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Abstract: Recently, there has been a growing interest in the production of electricity from renewable
energy sources (RES). The RES investment is characterized by uncertainty, which is long-term, costly
and depends on feed-in tariff and support schemes. In this paper, we address the real option valuation
(ROV) of a solar power plant investment. The real option framework is investigated. This framework
considers the renewable certificate price and, further, the cost of delay between establishing and
operating the solar power plant. The optimal time of launching the project and assessing the value
of the deferred option are discussed. The new three-stage numerical methods are constructed,
the Lobatto3C-Milstein (L3CM) methods. The numerical methods are integrated with the concept
of Black–Scholes option pricing theory and applied in option valuation for solar energy investment
with uncertainty. The numerical results of the L3CM, finite difference and Monte Carlo methods are
compared to show the efficiency of our methods. Our dataset refers to the Arab Republic of Egypt.
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1. Introduction

A great deal of effort is being put into researching and developing renewable energy (RE)
technologies. RE can be generated from wind, solar, biomass, sunlight, tides and flowing water.
The primary reason for this effort stems from the environmental impact of using fossil fuels, such as
nitrogen and sulfur oxides (NOx and SOx), as well as oil spills, similar to the recent major spill in
the Gulf of Mexico [1]. In addition, the rising demand for electricity is considered as one of the main
reasons that also make RE development to serve to increase energy security by reducing reliability on
foreign imports of fossil fuels.

Despite the delay with respect to some countries in the world, we can see the U.S., as well as
several other regions, such as Western Europe, East Asia and North Africa, having a massive increase
in the construction and operation of renewable power production sites. Particularly, we mean the
production of electricity from renewable energy sources (RES). In the IEO2016 [2], long-term global
prospects continue to improve for generating electricity from RES. RES are the fastest-growing source
of energy for electricity generation, with annual increases averaging 2.9% from 2012 to 2040.

One of the RES is solar energy, which can be converted into electricity using photovoltaic (PV)
technology [3,4]. Solar is the world’s fastest-growing form of RES, with net solar generation increasing
by an average of 8.3%/year. Solar energy shared 859 billion kWh (15%) of the 5.9 trillion kWh of new
renewable generation added over the projection period (see [5]).

The main drivers for fast-growing solar have not only been the economic efficiency and technology
breakthroughs in renewable power production, but also the favorable government support due to
environmental concerns. We can see that currently, such government interest in the support and
incentives to private investors, but private investors are driven by profit maximization. There are
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two major groups of schemes that can pave the way for a wider spread: (1) the scheme of tariff-based
capacity (a payment for kWh of energy generated); (2) the scheme of the quota system (the government
obliges heavy industries to use a percentage of their electricity consumption from RES). Wiser et al. [6]
addressed some of the government support schemes, which are typically in the form of subsidies and
incentives that are front-loaded in the construction and early operating years in the U.S. Furthermore,
Fagiani et al. [7] discussed the dilemma that arises from certain support schemes, such as the market
risk. Regardless of the market risk factor leading to making the optimal use of RES, which implies
limiting the cost to society, but the market risk simultaneously deters investors, thus this provides for
less RE and a higher price.

In general, the policy instruments aim to keep investors’ risks within reasonable limits. In addition,
the policies have a strong effect on the price and quantity risks faced by an investor. Therefore, we note
that the drivers and investors usually feel major concern in this investment because of uncertain returns.
Daim et al. [8] discussed identifying future adoption, products and technologies for residential and
industrial consumers in the form of a graphical technology road map for wind energy. Sorsimo et al. [9].
presented the polices used by European nations to stimulate offshore wind development and discuss
the impact of similar policies in the U.S. Furthermore, the performance of ‘market-based’ British
renewable obligation and German ‘feed-in tariff’ systems of RE procurement systems are analyzed by
Toke [10].

The RE is an uncertain investment, such that it is long term, costly and depends on a feed-in tariff
system. The valuation for RE investment must consider the irreversibility and flexibility enjoyed by
decision makers (i.e., the option to delay investment), in addition to the uncertainty. A.Dixit et al. [11]
addressed the subject of traditional valuation techniques based on discounted cash flows inferior to
real option analysis under these circumstances. Here, we follow the real option approach (ROA) to
address the real option valuation (ROV) of an investment in solar energy (SE) projects and the optimal
time to invest under a number of different payment settings [12,13]. Fernandes et al. [14] presented a
review of the current state of the art in the application of ROA to investment in non-renewables and
RES. Abadie et al. [15] provides a literature review of the real option valuation for the operation of a
wind farm. According to [14,15], this particular literature in the RE sector is still limited. Therefore,
attempts to fill this gap would be welcome.

In this work, we consider the ROV of private potential investment in RE under the energy and
environmental policies, as well as the analysis and assessment of the impact of uncertainty sources.
In other words, the ROV has a crucial dimension (the option to delay an irreversible investment in
RE) under the policies and support schemes, which are provided by drivers; as such, it should be
embodied in the total value of RE. A real options framework is modeled for use in RE investment
using stochastic differential equation (SDEs).

