using the multiple linear regression and ANN
models [27]. Abuella (2015) presented a multiple linear regression analysis model for solar power
probabilistic forecasting [28]. Cleland (2010) applied multiple linear regression to usefully analyze
the total energy consumption in the New Zealand food manufacturing industry [29]. Amral (2008)
investigated the short-term load forecast of the demand of the South Suleai power system with the
multiple linear regression method and concluded that the short-term load forecasting multiple linear
regression model had been relatively easy to develop and regularly update, and was widely used
in commercial computing software [30]. In Tuaimah’s (2014) research, the multiple linear regression
method was used to present a short-term load forecast for Iraq’s power system requirements [31].
Torkzadeh (2014) applied multiple linear regression & principal component analysis (MLR-PCA) as
the approach to predict weekly electrical peak load of Yazd city and concluded that the error of this
proposed method was quite small [32]. Rahman (2014) presented a method for characterizing river
water quality with the analysis of multiple linear regression [33]. Mata (2011) showed a comparison
between the MLR and ANN models to characterize dam behavior under environmental loads [34].
Abushikhah (2011) proposed multivariable linear and non-linear regression, which used an hourly
daily load to predict the next year’s hourly load, and the results obtained using the proposed method
suggested that its performance was close [35].

2.3. Support Vector Machine

The Support Vector Machine (SVM) is an evolutionary algorithm for data exploration, and is an
algorithm with a high prediction accuracy [36]. Support vector machines can be used to solve nonlinear
programming problems, and can predict time series. At present, support vector machines have been
widely used in planning, classification, nonlinear fitting and other fields. Its use is grounded in its
superiority for solving nonlinear problems and, it has also applied to forecast energy consumption. Li
(2009) applied SVM to predict the air conditioning energy consumption of office buildings. The results
showed that the accuracy of SVM model prediction was higher than that of the BP neural network [37].
Hou (2009) predicted the air conditioning energy consumption of the (Heating, Ventilating, and
Air-Conditioning) HVAC system, and the results showed that the SVM model was more accurate
than the (Autoregressive Integrated Moving Average) ARIMA model [38]. Jain (2014) used the SVR
model to predict energy consumption in New York’s multi-tenant buildings. Meanwhile, verifying
temporal and spatial changes in particulate concentrations can have an impact on the accuracy of the
forecast [23]. Wang (2015) tried to apply an instance-weighted variant of the SVM with both 1-norm
and 2-norm formats to deal with the class imbalance problem [39]. Furthermore, Zhang (2013) studied
the application of support vector machine in face recognition [40].
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2.4. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) changes the means of original supervising machine learning
and solves the problem by carrying the memory unit of the forgotten mechanism. While the GRU
deep learning model has drawn attention of late, its application is currently still relatively rare, and
is mainly concentrated in computer-related areas. Le (2017) proposed a Gated Recurrent Unit (GRU)
based on the Recurrent Neural Network (RNN) to construct an energy decomposition classifier with
deep learning, and applied the method to training the model with the UK DALE dataset. From the
experiment, Le concluded that the deep learning method was very effective for non-invasive load
monitoring (NILM) [41]. Chung (2014) evaluated Recurrent Neural Networks (RNN) with three
widely used recurrent units: a traditional tanh unit, a Long Short-Term Memory (LSTM) unit and a
Gated Recurrent Unit (GRU). Finally, Chung confirmed the superiority of the Gated Recurrent Unit
(GRU) [42]. Jozefowicz (2015) compared the GRU and LSTM models and found that the GRU model
was able to achieve comparable results to the LSTM model on multiple issues, while the GRU model
was easier to train [43]. Zhou’s experiments (2016) showed that GRU had some advantages in learning
recurrent neural networks with stable performance and relatively few parameters [44]. Tang (2016)
conducted an investigation on recurrent approaches to cope with question detection, and then built
different RNN and bidirectional RNN (BRNN) models to extract efficient features based on gated
recurrent units (GRU) at segment and utterance levels. Tang concluded that the particular advantage
of GRU was that it can determine a proper time scale to extract high-level contextual features [45].
Rana’s (2016) speech experiments with eight different types of noise showed that the run time of the
GRU was reduced by 18.16%, and was comparable to the long term short-term memory of the most
popular recurrent neural network [46]. Huang (2017) verified the use of GRU-ELC units with the most
advanced performance on three standard scene marker datasets. This comprehensive experiment
showed that the new GRU-ELC unit facilitated the problem of on-site labeling because it could more
effectively encode the longer context dependency in the image than the traditional RNN unit [47].

