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Abstract: This paper proposes the Lagrange multiplier test for the null hypothesis that
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idiosyncratic volatility factor. The test statistic is derived by representing the model in a
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experiments. We apply the test to the Asian stock market indices.
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1. Introduction

The international co-movement of stock market volatility has attracted much attention after the Asian
financial crisis in the late 1990s. It is often argued that national financial instability is quickly transmitted
internationally through accelerated capital flows, especially in emerging markets and then international
financial crisis is more difficult to cope with.
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One type of co-movement analysis is to estimate volatility spillover effects, which is essentially
transmission mechanism of volatility in stock markets. This line of research uses extensively various
variants of ARCH model first proposed by Engle [1], such as the SWARCH model, which is the
Markov switching model incorporated into the ARCH model. The existence of spillover effects has
been recognized almost universally by empirical analyses.

Another type of co-movement analysis is to identify a volatility factor common to multiple series. This
model is often used in explaining volatility contagion, namely increased correlation in high volatility
period; correlation between two series increases when the volatility of their common factor is high
in comparison with idiosyncratic volatilities. This phenomenon is also regarded as a stylized fact in
financial markets.

In this paper we proposes the Lagrange multiplier (LM) test for a single common volatility factor
model. The null hypothesis is an extreme case in that two markets have a single stochastic volatility
process in common and have no idiosyncratic volatility factor. This situation is not unrealistic in that it
expresses the situation where a single intermarket volatility factor overrides other minor volatility factors
of two markets, for example, in the period that includes global financial crises. In such an “extreme”
situation, other minor domestic volatility factors are negligible in size and markets looked as if they have
a single common volatility process in common. The aim of our test is not to assert that there exists only
one single volatility factor among markets, but that minor idiosyncratic volatility factors are overridden
by a single intermarket volatility factors.

The use of the LM test is essential here. The Wald and Likelihood ratio test statistics cannot have �2

distribution asymptotically under the null hypothesis; the restricted parameter estimators, which is used
by the Wald and Likelihood ratio test procedures, cannot have asymptotically standard distribution, since
the null for our problem is on the boundary of the parameter space (General discussions of asymptotic
tests in boundary situations have been provided by Chernoff [2], Moran [3], and Chant [4].), namely
variance should be positive and correlation should be less than one in absolute value. Only the LM test
statistic has �2 distribution asymptotically under the null hypothesis of our problem, since the LM test
procedure uses only restricted parameter estimators.

We here consider the linearized form of the bivariate Stochastic volatility (SV) model and assume
that this linearized form has a Gaussian disturbance term. This unconventional assumption is a cost to
derive the test statistic for the number of volatility factors, which is an unprecedented challenge in the
literature. By this assumption, the model is free from numerical integration to be used in estimating the
original SV model (The original formulation of the SV model was introduced by Taylor [5], and has
been applied successfully in financial analyses, for example, by Jacquier et al. [6] and Kim et al. [7].
For the recent development of the multivariate SV models, see Asai et al. [8].). A counterpart test in
the ARCH framework was proposed by Engle and Susmel [9]. We believed that our test would be also
useful to find a single overriding factor in bivariate state-space model in level.

The rest of the paper is organized as follows. Section 2 details the framework and notation of the
model. Section 3 proposes the formula of the test statistic for the linear state-space model. Section 4
reports the results of our Monte Carlo experiments for the empirical size and power of the test. In
section 5, the test is applied to the empirical analysis of the Asian stock market indexes. Section 6
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briefly concludes this study. The derivation of the score functions and the conditional moments of state
variables are given in Appendix.

2. Model

We here consider the following observation equations of the bivariate SV model:

r1t =  1

✓

h1t

2

◆

e1t, r2t =  2

✓

h2t

2

◆

e2t (1)

for series k = 1, 2 and time t = 1, . . . , T . Note that rkt is the observed variable, which typically denotes
the demeaned rate of return on assets, hkt is demeaned part of log volatility, where E(hkt) = 0, ekt is
an idiosyncratic noise with constant variance, standardized at 1, and log 2

k is the mean of log volatility,
and hence  k is, roughly speaking, overall standard deviation of rkt.

