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S1. Method 2 Elasticity of Energy Use with Respect to Efficiency (EEE): Extended Constant
Elasticity of Substitution (CES) Function —Long-Term Rebound Derivation

51.1. Setup

We need to develop the expressions %BB—Y and %BB—E to deliver the output and intensity
T T
rebound elasticities (long-term) expressed in a form employing (ideally measured) parameters of the

particular production function being examined:

Eoupa _ T 0¥
Yo
E putensity _ la_E_ E(lul/ml (Sl)
Tk Eot °
In this case, we're using an extended version of the CES production function, of the form:
b 7
y=uafa[ok +(1-0) 00 TP 1-8)aE)" | = (2)

Solving for the needed rebound elasticities requires appeal to the Implicit Function Theorem.
This is because the introduction of an energy technology gain T affects the Y and E terms in
Equation (S1) in multiple complex ways, requiring setting up a series of equations. And it happens

that the variables required to develop expressions for the % and E%E terms of Equation (S1) are

embedded in the equation structure in such a way that they cannot be isolated directly. The Implicit
Function Theorem allows us to ask how any endogenous variables (here we mean Y and E) will
change, while honoring these equations, if some exogenous variable (here we mean t) changes.

51.2. Equations Needed

We need three equations to describe how an economy with three factor inputs (here K, L, E)
behaves when there is a change in t.
We can construct the following three equations:

v, =g (Y, f(K,L1E))=0
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The first equation is essentially the production function itself, and so looks like:
-1
- 1% |77
v, =Y - yA{B[SlK P (1=8,) L7 [P+ (1-0)(<E) } =0 (S4)

The second and third equations are developed from the cost shares of energy and capital:
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sy,
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So we choose the second and third equations to be:
v, =Y -LLE=0
sy
(S6)

v, =Y -Lx k=0
cSy

51.3. Implicit Function Theorem and the Jacobian

To measure rebound, we need to know how Y and E respond to changes in the energy
technology gain t. To accomplish this, we form the Jacobian matrix of ¥=(y,,y,,y;), namely

J= {M} ,where X, =Y, E,K . Then it will be true that:

X,
or] 9w
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From the terms PN and gE we can determine the components of long-term rebound.
T
The Jacobian matrix is:
dY OJE oK
dy, dy, Jy
J=| X Ny Yy
Y OE OE (58)
Ny Ny W,
Y OE OE

51.4. Calculating the Jacobian Elements

To develop the first row of the Jacobian, we need to calculate R
dY J0E 0K

. The first element

is easy: From Equation (S4) we have that % =1.

Calculating the second two elements is trivial as these are essentially the first-order conditions
on energy and capital:



Interestingly, this matrix appears to be
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oK oK c
. dy, dy, dy,
To develop the second row of the Jacobian, we need to calculate —=,—, —=.
dY JdE " dK
Looking at Equations (S4) and (S6), we see that:
aWZ :l
oY
vy )z
E o, (510)
E
Wy
oK
, . dy; dy; dy;,
To develop the third row of the Jacobian, we need to calculate —=, ,—.
dY " JE  dK
Looking at Equations (S4) and (S6), we see that:
W _
aY
d
% =0 (S11)
Ny P
oK  csy
Therefore, the Jacobian matrix becomes:
WM W | P P
Y O0E oK c c
dy, dy, dy P
J=|—2 £z "z |1 LE£ 0
Y OJE OF sy (512)
T I I
oY JE OE o5

independent of the particular form of the

production function.

51.5. Calculating the Efficiency Gain Vector Elements

Prior to inverting the above Jacobian matrix, we need to develop the partials of the three
equations with respect to the energy efficiency gain parameter, T, as called for in Equation (S7). The
N NV ang M

three elements are ,

S0 30’ an ol We start by invoking some substitutions to make the
T T T

P,
derivatives  easier.  Specifically, let Q= S[SIK"" +(1-8,)L™ ]4' +(1-8)(zE) " Let

P,
R=8K " +(1-8,)L" .Andlet S =1E . Then, Q:SRA +(1-3)S™.