3. Research Methods

3.1. Multiple Linear Regression Model

The Multiple Linear Regression model is a method used to deal with the complex relationship
between an output variable and multiple explanatory variables. The purpose of its analysis is to
predict the output variables with the value of multiple explanatory variables. The main limitation of
the model is that the correlation between the variables changes with time and space [48]. Assuming an
output variable is yi, and some explanatory variables are xi, then the relationship between the output
variable and the explanatory variable can be expressed as:

yi = b0 + b1xi,1 + b2xi,2 + · · ·+ bhxi,h + ei (1)

ŷi = b̂0 + b̂1xi,1 + b̂2xi,2 + · · ·+ b̂hxi,h + ei (2)

Meanwhile, xi,h is the value of the hth explanatory variable for the year i, b0 is the constant term
of the plan, bh is the parameter of the hth explanatory variable, h is the number of all explanatory
variables, yi is the value of the output variable for year i, ŷi is the estimated value of the output variable
for year i, ei is the prediction error, where ei can be defined as:

ei = yi − ŷi (3)

3.2. Support Vector Regression Model

The Support Vector Regression model obtains an approximate function g(x) from G =

{(xi, yi)}N
i=1 in the historical data sample of the correlated variable, which is already known. The data
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x is mapped to a high dimension feature space by nonlinear method, and then the linear programming
is carried out in this feature space [49].

f (x) =
D

∑
i=1

wiφi(x) + b (4)

In Equation (4), φi(x) is the characteristic variable, b and wi as coefficients that can be estimated
from the data. In this way, the nonlinear programming of a low-dimensional input space can be
deduced into a linear programming of high-dimensional feature space. The coefficient wi can be
obtained with the minimum function:

R[w] =
1
N

N

∑
i=1
| f (xi)− yi|ε + λ‖w‖2 (5)

In Equation (5), λ is a normalized constant, and function | f (xi)− yi|ε can be defined as:

| f (xi)− yi|ε =
{
| f (x)− y| − ε, | f (xi)− yi|≥ ε

0, other
(6)

The minimum function can also be expressed as follows:

f (x, α, α∗) =
N

∑
i=1

(αi − α∗i )k(xi, x) + b (7)

Meanwhile, α∗i αi = 0, α∗i , α ≥ 0, i = 1, · · · , N; in addition, the kernel function explains the scalar
product of the Di dimensional feature space:

k(x, y) =
D

∑
j=1

φj(x)φj(y) (8)

The coefficients αi and α∗i can be obtained by the following formula:

R(α∗, α) = −ε
N

∑
i=1

(α∗i + αi) +
N

∑
i=1

yi(α
∗
i − αi)−

1
2

N

∑
i,j=1

(α∗i + αi)(α
∗
i − αi)k(xi, xj) (9)

The constraint is
N
∑

i=1
(α∗i − αi) = 0, αi ≥ 0, α∗i ≤ C.

3.3. Gated Recurrent Unit Neural Network Model

The Gated Recurrent Unit (GRU) neural network model adapts to the problem of dependence on
a variety of time scales by setting all kinds of cycle units [43] that modulate the flow of information
with the gate unit. Assuming that the input of the model is expressed as x = (x1, x2, · · · , xT), the
logical calculation process is shown in Figure 1.

Assume that the activation function hj
t of GRU is a function related to time t, which takes the

linear interpolation between the activation function hj
t−1 at the previous time point and the candidate

activation function h̃j
t, which is :

hj
t = (1− zj

t)h
j
t−1 + zj

t h̃
j
t (10)
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At the same time, the update gate zj
t determines whether the unit updates the activation function

or maintains the proportion and the number of the existing activation functions. The update gate zj
t is

as follows:
zj

t = σ(Wzxt + Uzht−1)
j (11)

The whole calculation process is to sum the existing state and the state of the update calculation,
but the GRU model can’t control the range of state updates, but every calculation updates all of the
states once.