We linearize the observation equation to the linear state-space model (The log transformation breaks
down when rkt = 0, since log(0) = �1. In practice, the use of log(x+✏)�✏/(✏+x) has been suggested
in place of log x for small constant ✏ > 0 to avoid this problem. This transformation is useful in that ✏
has no effect for large x. See Breidt and Carriquiry [10] for details.); taking log of squares of Equation
(1), we have

y1t = �1 + h1t + ⇠1t, y2t = �2 + h2t + ⇠2t (2)

where ykt ⌘ log r2kt, �k ⌘ log 2
k + µ, ⇠kt ⌘ log e2kt � µ, and µ ⌘ E (log e2kt).

The main difference of our model from the original multivariate SV model is that Gaussianity of
(⇠1, ⇠2) is assumed in our model, namely

"

⇠1t

⇠2t

#

⇠ i.i.d.N

 "

0

0

#

,

"

⌘ ⌘�

⌘� ⌘

#!

(3)

where � is a correlation coefficient of (⇠1, ⇠2), and hence the distribution of ekt is no longer Gaussian. We
are not asserting that the log squared returns follow a Gaussian distribution in reality (As suggested by
an anonymous reviewer, the distribution of (e1t, e2t) under Gaussianity of (⇠1t, ⇠2t) is, exactly speaking,
inappropriate for market data. It can be easily shown that the marginal distribution of ekt is expressed as

f(ekt) =
1p

2⇡⌘ |ekt|
exp

"

�(log e2kt � µ)
2

2⌘

#

, �1 < ekt < 1

noting that e2kt = exp(µ + ⇠kt) follows a log-normal distribution. It is easy to see that this distribution
has zero density function at the origin.).

Under the assumption of Gaussianity of (e1t, e2t), the model (1) would be a nonlinear non-Gaussian
multivariate state space model; even conventional hypothesis testing for this model has been rarely
calculated because of its heavy computational burden and complexity, and hence constructing a test
for the number of factors, which is our aim, seems almost unfeasible under the original assumption.

It seems also algebraically unfeasible to derive a test statistics from Equation (2) if Gaussianity of
(e1t, e2t) is assumed. The properties of the linearized model under the Gaussianity assumption of
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(e1t, e2t) was extensively studied by Harvey et al. [11] and they reported that their analytical expression
is extremely complicated; for example, the joint covariance of log e21t and log e22t is expressed as an
infinite series; the mean and variance of log e2kt are expressed as µ = �1.27 and ⌘ = ⇡2/2 ⇡ 4.93,
respectively.

On the other hand, the linearized model (2) is a linear state-space model under our assumption that
the distribution of (⇠1t, ⇠2t) is Gaussian and we can derive the score function and Fisher information,
which are required to derive our test, though algebraically tedious, as shown in Appendix A.

The non-Gaussianity of (e1t, e2t) in our model is a serious drawback if we use this model for asset
pricing, where Gaussianity of return is an essential assumption. However, in the context of spillover or
contagion in international finance, Gaussianity is not always an essential element. We believe that our
assumption of Gaussian (⇠1t, ⇠2t) is a cost to derive the test for a single volatility factor. The usefulness
of our assumption can be tested by checking the usefulness of our test.

The observation equation density, namely the conditional density of y1t and y2t given h1t and h2t, are
expressed as

⌫1t ⌘ f(y1t|h1t) =
1p
2⇡⌘

exp



�(y1t � �1 � h1t)
2

2⌘

�

,

⌫2t ⌘ f(y2t|y1t, h1t, h2t) (4)

=

1

p

2⇡⌘(1� �2)
exp

✓

� [(y2t � �2 � h2t)� �(y1t � �1 � h1t)]
2

2⌘(1� �2)

◆

.