Following this approach, Abadie et al. [15] addressed the value of an operating wind farm and
the real option to investment in it under different support schemes. The model considers up to three
sources of uncertainty: the electricity price, the wind load and the renewable obligation certificate
(ROC) price. They resorted to a trinomial lattice combined with Monte Carlo simulation, when the
analytical solutions are lacking. The authors considered the data referring to the U.K. Gazheli et al. [16]
developed a real option model in order to take into account the uncertainty and irreversibility of the
farmer deciding to lease agricultural land to a company installing a PV power plant. The uncertainty in
the agricultural commodity price in addition to the irreversible science that it is a 20-year commitment
from the farmer are considered. Subsidies introduced by the government to increase the investments
in the RE sector are discussed. The model is applied to a province in Italy.

Stochastic differential equations (SDEs) are using to model problems in many fields of science [17].
In practice, numerical solutions are becoming increasingly important, because the analytic solutions
are usually not available for SDEs. The well-known Euler–Maruyama (EM) method for SDEs was
presented with a strong convergence order of 0.5 in [18]. In order to improve the fundamental analysis
of numerical approximations, various implicit numerical methods using split-step techniques have
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been derived based on the Euler method. In 2002, Higham et al. [19] derived the split-step backward
Euler (SSBE) method. In addition, the split-step theta (SSθ) methods, which generalize the SSBE method
when θ = 1, were discussed in [20,21]. Although, these numerical methods are A-stable for linear SDEs,
these methods have a strong convergence order of 0.5. Using the additional term of the Itô–Taylor
expansion, the Milstein method was presented with a strong convergence order of 1.0 [18]. Based on
the Milstein method, Wang et al. [22] presented the drifting split-step backward Milstein (DSSBM)
method. Guo et al. [23] constructed the modified split-step composite θ-Milstein (MSSCTM) methods.
In 2015, Voss et al. [24] combined the predictor-corrector method with a Milstein method to investigate
the split-step Adams–Moulton–Milstein (SSAMM) method. In 2016, the modified split-step theta
Milstein (DSSθM) methods were presented by Tian et al. [25]. Although, these methods improved the
convergence order to be 1.0, unfortunately, we can see that the mean-square (MS) stability conditions
of these split-step methods have some restrictions for the parameters and step-size h; furthermore,
these methods are not A-stable. As far as the authors know, no implicit split-step numerical methods
have a strong convergence order of 1.0 and are A-stable for SDEs.

Numerical methods are needed for real option valuation in cases where analytic solutions are
either unavailable or not easily comparable. Approximation of the stochastic process for an underlying
asset can be applied to real option valuation. There are several candidate models for the stochastic
evaluation of the underlying asset (see [26]). An overview of two numerical methods is available in the
context of the Black–Scholes–Merton method [27,28]. Brennan et al. [29] considered finite difference
methods (FDM). Boyle [30] gave the simulation of the stochastic process using the Monte Carlo (MC)
method. The comparative study of FDM and the MC method for pricing European options was
considered in [31]. In addition, the methods are typically tailored to fit into a specific problem at hand
(see [32,33]).

It is well known that, when the real option can be modeled using a partial differential equation,
then FDM are sometimes applied. Despite the large number of research discussed using FDM for
ROV, the FDM have become uncommon in use today (particularly amongst practitioners) due to
the required mathematical sophistication; these also cannot readily be used for high-dimensional
problems [33]. Although the MC method has also developed, is increasing and is especially applied
to high-dimensional problems, its convergence to the correct values is still slow, which leads to a
significant increase in run-time [34]. Therefore, recently, there has been increasing interest in deriving
new numerical methods, which can possibly avoid the shortcomings in the aforementioned methods.
In this work, the new classes of split-step numerical methods are constructed, which are A-stable, with
convergence with order 1.0. Using Lobatto3C (The Lobatto3C methods are algebraically stable, B-stable
and L-stable. Therefore, the Lobatto3C methods are considered excellent for stiff ordinary differential
equation (ODE) problems [35].) methods in collusion with the Milstein method, the Lobatto3C-Milstein
(L3CM) methods are derived. The new numerical methods L3CM methods are applied to valuing the
real options, and the results are compared with those of FDM and MC methods.

In this paper, a real option framework is modeled for use in RE investment. The real option
framework considers the volatility in RE price during the project lifetime and the development lag
between launching the project and starting the production (since the net production revenue cannot be
started instantaneously, a time lag has to be allowed between the decision to establish the RE plant,
and the actual production is the cost of delay (if the cash flows are evenly distributed over time and the
exclusive rights last n years (20 years), the annual cost of delay can be written as: 1

n = 1
20 = 5% a year;

though, this cost of delay rises each year, to 1
19 in Year 2, 1

18 in Year 3, and so on, making the cost of
delaying the exercise larger over time)). The real option framework differs from the previous work,
since the new numerical methods, L3CM, are integrated with option theory and the four economic
elements, cost, value, risk and flexibility, to value a real option. We examine the new L3CM methods
with two other commonly-used methods, the FDM and MC methods, in an options valuation for
investment with uncertainty in a case study.
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The paper is organized as follows. In Section 2, we show the development in the RE sector.
In addition, the investment in generating electricity using solar energy is discussed. The situation
of the RE sector in Egypt is provided in Section 3. In Section 4, the L3CM methods are derived to
apply in a real option framework. A real option framework is designed for use in RE investment in
Section 5. In Section 6, a case study of solar thermal energy in Egypt is introduced. Furthermore, a
comparison between the L3CM, FDM and MC methods is presented to explain the efficiency of the
new numerical methods.