The calculation of the candidate activation function h̃j
t is similar to that of the simple RNN

calculation, and its computational function is:

h̃j
t = tanh(Wxt + U(rt ⊗ ht−1))

j (12)

Among which rt is the reset gate, ⊗ is the vector product. When the reset door is closed (rj
t ≈ 0),

the contents of the input sequence can be read while the past state is forgotten. The reset gate rj
t is

calculated as follows:
rj

t = σ(Wrxt + Urht−1)
j (13)

The tanh function above has been very maturely and widely used in some research [45].Energies 2017, 10, 1453  6 of 15 
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4. Data and Results Analysis

4.1. Data Sources

In order to verify the predictive accuracy of the above three models for Chinese primary
energy consumption, in accordance with the research of Zong (2009) [50], we chose five variables:
gross domestic product (GDP), population, import trade volume, export trade volume and energy
consumption. Among these variables, the gross domestic product (GDP), population, import trade
volume and export trade volume were regarded as independent variables, while energy consumption
was a dependent variable. The data selected was from 1965 to 2015, and the data of the four variables
of gross domestic product (GDP), population, import trade volume and export trade volume were
derived from the World Development Indicator [51]. The Chinese primary energy consumption data
was from the “BP World Energy Statistics Yearbook” [52]. These data are shown in Table 1. In this
paper, the total number of data samples was 51. The 51-item data sample was used to divide the test
samples from 15% of the total sample. The training samples were mainly used to modify the planning
model, and the test samples were mainly used to judge the accuracy of the model. The experiment used
43 data items from 1965 to 2007 as training samples and 8 data items from 2008 to 2015 as test samples.
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Table 1. Primary energy demand and indicator data of China.

Year GDP (1010

Current US$)
Population
(Million)

Import (109

Current US$)
Export (109

Current US$)
Primary Energy
Demand (Mtoe)

1965 6.97 715.19 2.25 2.56 131.40
1966 7.59 735.40 2.48 2.68 142.81
1967 7.21 754.55 2.17 2.39 128.44
1968 7.00 774.51 2.07 2.34 129.67
1969 7.87 796.03 1.92 2.43 157.87
1965 9.15 818.32 2.28 2.31 202.22
1971 9.86 841.11 2.13 2.78 239.79
1972 11.22 862.03 2.85 3.69 258.45
1973 13.68 881.94 5.21 5.88 272.69
1974 14.23 900.35 7.79 7.11 281.12
1975 16.12 916.40 7.93 7.69 314.91
1976 15.16 930.69 6.66 6.94 331.57
1977 17.23 943.46 7.15 7.52 361.68
1978 14.84 956.17 7.62 6.81 396.62
1979 17.69 969.01 10.56 9.20 408.16
1980 18.96 981.24 12.45 11.30 417.40
1981 19.44 993.89 14.59 14.59 411.58
1982 20.35 1008.63 13.65 15.79 429.53
1983 22.90 1023.31 16.16 16.79 456.86
1984 25.81 1036.83 22.16 20.73 490.18
1985 30.75 1051.04 42.78 27.51 529.92
1986 29.88 1066.79 43.43 31.37 555.31
1987 27.13 1084.04 36.19 32.96 598.77
1988 31.07 1101.63 42.29 36.35 643.12
1989 34.60 1118.65 44.53 39.60 674.60
1990 35.90 1135.19 49.22 57.09 681.41
1991 38.15 1150.78 59.21 66.67 716.17
1992 42.49 1164.97 69.75 73.41 753.24
1993 44.29 1178.44 74.63 65.88 810.25
1994 56.23 1191.84 115.56 120.92 858.79
1995 73.20 1204.86 132.30 149.11 884.98
1996 86.08 1217.55 139.01 151.26 932.17
1997 95.82 1230.08 142.42 182.88 936.95
1998 102.53 1241.94 140.43 183.88 938.18
1999 108.94 1252.74 165.93 195.21 969.67
2000 120.53 1262.65 225.15 249.26 1003.11
2001 133.22 1271.85 243.55 266.09 1059.63
2002 146.19 1280.40 295.16 325.58 1156.00
2003 164.99 1288.40 413.14 438.42 1347.98
2004 194.17 1296.08 561.04 593.26 1576.92
2005 226.86 1303.72 662.33 764.53 1793.70
2006 272.98 1311.02 794.86 973.21 1967.98
2007 352.31 1317.89 963.48 1230.72 2140.07
2008 455.84 1324.66 1144.48 1444.80 2222.28
2009 505.94 1331.26 1004.46 1200.77 2322.12
2010 603.97 1337.71 1380.08 1602.48 2487.36
2011 749.24 1344.13 1825.40 2006.30 2687.90
2012 846.16 1350.70 1943.22 2175.08 2795.26
2013 949.06 1357.38 2119.38 2354.25 2903.95
2014 1035.11 1364.27 2191.44 2475.70 2970.31
2015 1086.64 1371.22 2045.76 2431.26 3013.96
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4.2. Analysis of Results