We here assume that the log volatilities follow the bivariate first-order autoregressive (AR) process:

h1t = �1h1,t�1 + !
1/2
1 u1,t�1, |�1| < 1

h2t = �2h2,t�1 + �!
1/2
1 u1,t�1 + !

1/2
2 u2,t�1, |�2| < 1

(5)

where the idiosyncratic noise ut = (u1t, u2t)
0 follows Gaussian distribution, namely

"

u1t

u2t

#

⇠ i.i.d.N

 "

0

0

#

,

"

1 0

0 1

#!

. (6)

The transition Equation (5), or the conditional densities of h1t and h2t given their past values, are
expressed as

⌧1t ⌘ f(h1t|h1,t�1) =
1p
2⇡!1

exp



�(h1t � �1h1,t�1)
2

2!1

�

,

⌧2t ⌘ f(h2t|h1t, h1,t�1, h2,t�1) (7)

=

1p
2⇡!2

exp

✓

� [(h2t � �2h2,t�1)� �(h1t � �1h1,t�1)]
2

2!2

◆

.

This formulation is not a general bivariate autoregressive process in that they are two univariate
first-order AR processes with correlated innovations (Harvey et al. [11] set �1, �2 to unity.). The general
condition for the identity h1t = h2t is that the coefficient matrix of the multivariate first-order AR model
has eigenvector (1, 1)

0, in addition to the degeneracy of disturbances. However, we believe that our
assumption is sufficient for practical use.
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Then, the density function of ỹT ⌘ (y11, y21, . . . , y1T , y2T )
0, or the likelihood function, from which

our LM test statistic is derived, is expressed as follows:

f(ỹT ) =

Z 1

�1
· · ·
Z 1

�1
f(ỹT , ˜hT )dh11dh21 · · · dh1Tdh2T (8)

by integrating out the state variables ˜hT ⌘ (h11, h21, . . . , h1T , h2T )
0, where

f(ỹT , ˜hT ) =

T
Y

t=1

2
Y

k=1

⌫kt⌧kt.

We have two notes for the integration in Equation (8). First, our model defined by Equations (2), (3),
(5), and (6) is linear and Gaussian, and hence the likelihood function can be evaluated and maximized,
without numerical integration, whether by means of quadrature or Monte Carlo methods. Hence, we
evaluate the likelihood by means of the Kalman filter method, which was suggested by Nelson [12]
and Harvey et al. [11]. Second, the transition density is degenerate under the null hypothesis and the
integration can be performed by integration by parts, as shown in Appendix A.

In the conventional multivariate SV model, which is different from ours, the observation equation
disturbance term et = (e1t, e2t)

0 follows Gaussian distribution:
"

e1t

e2t

#

⇠ i.i.d.N

 "

0

0

#

,

"

1 ⇢

⇢ 1

#!

. (9)

Harvey et al. [11] showed that the maximum likelihood (ML) estimator of this transformed model,
which is called the quasi-maximum likelihood estimator (QMLE), is consistent under the original
assumption of the Gaussianity of et. The estimation of SV model in the original form (9) can be carried
out by various methods, for example, the generalized method of moments (GMM) used by Melino and
Turnbull [13], the efficient method of moments (EMM) applied by Gallant et al. [14], and Markov Chain
Monte Carlo (MCMC) procedures used by Jacquier et al. [6] and Kim et al. [7]. The construction of tests
for the original model (9) based upon these methods is left for further research. However, little attention
has been paid to hypothesis testing of this model.

3. Test Statistic

We propose the LM test for the hypothesis that the observation series y1t and y2t have the only
stochastic volatility factor in common, and other idiosyncratic volatility factors are negligible, namely
h1t = h2t for any t in Equation (5), against the alternative hypothesis that each series has different,
possibly correlated, log volatility series h1t and h2t.