2. Renewable Energy Investment

Other concerns, like the rising demand of electricity and the risks of climate change, increase
the importance of RES. In fact, RES are becoming ever more relevant in the generation of electricity.
RES account for a rising share of the world’s total electricity supply, and they are the fastest growing
source of electricity generation in the IEO 2016 [5] (see Figure 1). Total generation from RES increases
by 2.9%/year, and the renewable share of world electricity generation grew from 22% in 2012 to 29%
in 2040. The generation of electricity from solar is increasing by an average of 8.3%/year. Of the
5.9 trillion kWh of new renewable generation added over the projection period, solar energy accounts
for 859 billion kWh.

Figure 1. World net electricity generation from renewable power by fuel for trillion kWh [36].

A great deal of effort is being put into researching and developing renewable energy technologies.
Bloomberg New Energy Finance tracks deals across the financing continuum, from R&D funding and
venture capital for technology and early-stage companies, through to the asset fiance of utility-scale
generation projects [36] (see Figure 2).

Figure 2. Bloomberg New Energy Finance tracks [36].

RE set new records in 2015. Investments reached nearly $286 billion, six-times more than in 2004.
For the first time, more than half of all added power generation capacity came from RES. All of this
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happened in a year for which the prices of fossil fuel commodities-oil, coal and gas plummeted. So far,
the drivers of investment in RE, including climate change policies and improving cost-competitiveness,
have been more than sufficient to enable RE to keep growing its share of world electricity generation.
Figure 3a shows that investment in RE rose 5% to $285.9 billion, taking it above the previous record of
$278.5 billion reached in 2011, and that investment in RE has been running at more than $200 billion per
year for six years now. The stand-out contribution to the rise in investment from the new record came
from China, which lifted its outlays by 17% to $102.9 billion, some 36% of the global total. Investment
also increased in the U.S., up 19% at $44.1 billion; in the Middle East and Africa, up 58% at $12.5 billion;
and in India, up 22% at $10.2 billion.

Investment in solar has achieved the highest growth in 2015 among RES. Solar saw a 12% increase
to $161 billion and wind a 4% boost to $109.6 billion. Biomass and waste-to-energy suffered a 42% fall
to $6 billion; small hydro projects of less than 50 MW a 29% decline to $3.9 billion; biofuels a 35% drop
to $3.1 billion; geothermal a 23% setback to $2 billion; and marine (wave and tidal) a 42% slip to just
$215 million. Figure 3b shows the sector split for global investment.

(a) (b)

Figure 3. Real MS-stability regions: (a) new global investment in RE by asset class; (b) new global
investment in RE by sector, 2015, and growth in 2014; $BN [36].

In order to pave the way for a wider spread of investing in renewable energy, a number of public
support schemes have been considered. These schemes can be divided into two major groups:

• Regulatory price-based mechanisms (a payment for kWh of energy produced)
• Regulatory quantity-based mechanisms (the government sets a desired level of RES, and “green”

generators receive tradable certificates according to their production)

Fagiani et al. [7] point out that a dilemma arises here: market risk provides an incentive to make
efficient use of resources, thus limiting the cost to society, but it simultaneously deters investors, thus
potentially resulting in less RE and higher prices (as they include a higher risk premium). Regarding
the support schemes, the literature has argued, especially in recent times, that a key driver of RE
investment is keeping investors’ risks within reasonable limits. Three particular risk factors can stem
from the policy instruments themselves:

• The type of instrument (e.g., feed-in tariffs, tradable green certificates)
• Constantly changing support schemes
• The design details of the particular instrument

Policy characteristics strongly affect the price risk and the quantity risk faced by an investor.
However, their scope in mitigating other sources of technical risk [37,38] and financial risk [39] is more
limited. Uncertain returns on these investments are generally considered a major cause for concern for
developers and investors alike.
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It was stated earlier that, when valuing renewable energy projects, there is uncertainty stemming
from the long-term, costly, dependency on a feed-in tariff system and random behavior of prices
associated with the energy source itself. When considering solar as an RES, one of the sources of
uncertainty is future solar power, as well as future electricity prices. When a storage system is
considered, the uncertainty remains the same; although the storage system is in place to make the
energy source more predictable, there is still uncertainty in how much solar power we will see at a
given hour, as well as uncertainty in the price of electricity at a given hour. We can use real options in
this setting to determine the optimal time of launching the project and assess the value of real options.

3. Renewable Energy Sector in Egypt

In this section, an overview of the RE sector in Egypt is provided. Furthermore, we show the
support schemes, which are introduced by the government to increase investment opportunities in
generating electricity using Solar power. In 2008, the government announced the strategic plan to
reach 20% of the total electricity generated from RE by 2020 vs. 9.1% in 2013. The country enjoys a
total annual global solar irradiance of up to 2.6 TWh/m2 and a total annual sunshine duration of up to
4000 h yearly [40]. The World Bank acknowledged Egypt’s solar power advantage. It explains that
there are many best areas for solar energy. Figure 4 shows the potential of solar energy in Egypt.