51.5.1. Partial of First Equation

o o 0y, . % |7 .
So beginning with == Y —yA{8[ 8, K" +(1-8,) L™ |/ +(1-8)(<E) and noting that
T

Y=v4 [Q (S (‘E))]i% , from the chain rule we have:
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3 (K.L,tE) _9Y 00 0S

P 30 9s ot (513)
The three partials are:
-1
P
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€W p O P00 Py
vA
. - S14)
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—=—p(1-8)—=-p(1-8 =—p(1-8)t"E™"
g = PU=8)==—p(1=8)— —=—p(1-5)r
A
ot
To get us part way, we substitute Equation (S14) into Equation (S13), yielding:
Jf (K,L,TE) _dY 00 9S
ot dQ dS Jt
of (K,L,tE) 1 PR ol e
T: _E(YA) Pyt |:—p(1—8)‘r PP 1]E (S15)
of (K,L,tE) " 1 (Y)“"
—————=(y4) "(1-9 —| E
L) () (1-8) o
So the first partial becomes:
oy - 1 (Y™
a—r'=—(yA) p(l_S)F[Ej E (S16)

Further simplification comes if we derive the first-order condition on energy and introduce the
cost share Sg. The development is identical to Equation (513) except for the last term:

f (K.LE) _p, _9Y QS

OF c 9098 E (517)
as : . .
where — =1, meaning Equation (517) can be re-written as:
Jof (K,L,TE) _ p, 1 P i+ —p-1 —p-1
27 =L -l _—(v4 Y P —-(1- 6 P E P
B | )T [p(1-8) ]t
of (K,L,TE) YY" 19
> L, T pE -p T
S =L =(y4) " (1-3 —
L) Py (1-8) 1)
This equation can be rearranged to enable substitution into Equation (516). That is:
I+p
P - 1 Yj
L =(y4)"(1-3 — S19
2L ) (1-8) o 19)
Substituting Equation (519) into Equation (516) yields:
Ny __Peg (S20)
at ct
But observing from the energy cost share equation that:
P E
o=
¢ ¥ v (S21)
Y
c F
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Substituting Equation (S521) into Equation (S20) yields:

0 1 Y
w1 Y,
ot Tt F
v, __s¥

ot T

51.5.2. Partial of Second Equation

The second equationis y, =Y — Z—EE = 0.
E

S5 of S11

(522)

But we need to re-state this equation in a form that is explicit in T. For this we return to the

first-order condition Equation (S18):

1+p

(yA)P(1 — 8)t° (g) _ pCE

(g)up - c(yA)‘F’?lE —8)TP

g - <c(yA)‘PI(9f— S)T‘P>?p

1

_ PE 1+p
=Y= (c(yA)‘P(l — 6)1‘9) E

1
_ o Pe \TPP 5%
=Y (c(yA)‘P(l—S)) TE

So VY, can now be written as:

1

_ v Pe T+p 1f_p _
v, =Y (c(yA)‘P(l—S)) vPE=0

Now we can differentiate with respect to t:

1
Oy _ _ (p—5>mE 9 1%
Jt c(yd)=P(1-9) Jt
1 _P_
dy,  p ( P& )mEr“p
ot~ 1+p\c(yA)—P(1-19) T
1
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dat 1+p\c(yAd)=P(1 —8)tP T

We can simplify by invoking the cost share equation for energy:

But from Equation (523) we know that:

Y < PE )W
E~ \c(yAd)—*1-8T"
Comparing Equation (527) with Equation (526), we see that:

( Pg )m _ Pe
c(yA)—P(1—-8)T° cSg

(S23)

(S24)

(S25)

(S26)

(S27)

(S28)
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Therefore we can rewrite Equation (525) as:

1

v, _ __p ( Pe )m E
gt 1+p\cyA)P(A-8)1° T
Ny P PeE
Jt l1+pecsgt

§1.5.3. Partial of Third Equation

The first order of business is to derive the first-order condition on capital:

Let Q=3[8K™ +(1-3,)L" ]% +(1-8)(tE)” . Let
Y =v4 [Q(R(K))}% , 80 from the chain rule:

U (K.LTE) _ p, _9Y 90 IR
oK ¢ 90 dR K

P
Also note that 0= SRA +(1-8)(zE)".