The null hypothesis that h1t = h2t is a first order approximation to the international synchronization
of asset price fluctuation, found, or believed to be found, in the period that includes financial crises. In
normal periods actual volatilities of markets are expressed as mixtures of many factors. In the period that
includes financial crises, however, only a single intermarket volatility factor may override other minor
volatility factors in markets. In such an extreme situation, other minor domestic volatility factors are
negligible in size and some markets look as if they have a single common volatility factor. The aim of
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our test is not to assert there exists only a single volatility factor among markets, but is to check whether
minor volatility factors are negligible in comparison with a big intermarket volatility factor.

In our Equation (7), the innovations are perfectly correlated if !2 = 0, and mutually independent if
!2 = 1. Our test checks that the two series have the same autoregressive coefficient and innovation
variance, namely �1 = �2, � = 1, as well as the degeneracy of the innovation, namely !2 = 0.
Therefore, in Equation (5), the null hypothesis is formalized as

H0 : �1 = �2, � = 1, !2 = 0. (10)

In our framework, in order to define the existence of a single overriding volatility factor in two
markets, the volatility series of two markets should be exactly the same, which means �1 = �2, � = 1,
!2 = 0, and hence h1t = h2t, when the volatility series is stationary; the logic is as follows: If the
volatility processes of two market are not identical but correlated by assuming !2 6= 0, they have different
volatility shocks and hence volatility series have different patterns especially when the absolute value of
!2 is large, then we have no choice than to define the number of volatility factors in the market is two
when !2 6= 0. Then the condition !2 = 0, or very small absolute value of !2, is a essential element
in defining the single overriding volatility series. When !2 = 0, we need the condition �1 = �2, to
define the single overriding volatility series, since �1 6= �2 implies different cyclicality or periodicity of
volatility process.

It is arguable whether the condition � = 1 is necessary. Under the assumption of !2 = 0, the condition
0 < � < 1 expresses smaller variance of h2t than that of h1t around 0 and hence, intuitively, smaller
variance of exp(h2t) than that of exp(h1t) around 1, namely variance of volatility of r1t, disregarding
proportionality constant exp(�1). Then � can be regarded as “volatility of volatility” parameter and
hence should be 1 if two markets follow the same volatility factor. If the same volatility process implies
identical volatility of volatility, we need the condition � = 1.

We need the initial value condition h10 = h20 additionally for the log volatilities to be exactly
identical stochastic processes under the conditions of (10). However, the log volatilities converge to
zero quickly as long as they are stationary, even if their initial values are different, and the effect of
(h10, h20) disappears in the vector moving average expression of hkt, as t increases. Then, we only
consider the conditions (10) hereafter.

The Wald and Likelihood ratio principles are irrelevant to test for Equation (10), because the
maximum likelihood estimator of !2 can have a singular distribution under the null hypothesis; the
parameter value !2 = 0 under the null is on the boundary of the parameter space !2 � 0, so that their
estimators cannot have an asymptotically normal distribution. The LM test is free from the boundary
value problem, since it forgoes estimation of the constrained parameter !2;

We now restate the null hypothesis (10), by the parameter transformation ⇢1 = �1, ⇢2 = �2 � �1, to

H0 : ⇢2 = 0, � = 1, !2 = 0; (11)

the original parameter vector # = (�1, �2, ⌘, �, �1, �2, !1, !2, �)
0 is transformed into the new

parameter vector ✓ = (�1, �2, ⌘, �, ⇢1, ⇢2, !1, !2, �)
0. The vectors of the restricted and unrestricted

parameters are denoted by ✓1 = (⇢2, !2, �)
0, ✓2 = (�1, �2, ⌘, �, ⇢1, !1)

0 respectively, and the log
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likelihood function for ✓ is denoted by L(✓) ⌘ log f(ỹT ), using the likelihood function defined in
Equation (8). Then, the LM test statistic for Equation (11) is defined as