Figure 4. Potential of solar and wind energy in Egypt (source: Solar GIS http://solargis.info).

Fossil fuels have shared 91% of the electricity generation, in addition to 9% from RES. Of the
9% RE generation, there is 7.7% hydro-power, 1.2% wind and 0.1% solar [41]. In recent years, the
Egyptian Electricity Holding Company (EEHC) has faced a gap on the power supply side, which
caused recurring power cuts from 2012 to 2015. This gap will increase if the lack of investment in
energy generation, both conventional and renewable, continues.

http://solargis.info
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The Egyptian government has adopted an ambitious plan to reach 20% of the total electricity
generated from RE by 2020, including 2% solar. The target is expected to be met by reaching the
solar energy target of 3500 MW installed capacities up to 2027 [41] vs. the total capacity of 140 MW
in 2014 [42]. The Egyptian government has introduced the following policies to foster the increasing of
the RE energy contribution:

1. Public competitive bidding:
Issuing tenders internationally requesting the private sector to supply power from RE projects.

2. Third party access (TPA):
Investors are allowed to build and operate RE power plants to satisfy their electricity needs or to
sell electricity to other consumers though the national grid.

3. Feed-in tariff (FIT):
In September 2014, the government passed the key Feed-In Tariff Law (the feed-in tariff enacted
by decree 1947/2014 [43,44]), triggering wide interest from international developers and investors.
The main parameters of the feed-in tariffs are:

• Solar power stations: The value of the tariff is divided into five scales according to the
production capacity of the station, and the value of the tariff will be fixed during the contract
period, which reaches 25 years.

• Land allocation: Through the use of the craft scheme for a period of time equal to the contract
period. Furthermore, the land will be given just 2% of the total power generated revenue
from the plant. In addition, the customs will be 2% of the total items cost.

• Electricity: That produced through renewable energy stations has priority access to the
electricity grid.

• Government support and guarantee: For power stations that exceed 500 kW, include
low-interest credit facilities.

4. Net metering:
In January 2013, EgyptERAadopted a net-metering policy that allows small-scale renewable
energy projects to feed electricity to the grid. Generated surplus electricity will be discounted
from the balance through the net-metering process.

5. Quota system:
Heavy industries will be obliged to use a percentage of their electricity consumption from
RE sources.

One of the challenges facing the Egyptian government to implement the RE strategy is that
solar power plant investment is irreversible and uncertain. The solar energy projects are long-term,
costly and depend on a feed-in tariff system. The real option framework, which takes into account
investment irreversibility, uncertainty and flexibility in RE investment, was addressed in [11,16,45].
In the following, we derive new classes of numerical methods, the L3CM methods for SDEs. We discuss
the applicability of the L3CM methods to approximate a stochastic process arising from real options
analysis for the underlying asset in assessing the uncertainty investment.

4. The Lobatto3C-Milstein Method for SDEs

Numerical methods are needed for real option valuation in cases where analytic solutions are
either unavailable or not easily compatible. In this work, we construct L3CM as a new numerical
method, which can be used to approximate the stochastic process for the underlying asset in real
option valuation. We consider the Itô SDEs of the form:

dy(t) = f (y(t))dt + g(y(t))dW(t) y(t0) = y0 t ∈ [t0, T] (1)

where f (y(t)) is the drift coefficient, g(y(t)) is the diffusion coefficient and Wiener process W(t) is
defined on a given probability space (Ω,F , P) with a filtration {Ft}t≥0 satisfying the usual conditions,
whose increment ∆W(t) = W(t + ∆t)−W(t) is a Gaussian random variable N(0, ∆t).
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Recently, there have been several attempts to construct numerical methods based on split-step
techniques, to improve the fundamental analysis containing the convergence and stability of numerical
solutions for SDEs. It is well known that there are many A-stable split-step numerical methods with
a convergence order of 0.5 for scalar linear SDEs, such as the SSBE and SSθ methods. The split-step
numerical methods with a convergence order of 1.0 are constructed for SDEs, for example the DSSBM
method and SSAMM method. Unfortunately, we can see that the MS stability conditions of these
methods for linear SDEs have some restrictions for the parameters and step-size h. Furthermore,
Figure 5 shows that these methods are not A-stable.

Figure 5. Real MS-stability regions of drifting split-step backward Milstein (DSSBM), split-step
Adams–Moulton–Milstein (SSAMM) and the test problem.