Taking each component of Equation (S30) in turn:

R=6K" +(1-5,)L™
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We need to express ( in terms of Y :
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. - -
Y V4
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So the expression Equation (S30) becomes:

S6 of S11

(S29)

Then

(S30)

(S31)

(S32)
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We know the first-order condition on capital is:

Jf (K,L,TE) _Px

S34
oK c (534)
Therefore, from Equation (S33) we have:

1 PP

Pe — (yayo s8R P Ky
C

) o ye y (S35)
K = (yA)"88,R " ——
c (v4) "85, K" K

We can solve this for Y intermsof K:

P=PL yrp+1

Pk -p Y1
K = (y4) " 88, R ™ —
c (v4) 85, K" K

=y =Lk ! — K"K

c _
(yA) " 85,R * (S36)
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Py 1
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PPy

¢ P P
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We can see that the first-order condition will be a complex function of K . However, we can also
see that none of the terms of Equation (536) involve 1. K does not explicitly depend on t. Therefore
the partial derivative for the third term will be zero.

When this is used to formulate the third equation forcing the capital first-order condition to be
met, it will look as follows.

PP Yp Y

_ bes o LY _
v, =Y —(y4) " 35,R =0 (S37)

And, from the argument above, we will have that:

Ny (S38)
ot
51.6. Summary to This Point

We have calculated the Jacobian matrix (but have not yet inverted it for Equation (57). We have
also calculated the vector of partials, so we have the Jacobian as:
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L Pe o Px
C C
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cSy
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And the efficiency gain vector of the technology partials is:

_awl_
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Notably, the parameter i1 is absent from the system of equations. In fact, the equations are
identical to the equations developed by Saunders [1] for the simpler CES production function:

It seems possible that the Jacobian may be identical for any production function (CRS required,
probably). For one thing, it is derived from share equations only (Equations (S5) and (56)), which are
agnostic as to production function form (the energy derivative of Equation (54) is highly related to
the energy cost share). But, unlike the Jacobian, the efficiency gain vector will depend on the
functional form.

Nonetheless, the energy efficiency gain vector is the same for the current production function as
for the simpler CES form in Saunders [1] (2008).

Therefore, the only real difference between the LT rebound equation in Saunders [1] (2008), and
the one that applies here, is the difference in the production function specification in how it treats p .

Nonetheless, we take the derivation through from here to get the exact rebound equation given
this function’s treatment of the o and o1 parameters and certain other parameters that differ from that
used in the Saunders [1] 2008 formulation.

51.7. Inverting the Jacobian Matrix
We need to develop the inverse matrix of the Jacobian J in Equation (S39). We do this using
Cramer’s rule.
Inverting J first requires calculating the determinant of J , here specified as A = det (J ) .
This in turn requires specifying “cofactor” matrices in J associated with expansion along one

row or column of J . For us, it is convenient to choose the first column of J as the selected basis.
Then, the cofactors of J become:

2
cs
Jy= g
0 _Pe
sy
Pr Pk
J, =€ ; (S41)
0 _ LK
cSy
Pe Px
c c
Jy =
B
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These determinants are calculated as:

J =Pe Px
cSyp €Sy
Jﬂ:&p_K (542)
c cSy
g, =Pe P
cs, ¢
So the determinant is:
A=1 Pr Pk +1{p}5 ij+l Pr Pk
€S, CSy c csy cs, ¢
A=Pe Px | Pr Px | Pr Px
€S, ¢Sy € €Sy CSp C
1 L1 (543)
A=%[—+—+—]
¢ \spse S S,
A= pEfK (1+SE +SKJ
¢ SpSk
Then, the elements of J ™' rely on the other cofactors:
1 0
p
Ji :_1 Pk =t
ey
csy
| P
Jup= CSg =L
i o csy
| Pe
J = ¢ |__Px _Px Px 1+1 _&1+sk
2 1 _ Px cse ¢ c \ sg c Sy
“x (S44)
Pr
1 LZ£]
J23__ c :&
o] €
Pk
1 £x
J32__ c :&
1ol ¢
| P
J - ¢ |__Pe_Pe__Pe| 1 |__Peflts,
¥ 1 _Pe csy, ¢ c \ Sg c Sg
sy
The inverse of J is then:
1 Jll J21 J31
Jﬁl_z Jo Iy Iy (545)
Jl} J23 J33