LM = s01(
ˆ✓)I 11

OP (
ˆ✓)s1(ˆ✓) (12)

where the derivative of L(✓) with respect to ✓1 is denoted by

s1(ˆ✓) =
@L(ˆ✓)
@✓1

(13)

evaluated at ˆ✓, namely the maximum likelihood estimator of ✓ under the null hypothesis, and I 11
OP (

ˆ✓)

is the upper-left three-by-three submatrix of the inverse of the Fisher information matrix evaluated at ˆ✓.
Then, the LM test statistic follows asymptotically �2 distribution with three degrees of freedom, which
is the number of constraints.

The Fisher information can be calculated by

IOP (✓) = E0

✓ T
X

t=1

`t`
0
t

◆

(14)

where
`t =

@ log f(ỹt)

@✓
� @ log f(ỹt�1)

@✓

as shown by Hamilton [15] from the identity

`t =
@ log f(ỹt|ỹt�1)

@✓
.

In practice, I 11
OP (✓) is estimated by

PT
t=1 `t`

0
t where the unknown parameters ✓ are estimated by the

maximum likelihood method under the null hypothesis.
Hence, we have only to derive the score functions, or the derivatives of log of f(ỹT ) in Equation (8)

with respect to ✓, to calculate the LM test statistics using Equations (13) and (14). Their derivation
is straightforward, by means of integration by parts, but very lengthy so that we provide the detailed
derivation in Appendix A.

Denoting E0 as the expectation under the null hypothesis, their score functions evaluated under the
null hypothesis are as follows:

@L(ˆ✓)
@⇢1

=

T
X

t=2

E0(ht�1u1,t�1|ỹT )
!̂1

,
@L(ˆ✓)
@⇢2

=

T
X

t=2

T
X

j=t

ˆ�j�t
2



E0(ht�1⇠2j|ỹT )� �̂E0(ht�1⇠1j|ỹT )
⌘̂(1� �̂2)

�

,

@L(ˆ✓)
@�

=

T
X

t=2

T
X

j=t

ˆ�j�t
2



E0(u1,t�1⇠2j|ỹT )� �̂E0(u1,t�1⇠1j|ỹT )
⌘̂(1� �̂2)

�
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@L(ˆ✓)
@!̂2

=

T
X

t=1

t
X

k=1

ˆ�
2(k�1)
2



E0(⇠
2
2t|ỹT )� 2�̂E0(⇠2t⇠1t|ỹT ) + �̂2E0(⇠

2
1t|ỹT )

⌘̂2(1� �̂2)2
� 1

⌘̂(1� �̂2)

�

+

T�1
X

t=1

T�1
X

k=t

ˆ�
2(k�t)
2

T
X

l=k+1

ˆ�l�k
2



E0(⇠2k⇠2l|ỹT )� �̂E0(⇠2k⇠1l|ỹT )� �̂E0(⇠2l⇠1k|ỹT ) + �̂2E0(⇠1k⇠1l|ỹT )
⌘̂2(1� �̂2)2

�

,
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@L(ˆ✓)
@�1

=

T
X

t=1

E0(⇠1t|ỹT )� �̂E0(⇠2t|ỹT )
⌘̂(1� �̂2)

,
@L(ˆ✓)
@�2

=

T
X

t=1

E0(⇠2t|ỹT )� �̂E0(⇠1t|ỹT )
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,

@L(ˆ✓)
@⌘
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T
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⇢✓
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2

◆

E0(⇠
2
2t|ỹ)� 2�̂E0(⇠1t⇠2t|ỹ) + E0(⇠

2
1t)
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=
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2
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�
✓

1
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.