In the following, in order to improve the numerical stability properties, the Lobatto3C-Milstein
(L3CM) methods are derived for SDEs (1). The Lobatto3C note that, the Lobatto3C methods are L-stable
(strong stability) and have been used successfully in solving stiff initial value ODE systems [35])
methods have the following form (the basic information about the Lobatto3C methods is presented in
Appendix A):

Yni = yn + h
s

∑
j=1

aij f (tn + cjh, Ynj) i = 1, 2, ..., s (2)

yn+1 = yn + h
s

∑
j=1

bj f (tn + cjh, Ynj) (3)

Now, using the Lobatto3C Formula (2) and (3) in collusion with the Milstein method, we derive
the L3CM methods for SDEs (1) as follows:
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Ỹni = yn + h
s

∑
j=1

aij f (Ỹnj), i = 1, 2, ..., s (4)

ŷn = yn + h
s

∑
j=1

bj f (Ỹnj) (5)

yn+1 = ŷn + g(ŷn)∆Wn +
1
2

g′(ŷn)g(ŷn)
[
(∆Wn)

2 − h
]

(6)

where yn is an approximation to X(tn), s ≥ 2 is the stage value, the coefficients aij, bj characterize the
L3CM methods, with increments ∆Wn := W(tn+1)−W(tn) being independent N(0, h)-distributed
Gaussian random variables and y(0) = y0. Moreover, yn is {Ftn}-measurable at the mesh-point tn.
It is well known that the two implicit equations need to be solved for Ỹni, i = 1, ..., s and ŷn.

Eissa et al. [46] provided that the L3C2Mmethod (i.e., s= 2 in (4) and (5)) converges strongly
with order 1.0 under the Lipschitz condition and the linear growth condition. Furthermore, the
mean-square (MS) stability of the L3C2M method is investigated for SDEs with both real and complex
parameters. It is shown that the L3C2M method preserves the MS-stability of the exact solutions under
no restriction on the step-size in the mean-square sense. In addition, the method is A-stable. In the
following, the new L3C2M method (4) to (6) will be applied in the geometric Brownian motion (GBM),
which is used to model ROV (note that this geometric Brownian motion (GBM) is a special case of
SDEs (1)).

5. The Real Option Framework

The valuation of real option plays an important role in the real option planning. The framework
for the real option provides a special viewpoint in valuing investment with uncertainty. There are many
different methods that can be applied to an ROV; these methods can be categorized into analytical
and numerical methods. They can be further divided into subsections, as represented in Figure 6.
Schulmerich [47] gave an overview, in-depth discussion and mathematical descriptions of some specific
methods. The ROV process can be divided into five steps as follows [48]:

1. Finding uncertainty investment opportunity.
2. The probability distribution of the uncertainties is approximated.
3. Know and analyze available real options.
4. Real option valuation.
5. Develop real options mind-set: by comparing the value of the options and the cost to obtain

options, a set of strategies and decisions can be reached. Meanwhile, the mind-set regarding
flexibility that is available and different is established.

In this section, we consider the solar plant power as an uncertainty investment opportunity.
We develop a model to assess the value of a deferred option. At any stage of the project, the model can
inform a strategic option to defer the project. Based on the particular characteristics of the real option
in RE investment, a deferred option of the solar power plant is considered, where the cash flows are
uncertain. We assume that the revenues will start the operation time of the solar power plant (i.e., we
consider the cost of delay (the time lag between the decision to establish and the actual production)).

In this real option framework, we distinguish the numerical methods of the ROV. We examine the
applicability of the L3C2M method of ROV and compare the results with that of the FDM and MC
methods. The L3C2M method is integrated with option theory and the four economic elements, cost,
value, risk and flexibility, to value the real option. The real option framework considers the volatility in
solar energy price during the project lifetime, and the development lags between launch of the project
and start if the production. The decision maker is facing an uncertain utility stream for investment.
The valuation of real options helps the decision maker to evaluate the investment opportunity.
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Figure 6. Classification of real option valuation (ROV) methods.

5.1. Framework Application

With the solar energy investment, the solar energy is the underlying asset. The value of the asset
is based on two variables, the estimation of the installed capacity (MW) of the solar energy power
plant and the pricing system. To value a solar energy investment as a real option, we need to make
assumptions about a number of variables as follows

1. Availability of the solar energy source:
At the outset, since this is not known with certainty, the availability of renewables has to be
estimated. The investor can estimate the installed capacity (MW) of the solar energy plant and
produced energy (kWh) by environmental assessment studies.

2. Estimated cost of establishing the solar energy plant:
The estimated development cost is the exercise price of the option. The cost of establishing the
solar energy plant can be estimated by feasibility studies for the projects.

3. Time to expiration of the option:
The life of an RE option can be defined as a contract period; that period will be the lifetime of the
option. For example, the contract in the sector of RE is a long-term contract of approximately 20
to 25 years.

4. Variance in the value of the cash flows:
The variance in the value of the cash flows is determined by two factors, variability in the pricing
system of the RE and variability in the estimate of the availability of the RE. In the more realistic
case where the average of the RE resources and the RE price can change over time, the option
becomes more difficult to value.

5. Cost of delay:
Since the net production revenue cannot be started instantaneously, a time lag has to be allowed
between the decision to establish the solar energy plant, and the actual production is the cost
of delay (If the cash flows are evenly distributed over time and the exclusive rights last n years
(20 years), the annual cost of delay can be written as: 1

n = 1
20 = 5% a year. Though, this cost of

delay rises each year, to 1
19 in Year 2, 1

18 in Year 3, and so on, making the cost of delaying the
exercise larger over time.).
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5.2. Stochastic Model

In this model, the L3C2M numerical method is examined. GBM is used to model the ROV.
Suppose that we are seeking a valuation of a project with a finite lifetime t ∈ [0, T]. The cash flows
S from the investment are stochastic with a standard deviation σ and risk-free interest rate r. Hence,
the evolution of cash flows over time is described as:

dS(t) = rS(t)dt + σS(t)dW(t) t ∈ [0, T] (7)

In the following, we derive a valuation for the investment case study problem (7) using the
L3C2M numerical method. The SDEs (7) describes the paths of cash flows for the lifetime of solar
power plant t ∈ [0, T]. The path values of S(t) can be calculated iteratively by the L3C2M method,
which is introduced in the previous section. The future steps depend on the type of real option.