MLR and SVR models are deterministically mathematical methods, and stable results can be
obtained according to the formulas given above. The GRU model is a deep learning neural network,
and further constructs the model structure. The GRU model has three layers, including an input layer,
a hidden layer, and an output layer. The input layer consists of four input variables: GDP, population,
import, and export. The hidden layer consists of three GRU units with time steps of 1, 4, and 6, and
each GRU unit contains 32 cells, and the output layer is the characteristic variable of primary energy
consumption. The structure of the model is shown in Figure 2.
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Figure 2. The structure of GRU neural network.

The training and testing of the GRU model were completed using the Keras kit on the PYTHON
platform, in which the optimizer was set as “RMSprop”, the loss function was set as “MAPE”, the loss
rate was set as “0.0001”, the epoch was set as 2000. In order to prevent the phenomenon of over-fitting,
the calculation process was added to the validation part, determining whether or not it appears to be
the best model parameters.

The main research goal of this paper is to compare the accuracy of the three models of MLR, SVR
and GRU for medium term Chinese primary energy consumption forecasting. In order to express the
advantages and disadvantages of the three models, the paper takes MAPE (mean absolute percentage
error) and RMSE (root mean square error) as the results for error. The two error formulas are as follows:



Energies 2017, 10, 1453 9 of 15

MAPE =
1
n

n

∑
i=1

∣∣∣∣y− ŷ
y

∣∣∣∣× 100 (14)

RMSE =

√√√√√ n
∑

i=1
(y− ŷ)2

n
(15)

At the same time, the y in Equations (14) and (15) represents the actual primary energy
consumption in China, while ŷ in the model represents the predicted value of Chinese primary
energy consumption.

The experiments using MLR and SVR can be effectively performed, but when performing
the experiment using GRU, a very interesting problem emerges. When using all the training data
(1965–2007) to do the GRU prediction experiments, the error of the predicted MAPE is 14, which blocks
the purpose of improving the accuracy of prediction. However, the error of the predicted MAPE is 5.63
when doing the GRU prediction experiment with the data of the first 8 years (2000–2007), allowing the
emergence of the optimal prediction model parameters. The main reason for this situation is that the
data input variables are in a state of annual growth. Recent data provides more information for the
forecast results, whereas the earlier data will have a detrimental effect on the forecast. The training
and test errors in Table 2 show that the GRU model has a higher accuracy in the prediction with the
MAPE and RMSE indicators than that of MLR and SVR model in the comparison of the forecasting
errors in Chinese primary energy consumption. Figure 3 shows the comparison between the actual
value of primary energy consumption in China from 1965 to 2015 and the predicted values of various
models. In summary, the GRU model is the best method of research to predict Chinese primary energy
consumption; this model will be used in the prediction of Chinese primary energy consumption in the
medium term.

Table 2. Comparison of forecasting error for various models.