Denoting mt = E0(ht|ỹT ), cts = E0(hths|ỹT ), the conditional moments of ⇠1t, ⇠2t, u1t, ht given ỹT

under the null hypothesis can be expressed as

E0(ht�1u1,t�1| ỹT ) = ct�1,t � ˆ�1ct�1,t�1, E0(u
2
1,t�1

�

� ỹT ) = ctt � 2

ˆ�1ct�1,t +
ˆ�2
1ct�1,t�1,

E0(ht�1⇠1j| ỹT ) = mt�1(y1j � ˆ�1)� ct�1,j, E0(ht�1⇠2j| ỹT ) = mt�1(y2j � ˆ�2)� ct�1,j,

E0(⇠1t| ỹT ) = y1j � ˆ�1 �mt, E0(⇠2t| ỹT ) = y2j � ˆ�2 �mt,

E0(⇠1k⇠2l| ỹT ) = (y1k � ˆ�1)(y2l � ˆ�2)�mk(y2l � ˆ�2)� (y1k � ˆ�1)ml + ckl

from Equations (2) and (5). See Appendix B for their derivation.

4. Monte Carlo Experiments

To examine the performance of our proposed test, we conduct Monte Carlo experiments using the
GAUSS programming language. We use the following data generating process:

1. Generate {e2kt} from multivariate log-normal random number generator from GAUSS library (The
joint probability density function of e21t and e22t is expressed as

f(e21t, e
2
2t) =

1

(2⇡)
p

⌘2(�2 � 1)e21te
2
2t

⇥ exp



⌘�(log e21t � µ)2 � 2⌘(log e21t � µ)(log e22t � µ) + ⌘�(log e22t � µ)2

⌘2(�2 � 1)

�

for 0 < e21t, e22t < 1. Note that the library name of multivariate log-normal random number
generator in GAUSS is rndLogNorm(·, ·, ·, ·).). In addition, generate {ukt} from Gaussian
random number generator.

2. Generate {r2kt}, {hkt} from {e2kt}, {ukt}. The processes of {r2kt} and {hkt} are obtained from the
following model;

"

r21t
r22t

#

=

"

 2
1 exp(h1t) 0

0  2
2 exp(h2t)

#"

e21t
e22t

#

,

"

h1t

h2t

#

=

"

�1 0

0 �2

#"

h1,t�1

h2,t�1

#

+

"

!
1/2
1 0

�!
1/2
1 !

1/2
2

#"

u1,t�1

u2,t�1

#

for t = 1, . . . , T .
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3. Calculate �k from �k = µ+log 2
k and generate {ykt}, {⇠kt} from ykt = log r2kt, ⇠kt = log e2kt�µ,

respectively.

From the above data generating process, we can define the following linear Gaussian
state-space model:

• Observation equation
"

y1t

y2t

#

=

"

�1

�2

#

+

"

h1t

h2t

#

+

"

⇠1t

⇠2t

#

,

• Transition equation
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#
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u1,t�1
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#

,

• Structure of innovation distribution
2
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7

5

⇠ i.i.d.N
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, for t = 1, . . . , T.

We here report the simulation at µ = �1.27, ⌘ = ⇡2/2, � = 0.1,  1 = 1,  2 = 1, �1 = 0.7,

�2 = 0.7, !1 = 0.1, !2 = 0, � = 1 and its neighborhood (Note that the parameters
(µ, ⌘,  1,  2) are fixed at (�1.27, ⇡2/2, 1, 1) throughout this experiment. Then, �k is expressed
simply as �k = µ + log 1

2
= �1.27.). In this experiments, the number of replications is

1000, the sample sizes are T = 500, 750, and the initial value of (h1t, h2t, u1t, u2t) are fixed
at (1, 1, 0, 0) respectively. The initial value of parameters for ML estimation are �

(0)
1 = 0,

�
(0)
2 = 0, ⌘(0) = ⇡2/2, �(0) = 0, �

(0)
1 = 0.9, �

(0)
2 = 0.9, !

(0)
1 = 0.1, !