5.2.1. The Deferred Option

If we assume that a project requires an initial up-front investment of I (initial cost) and that the
present value of expected cash inflows computed right at time T is S(T), the value of the defer option
at time T is denoted by V(S, T) as follows:

V(S, T) = e−rTE[max(S(T)− I, 0)] (8)

The value of the real option can be determined by calculating the expected value in (8) for a
given npaths, as an approximation to the expected value. The value of S(t) can be determined using
the L3C2M method for each path. Finally, we compare the value of real options (8) with the value
of real options, which are computed by the FDM and MC method to show the efficiency of our
method L3C2M.

6. A Case Study: 140-MW Solar Power Plant in Kuraymat, Egypt

In this section, we present numerical solutions for an actual case study of the solar power plant
project in Egypt and analyze the numerical results. We test the evaluation model for the deferred
option using the L3C2M numerical method. We demonstrate the efficiency of numerical method on
the real options framework by comparing with FDM and MC methods.

Our data below are for the solar combined cycle power plant in Kuraymat, Egypt, the estimates
of key parameters. They are relevant for computing revenues and initial cost over the useful lifetime.
Through detailed information published in the annual report of New and Renewable Energy Authority
(NREA) 2012/2013 [42], we could get and estimate the following information about the project:

• The installed capacity is C = 140 MW, including the solar share of 20 MW (think of the total area
of the integrated solar field being about 644,000 m2 and the total solar collectors is about 1920
solar collectors containing 53,760 mirrors) (NREA annual report 2012/2013 [42]).

• The total cost is about I = 340 $ million, and the development lag is four years (NREA annual
report 2012/2013 [42]).

• The lifetime of the project T = 25 years (the feed-in tariff enacted by decree 1947/2014 [43,44]).
• The tariff applied to the electricity generated from solar was P = 0.1434 $/kWh (the feed-in tariff

enacted by decree 1947/2014 [43,44]).
• The risk-free interest rate considered is r = 8.75%, which corresponds to the 10-year Egypt

government debt in September 2014 (source: Egypt Central Bank [49]).

In the following, we will estimate the discount cash-flow and the variance of the purchase price
of electricity from solar power plants.
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6.1. Estimate Discount Cash Flows

The feed-in tariff is generally claimed to be the most effective method for promoting RE.
Let P denote the fixed tariff applied to the electricity generated from the solar power plant.
According to [43,44], the feed-in tariff was enacted in October 2014 and provides for a sophisticated
pricing system, differentiating between solar projects, as well as project installed capacity. The keys of
the pricing system are indicated; those that are relevant to international investors are:

• 500 kW up to 20 MW: $0.136
• 20 MW up to 50 MW: $0.1434

The capacity of the project is C = 140 MW, including the solar share of 20 MW. Therefore,
the feed-in tariff is considered to be P = 0.1434 $/kWh. Using the total produced energy (GWh)
in a given year in Table 1 [42,50], the average of producing energy (kWh/year) is estimated to be
Sy = 305× 106 kWh/year.

Table 1. The total produced energy (GWh) per year.

2010/2011 2011/2012 2012/2013 Average

206 479 230 305

The discount cash flow CF, in U.S. million dollars, of the investment under this scheme,
which considers development lag, is [51]:

CF = S0 =
0.1434× 305× 106 × 25

(1.9)2 = 302.8878

6.2. Estimate the Volatility

In July 2014, the Egyptian government issued its decree 1257/2014, which determines the increase
of the electricity future price gradually over five years from 2014 to 2019 [52]. This decision was
made within the Egyptian government plan to reduce the energy support. In October 2014, the
Egyptian government issued the feed-in tariff enacted by decree 1947/2014 [43,44], which determines
the purchase price of electrical energy supplied to the Egyptian company to transport electricity, from
the plants producing the electricity from RES. Furthermore, we reconsider this price after two years
from the date of publication of the decree, commensurate with the change in the selling price of
electricity for the user.

Using electricity selling prices stated in the decree 1257/2014 [52] and following [15], we can
derive the regression model whose residuals allows us to compute the volatility:

σ = 0.1045

In the following Table 2, we summarized all of the data sources for the case study.

Table 2. Parameters used in the investment option case. NREA, New and Renewable Energy Authority.