Model
MAPE RMSE

Train Test Train Test

MLR 5.55 12.8 26.39 392.84
SVR 5.91 9.17 27.95 284.08
GRU 2.11 5.63 5.45 12.4
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5. Chinese Primary Energy Consumption Forecasts Based on Different Scenarios

After comparing the model errors, the GRU model was used to predict Chinese primary energy
consumption from 2016 to 2021. An attempt was made to reduce the uncertainty of the forecast by
setting appropriate scenarios, and by using the different scenarios with suitable forecast data. For gross
domestic product (GDP), the forecast data of Chinese GDP published by the International Monetary
Fund (IMF) [53] was employed. According to the World Population Prospects (2015) [54], the Chinese
population will reach 1.424 billion by 2030. Using Equation (16) to calculate the annual growth rate of
the population, it can be inferred that the Chinese approximate growth rate of the population from 2016
to 2021 will be 0.25%. Since there is no authoritative estimate of import and export trade in the world,
the initial growth rate, average growth rate and minimum growth rate can only be calculated based on
historical data of growth. Taking into account the potential for the country’s ongoing transformation
and upgrading of the industry, the lowest growth rate is set at the lowest non-negative growth rate
from 1965 to 2015. Due to the uncertainty of the import and export trade volume, the forecast of
Chinese primary energy consumption from 2016 to 2021 is best set as four possible scenarios, as is
shown in Table 3. According to the calculated method of the above data, Chinese gross domestic
product and population estimations from 2016 to 2021 are shown in Table 4. The estimated data on
Chinese import and export trade levels at different growth rates is shown in Table 5.

V(tn) = V(t0)(1 + CAGR)n (16)

In Equation (16), CAGR is the annual growth rate, V(t0) is the value of the beginning year, V(tn)

is the value of the ending year, the number of years in the whole phase is n.
The data of four independent variables are substituted into the trained GRU energy consumption

forecasting model; the results of the four different scenarios are compared in Figure 4.
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Although more scenarios would more accurately assess the behavior of the predictive model in
predicting possible Chinese energy consumption, the four scenarios were chosen from what realities
have been appropriately assumed and computationally proven to achieve superior results, and
hopefully represent the spectrum of possible consequences.
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Table 3. The forecasting scenarios of Chinese energy consumption (2015–2021).

Scenarios GDP Population Import Export

Scenario 1 IMF’s forecast for Chinese GDP The average population growth rate of China from
the World Population Outlook (2015) (0.25%) Initial growth rate (−6.65%) Initial growth rate (−1.8%)

Scenario 2 IMF’s forecast for Chinese GDP The average population growth rate of China from
the World Population Outlook (2015) (0.25%) Average growth rate (16.49%) Average growth rate (16.05%)

Scenario 3 IMF’s forecast for Chinese GDP The average population growth rate of China from
the World Population Outlook (2015) (0.25%) Minimum growth rate (1.52%) Minimum growth rate (0.55%)

Scenario 4 Chinese initial GDP growth
rate (4.98%) Initial population growth rate in China (0.5%) Initial growth rate (−6.65%) Initial growth rate (−1.8%)

Note: The initial growth rate is the growth rate calculated in 2015, the average growth rate is the average growth rate from 1965 to 2015, and the minimum growth rate is the non-negative
minimum growth rate from 1965 to 2015.

Table 4. Chinese GDP and population estimation (2016–2021).

Year GDP (1010 Current US$) IMF
Forecast Data

GDP (1010 Current US$) Initial
Growth Rate 4.98%

Population (Million) Average
Growth Rate 0.25%

Population (Million) Initial
Growth Rate 0.5%

2016 1158.36 1140.75 1374.65 1378.08
2017 1230.18 1197.56 1378.08 1384.97
2018 1303.99 1257.20 1381.53 1391.89
2019 1382.23 1319.81 1384.98 1398.85
2020 1463.78 1385.54 1388.45 1405.85
2021 1548.68 1454.54 1391.92 1412.87

Table 5. China’s import and export estimation (2016–2021).