(0)
2 = 0, �(0) = 1. Finally, we

generate T + 100 periods of data and use the last T periods by discarding the first 100 periods to reduce
the effect of initial values. The procedure (See Durbin and Koopman [16] for a detailed discussion and
review of the algorithm of the Kalman filter and smoother.) works as follows.

1. Apply the Kalman filtering to {yt} under the null hypothesis (10) and estimate the parameters by
the maximum likelihood (ML) method.

2. Apply the smoothing algorithm to {yt} and obtain the conditional moments of {ht}.
3. Calculate the LM test statistic (12).

Table 1 gives the empirical size of the test, namely the rejection rate of the null hypothesis, under
the null for some values of the correlation coefficient � in Equation (4), the autocorrelation coefficient
and variance of the transition equation, namely �1 and !1 in Equation (7). Table 2 reports the empirical
power of the test, when the two series have different log volatility series, with different autocorrelation
coefficients �1 and �2, or nondegenerate innovations with nonzero value of !2 in Equation (7). Each
table reports the percentage rate of rejection of the relevant null hypothesis at the asymptotic 5% and 1%
significance level. Note that the rejection region of the tests are in the upper tail areas. Our main findings
are summarized as follows.
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• Size of the test: For T = 500, the actual size of the test deviates from the nominal sizes of
5 and 1 percent at most by 3.1 and 1.9 percent, respectively. In particular, when the estimated
volatility series are strongly correlated and can be characterized as near unit root processes, the
size distortion are increasing. As the sample size increases, namely when T = 750, the actual
rejection rate is closer to the nominal level, as is expected.

• Power under the alternative: For T = 500, the rejects rate of the null ranges from 12.9 percent to
58.9 percent for the nominal 5 percent significance level. As the sample size increases, the actual
rejection rate is increasing. This results indicate that the absolute value of the difference between
the null and the alternative is 0.2 or more, the test statistics can discriminate the hypothesis.

Table 1. Empirical size of the LM test by Monte Carlo experiments.

� �1 !1
T = 500 T = 750

5% 1% 5% 1%

0.1 0.7 0.1 6.1 1.2 5.5 0.9
0 0.7 0.1 5.8 1.9 5.3 1.2

�0.1 0.7 0.1 4.6 0.8 5.1 1.1
0.1 0.9 0.1 7.2 1.8 5.7 1.4
0.1 0.95 0.1 8.1 2.9 6.5 1.8
0.1 0.7 0.2 7.1 1.6 5.4 1.1
0.1 0.7 0.3 5.1 0.7 4.9 1.2

Note: The number of replications is 1000. We set �1 = �2, � = 1, !2 = 0 throughout this experiment.

Table 2. Empirical power of the LM test by Monte Carlo experiments.

�2 � !2
T = 500 T = 750

5% 1% 5% 1%

0.5 1 0 25.5 10.7 36.9 17.7
0.9 1 0 39.0 18.4 52.3 24.6
0.7 0.8 0 12.9 1.3 15.1 5.1
0.7 0.6 0 31.5 14.1 44.4 20.9
0.7 1 0.2 17.9 5.5 24.9 9.0
0.7 1 0.4 58.9 32.3 79.1 52.3

The number of replications is 1000. We set � = 0.1, �1 = 0.7, !1 = 0.1 throughout this experiment.

An important practical conclusion of our simulation is that a rather large sample size, such as more
than T = 500, is necessary to distinguish the null and the alternative. However, datasets with a sample
size of 500 or more are easily available in financial analyses.