Parameter Symbol Value Unit Source

Current CFfrom investment S0 302.8878 $US million Section 6.1
Fixed investment cost I 340 $US million NREA annual report 2012/2013 [42]

Time to invest T 25 Years Feed-in tariff decree 1947/2014 [43,44]
S.d. of cash flows σ 0.1045 Section 6.2

Risk-free discount rate r 0.0875 Egypt Central Bank [49]
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6.3. Valuation of the Deferred Option

We consider the inputs in Table 2 to discuss the deferred option model as follows. We use
the closed-form solution to benchmark the numerical results. A close resemblance to the pricing of
a European call option (In finance, a European option can be exercised only at the expiration time of
the option, while an American option can be exercised at any point of time during the option lifetime.
Given the price of underlying security P and the strike price S, the payoff for a call option is defined as
max(P− S, 0) and for a put option as max(S− P, 0).) with the Black–Scholes equation [27]. Plugging
the given parameters into the closed-form Black–Scholes equation yields

Vexact = 264.7410

6.3.1. L3C2M Method

We derive a numerical solution with the L3C2M method for the investment option. In addition to
the parameters listed in the Table 2, we have additional parameter θ = 0.8, h = 0.145, such that the
sample size is N = T/h, and we compute 5000 different discredited Brownian paths over the lifetime
(M = 5000). We get from (8):

VL3C2M = 264.7611

If we compare the value of the method with the exact solution, we find that the value of the
method is very close to the exact solution. Moreover, note that the investment is valuated naturally in
the whole domain with both methods. Comparing the option values, we note that the error in both
methods is approximately the same and decreases rapidly with the length of the time steps. Figure 7
shows the mean-square error at time T versus the step-size h analyzed in the log-log diagram.

Figure 7. The MS error for the L3C2Mmethod.

6.3.2. Monte Carlo Simulation

Following [9], we run the MC simulation with the parameters given in Table 2. Using a
sample size of nmax = 1.5× 106 and the 95% confidence level, the simulation yields the value of
the investment option:

VMC = 264.8050± 0.3161

We note that the value is reasonably close to the exact value. To investigate the convergence
properties, we run the simulation with smaller sample sizes, descending evenly to nmin = 5× 104.
The results of the simulation are presented in Figure 8 along with the 95% confidence level.
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Figure 8. The value of the investment option (blue) and the 95% confidence level with an MC simulation
in comparison to the analytical solution (red).

6.3.3. Finite Difference Method

Finally, following [9], we solve the investment option case with FDM. We derive a numerical
solution with the explicit and implicit interpolation scheme. In addition to the parameters listed in
the Table 2, we have to set additional parameters for the grid. Limiting the domain to X = 900 with
N = 250 nodes and using M = 105 time steps, we obtain:

VFDM,exp = 264.7458

VFDM,imp = 264.7362

Comparing the values to the exact solution, we note that the values are very close to the exact
solution with both methods. Moreover, we note that the investment is valuated naturally in the whole
domain with FDM, which is not possible for example with the MC method due to path independence.
The corresponding error plot of the values in log-log scale is given in Figure 9.

Figure 9. Absolute error for the explicit and implicit finite difference methods (FDM).

6.4. Discussion of the Results

Using the accuracy of the numerical solution as the only metric is problematic since increasing the
number of iterations by one step does not equal increasing the grid size by one node. The comparison
of the numerical methods for the investment case with respect to fixed absolute error and wall-clock
time in seconds is presented in Table 3.
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Table 3. Comparison of the numerical methods.

MC FDM-Exp FDM-Imp L3C2M

Inputs 100× 106 (80, 9000) (80, 9000) (5000, 172)
Value (V) 264.8050 264.7458 264.7362 264.7611

Clock time 48.2573 0.7747 0.6002 0.0695
Error

(
VNum.−Vexact

Vexact

)
0.00024165 0.00001804 0.00001804 0.0000132

From Table 3, we conclude that: In general, each of the three numerical methods has values that
are very close to the exact solution. Although the MC method works very well for pricing European
options, approximates every arbitrary exotic option, is flexible in handling varying and even higher
dimensional financial problems, the convergence of the MC method is very slow and takes a long
run-time compared to other methods. FDM converges faster than the MC method and is more accurate;
they are fairly robust and good for pricing options where there are the possibilities of early exercise,
but FDM has become uncommonly used today, particularly amongst practitioners, due to the required
mathematical sophistication; these too cannot readily be used for high-dimensional problems and also
are very complicated in implementation. Finally, we can see that the L3C2M method outperforms all
of the other methods in efficiency, converges faster than other methods and is considered simple in
implementation compared to other methods of the case study with the given parameters.

7. Conclusions

In this paper, we address the real option valuation of an uncertainty investment in a solar power
plant project and the optimal time to invest under the support program of Egypt: a feed-in tariff,
electricity price and transitory subsidy. Three sources of uncertainty are considered: the electricity
price, the level of solar generation and feed-in tariff. We construct a new general numerical method, the
Lobatto3C-Milstein (L3CM) method, to use in the stochastic process of real option valuation, when the
analytic solutions are lacking. Our real option framework differs from the previous work since; the new
numerical L3CM method is integrated with option theory and the four economic elements, cost, value,
risk and flexibility, to value a real option. We examine the L3CM method with two commonly-used
methods, finite difference methods (FDM) and the Monte Carlo (MC) method, in an option valuation
for investment with uncertainty in a case study.
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Appendix A. Background of Lobatto3C Methods