So plugging in the values from Equations (542) and (S44), the inverse becomes:
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Pr Py Pr Pk Pk Pg
CSy €Sy ¢ csyg ¢ cs,
gl Pe Pl P (546)
Al sy c Sy c
Pe Pe _Pp|1ts,
CSE C C SE
§1.8. Solution
The Solution Vector is now:
oY (P Pk PE Pk Pk PE 1
a9 S CSw ¢ ool e [ SEY ]
aT CSF CSK C CSK C CSE | _ £ |
aE 1 pK pK 1 + SK pK T
== TAl cse __(—> - p pegkE (547)
o Sk 00 S ¢ |TTepent
oK P Pe _PE (1 +sE> | trhesT
Lot L csg c c sg /.
Substituting in A,
oy Pe Pk PePx Px Ps_
at CSg €Sk c csg c csg _seY
oE(_ c?spsy Pk _p_K(1+SK) Pk ) ‘L'p : 49)
ot PPk (1 +sp +s¢)| ¢Sk c Sk c T i;
9K P PE _@(HSE)[ peseT]
Jt CSg c c Sg

For the first equation we need to remove E from the second element of the efficiency vector (but
_ P E

we’ll need it in this form later). Noting that s, = — and substituting this into the second element
of the efficiency gain vector yields:
E YE Y
_ P PgZ_ P TE_ P ¥ (549)
l+pecsgt 1+pET 1+prt
So the first equation becomes:
oo (_Pe el _pepe P
ot pepx (1 +5sg +sg)\ csgpesg T ccsgl+pr
LT Paps (-Rebuse_pepe b )
Y ot pepxk(1 +5sg+sg)\ csgpcsg ccesgl+p

2
tdY  cTspsg (iS_E 11 p ) (S50)

e S B -
Yot (Q+sg+sg)\csgesy cesgl+p
TdY s
S-—= £ (1+ i )
Y ot (1+SE+SK) 1+p
:>16Y_ Sg (1+2p>
Yot (I+sg+sg)\1+p

For the second equation, we need to remove Y from the first element of the efficiency vector. As

before, noting that s, = P E and substituting this into the first element of the efficiency gain vector
c

yields:
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se¥ _ P EY _ P E (S51)

T c Yt c 1T

So the second equation becomes:
OF _ __ Cspsk (_p_KP_EEJ,P_K(”_SK)L Pe £
Jt Pepk(L+sp+sg)\ csxc 1 ¢ sk /1+pecsgt
T 0E c?sgsk ( 11 1(1+51<) p 1 )
> —-— | —— — _—
E ot (I+sg+sg)\ csgc c\ sg J1+pcsg
LT e ( _ (1 * SK) P i) (S52)
Edt (14 sg+sg) 1 /J14psg
T 0E 1 ((1 +p)sg — p(1 +sg) )
> — =
Eodt (1+sg+sk) 1+p)
1 0E 1 (p(sE —sg — D+sg )
= —— =
E ot (1+SE+SK) (1+p)

Thus the long-term rebound equation from Equation (S52) is:

T 0E 1 p(sg —sxg — D)+sg
Re=1+nf =14+4-—=1 ( ) S53
€ . +Eat +(1+SE+SK) 1+p) (553)
1+sp+s0)(1+p)+ —sg— D+
Re :( sg +sg)( p) + (p(sg — sk )+sEg) (S54)
(1+sg+sg)(1+p)

In addition, from Equations (S50) and (S52) we can state the elasticity components for rebound

calculations as follows:

o X __se__(1+20) &
" Yor (A+sg+sgp)\1+p
Elntensity _ Ea_E _ EOutput
M " Edt T
Eimtensity — (A +sp+sk)(A+p) + (p(sg — sk = Dtsg) Sg <1 + Zp)
L A+sg+sp)(1+p) (I+sg+sg)\1+p
EIntensity 1
= S56
N, aA+p) (556)
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