Year
Import Trade Volume (109 Current US$) Export Trade Volume (109 Current US$)

Initial Growth Rate
−6.55%

Average Growth
Rate 16.49%

Minimum Growth
Rate 1.52%

Initial Growth Rate
−1.8%

Average Growth
Rate 16.05%

Minimum Growth
Rate 0.55%

2016 1911.76 2383.11 2076.86 2387.50 2821.48 2444.63
2017 1786.54 2776.08 2108.42 2344.52 3274.32 2458.08
2018 1669.52 3233.86 2140.47 2302.32 3799.85 2471.60
2019 1560.17 3767.12 2173.01 2260.88 4409.73 2485.19
2020 1457.98 4388.32 2206.04 2220.18 5117.49 2498.86
2021 1362.48 5111.95 2239.57 2180.22 5938.85 2512.60
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In Scenario 1, a negative growth of Chinese primary energy consumption is predicted from
3013.96 Mtoe in 2015 to 2970.19 Mtoe in 2021, cutting back 1.45% in 6 years. Calculated according to
Equation (16), the annual growth rate is −0.24%.

In Scenario 2, Chinese primary energy consumption forecast indicates an increase of 86.42% from
3013.96 Mtoe in 2006 to 5618.67 Mtoe in 2021. According to Equation (16), the annual growth rate is
10.9%. Chinese primary energy consumption increases fastest in this scenario.

In Scenario 3, the forecast result of Chinese primary energy consumption suggests an increase of
23.6% from 3013.96 Mtoe in 2015 to 3725.2 Mtoe in 2021 and an annual growth rate of 3.6% based on
Equation (16).

Scenario 4, China’s primary energy consumption forecast reveals a decrease of 3054.96 Mtoe from
2015 to 2954.04 Mtoe in 2021, with a decrease of 1.99% over six years. The annual growth rate is –0.33%
according to Equation (16), and Chinese primary energy consumption witnesses the fastest decline
in this scenario. To sum up, the four scenarios predict that Chinese energy consumption in 2021 will
fluctuate between 2954.04 Mtoe and 5618.67 Mtoe.

The growing energy demand requires the government to make the right decisions in terms of
energy planning. If energy planning results in incorrect underestimates of energy needs, there will
be a shortage of energy supply, resulting in an energy deficit. Due to the strong correlation between
energy consumption and greenhouse gas emissions, the prediction of future energy consumption
can also affect the Chinese reaction to climate change. Through the accurate prediction of energy
consumption, environmental managers can not only determine the major sources of carbon emissions,
but can also determine whether all kinds of energy have an impact on climate change. Reliable energy
forecasts can ensure the energy security of the country, achieving the sustainable development of
energy and economy.

6. Conclusions

Chinese primary energy consumption forecasting is a key element of the success of national
energy security and energy planning. Based on economic and demographic factors, three kinds of
Chinese energy forecasting models—multivariable linear programming, support vector planning and
gate recurrent unit—have been established for forecasting the energy consumption in China from 2016
to 2021. Through the results of the study, the following three important findings were obtained:

1. Deep learning is the hotspot of current research, and in the GRU there are internal relations
between the four economic variables (gross domestic product (GDP), population, import trade
volume, export trade volume) and energy consumption. The four economic variables can be used
to forecast the primary energy consumption in China;

2. The GRU model is a model based on long and short memory for learning time series data.
Compared with the MLR model and the SVR model, the GRU model is superior for the processing
of time series data, and the average absolute percentage error of the predicted result can be as
low as 5.63. However, when applying this model, the choice of the amount of training data is a
key factor in accurate prediction. In particular, for the prediction of macroeconomic variables,
recent data is more important to the final forecast result, due to uncertainties in socio-economic
change; and

3. The GRU model is used to forecast energy consumption in China from 2016 to 2021, with a finding
that Chinese energy consumption in 2021 will fluctuate between 2954.04 Mtoe and 5618.67 Mtoe.

The proposed model could be one of the best techniques in deep learning. Although this is the
first study that applies the GRU model in the prediction of Chinese primary energy consumption, there
are more predictive testing technologies and methods that can be implemented. Two directions in the
practice of the forecasting can be further pursued. First, continue to enhance the model structure and
parameter settings of the GRU forecast method to increase the accuracy of the final energy consumption
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forecast; and second, select other economic variables related to energy consumption for the energy
consumption forecast.
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