The fundamental analysis containing the convergence and stability for numerical methods
for differential equations is provided in [35,53–55]. The families of RKmethods based on Lobatto
quadrature formulas are one of several classes of fully-implicit RK methods possessing good stability
properties for ODEs. The number 3 is usually found in the literature associated with Lobatto methods.
Ehle [56] introduced the Lobatto 3A, 3B and 3C classes. The general definition of the Lobatto3C
methods are due to [57,58]. For more information about the fundamental properties of Lobatto
methods, we recommend [35,53].
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The classes of s-stage Lobatto methods are given in [35]:

Yni = yn + h
s

∑
j=1

aij f (tn + cjh, Ynj) i = 1, 2, ..., s (A1)

yn+1 = yn + h
s

∑
j=1

bj f (tn + cjh, Ynj) (A2)

where the stage value s satisfies s ≥ 2 and the coefficients aij, bj and cj characterize the Lobatto methods.
The s intermediate values Ynj for j = 1, ..., s are called the internal stages and can be considered as
approximations to the solution at tn + cjh. The main numerical approximation at tn+1 = tn + h is given
by yn+1. Lobatto methods are characterized by c1 = 0 and cs = 1. For a fixed value of s, the various
families of Lobatto methods share the same coefficients bj and cj. In addition, the coefficients aij vary
depending on the classes of Lobatto methods. For the Lobatto3C class, the aij is defined as:

ai1 = b1 i = 1, ..., s (A3)

and determined the remaining aij by C(s − 1). The coefficients of the Lobatto3C methods can be
displayed by the Butcher tableau in Figure A1.
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Appendix A. Background of Lobatto3C Methods

The fundamental analysis containing the convergence and stability for numerical methods
for differential equations is provided in [35,53–55]. The families of RKmethods based on Lobatto
quadrature formulas are one of several classes of fully-implicit RK methods possessing good stability
properties for ODEs. The number 3 is usually found in the literature associated with Lobatto methods.
Ehle [56] introduced the Lobatto 3A, 3B and 3C classes. The general definition of the Lobatto3C
methods are due to [57,58]. For more information about the fundamental properties of Lobatto
methods, we recommend [35,53].

The classes of s-stage Lobatto methods are given in [35]:

Yni = yn + h
s

∑
j=1

aij f (tn + cjh, Ynj), i = 1, 2, ..., s, (A1)

yn+1 = yn + h
s

∑
j=1

bj f (tn + cjh, Ynj), (A2)

where the stage value s satisfies s ≥ 2 and the coefficients aij, bj and cj characterize the Lobatto methods.
The s intermediate values Ynj for j = 1, ..., s are called the internal stages and can be considered as
approximations to the solution at tn + cjh. The main numerical approximation at tn+1 = tn + h is given
by yn+1. Lobatto methods are characterized by c1 = 0 and cs = 1. For a fixed value of s, the various
families of Lobatto methods share the same coefficients bj and cj. In addition, the coefficients aij vary
depending on the classes of Lobatto methods. For the Lobatto3C class, the aij is defined as:

ai1 = b1, i = 1, ..., s, (A3)

and determined the remaining aij by C(s − 1). The coefficients of the Lobatto3C methods can be
displayed by the Butcher tableau in Table 4.

Table A1. The Lobatto3C methods of order two (left) and order four (right).
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The stability properties of the numerical methods for deterministic ODEs are reported in [35]. In
the following, we present the well-known results for Lobatto methods in a way that helps to motivate
the SDEs analysis.

Proposition A1. (See [35]) The s-stage Lobatto3C methods (A1) and (A2) applied to the scalar test equation:

dX(t) = λX(t)dt, t > 0, X(0) = X0 6= 0, (A4)

Figure A1. The Lobatto3C methods of order two (left) and order four (right).

The stability properties of the numerical methods for deterministic ODEs are reported in [35].
In the following, we present the well-known results for Lobatto methods in a way that helps to
motivate the SDEs analysis.

Proposition A1. (See [35]) The s-stage Lobatto3C methods (A1) and (A2) applied to the scalar test equation:

dX(t) = λX(t)dt t > 0 X(0) = X0 6= 0 (A4)

where λ ∈ C is a constant, yields:
yn+1 = R(λ, h)yn (A5)

with:
R(Z) = 1 + ZbT(I − ZA)−11 (A6)

where bT = (b1, ..., bs) A = (aij)
s
i,j=1 1 = (1, ..., 1)T and I is the identity matrix. R(Z) is called the stability

function of the numerical method, which can be written for implicit methods as a rational function with numerator
and denominatorof degree ≤ s as follows:

R(Z) =
P(Z)
Q(Z)

degP = k degQ = j (A7)

Let SL be the stability domain for the Lobatto3C methods (A1) and (A2), then the method with
stability function (A7) is A-stable if and only if |R(iy)| ≤ 1 for all real y, and R(Z) is analytic for
ReZ < 0. In addition, using the definition of the method coefficients (A3) and (Proposition 3.8 in [35]),
we find that the method also is L-stable. Furthermore, the Lobatto3C methods are characterized
by non-stiff order (2s− 2), being not symmetric, algebraically stable and B-stable, and the stability
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function R(z) is given by (s− 2, s) Padé approximation to ez. Therefore, the the Lobatto3C methods (A1)
and (A2) are described as excellent methods for stiff problems.
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