Summarizing, Monte Carlo results showed that the tests are reliable in terms of both size and
power performance.
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5. Empirical Analysis

5.1. Univariate Analysis

5.1.1. Data and Descriptive Statistics

We apply the proposed test to the Asian stock market indexes to study volatility spillover in this area.
We use daily data (The data will be available from the first author upon request.) of the eleven stock
indexes for an about 5-year period from February 23, 2007 to December 8, 2011, excluding the periods
when the markets are closed, downloaded from Datastream. For each index, we have a series consisting
of 1,250 days. Table 3 gives a complete list of their ticker symbols, index names, and the corresponding
markets. These stock market indexes are transformed into daily rates of return. The daily return of index
i at time t is calculated as

rit = log pit � log pi,t�1

where pit denotes the price of index i at time t. In Table 4, the univariate statistics for the returns in
percentage terms are presented. The mean for each return is on average around 0.006 percent, while the
standard deviation is around 1.704 percent. Mean return of Indonesia is higher than that of the other ten
indexes. The return of Hong Kong has the highest volatility among the eleven, whereas the return of
Malaysia has the lowest.

Table 3. Ticker symbols, Index names, and the corresponding markets.

Index
Ticker Index name Market

Number

1 HKSPLCI S&P/HKEx Large Cap Index Hong Kong (HKG)
2 IBOMBSE BSE 100 Index India (IND)
3 CHSASHR Shanghai Stock Exchange A Share Index Shanghai (SHA)
4 JAKCOMP Jakarta Stock Exchange Composite Index Indonesia (IDN)
5 JAPDOWA Nikkei 225 Stock Average Index Japan (JPN)
6 KOR200I Korea Stock Exchange KOSPI 200 Index Korea (KOR)
7 FBMKLCI FTSE Bursa Malaysia KLCI Index Malaysia (MYS)
8 PSECOMP Philippines Stock Exchange PSEi Index Philippines (PHL)
9 TAIWGHT FTSE TWSE Taiwan 50 Index Taiwan (TWN)

10 BNGKS50 Stock Exchange of Thailand SET 50 Index Thailand (THA)
11 SNGPORI FTSE Straits Times Index Singapore (SGP)

Table 5 also shows the Ljung-Box statistics to test the null of hypothesis absence of serial correlation
in both the levels (LB) and in the squares (LB2) until the 15 lag. Note that the squared returns are
used as an approximation to each index’s volatility. The returns in levels show a certain degree of
serial correlation, since for eight out of eleven cases, we reject the null hypothesis. Furthermore, all the
LB2 test on the squared returns indicate the precense of serial correlation at any significance level and,



J. Risk Financial Manag. 2013, 6 42

therefore the existence of volatility clustering. In this case, the theoretical distribution of the Ljung-Box
test is not correct and there is a tendency to over-reject the null.

Table 4. Univariate statistics for the daily index returns.

Market Max Min Mean Median
Standard

Skewness Kurtosis
Deviation

Hong Kong 13.353 �13.459 �0.004 0.057 2.070 0.088 8.696
India 15.490 �11.689 0.019 0.096 1.912 0.022 9.343
Shanghai 9.033 �9.261 �0.022 0.109 2.020 �0.366 5.448
Indonesia 7.623 �10.954 0.064 0.181 1.740 �0.635 8.652
Japan 13.235 �12.111 �0.063 0.015 1.876 �0.495 10.559
Korea 11.540 �10.903 0.023 0.121 1.753 �0.422 8.303
Malaysia 4.259 �9.979 0.012 0.054 0.958 �1.223 14.945
Philippines 9.365 �13.089 0.021 0.056 1.550 �0.773 10.882
Taiwan 6.525 �6.735 �0.009 0.110 1.549 �0.342 5.054
Thailand 8.916 �12.563 0.036 0.053 1.782 �0.477 8.384
Singapore 7.531 �8.696 �0.014 0.012 1.533 �0.118 6.576

Table 5. Specification tests for the daily returns.

Market LB(15) LB2(15) Market LB(15) LB2(15)

Hong Kong 23.359
(0.077)

1101.201
(0.000)

Malaysia 31.058
(0.009)

93.300
(0.000)

India 30.264
(0.011)

310.849
(0.000)

Philippines 40.040
(0.000)

302.482
(0.000)

Shanghai 25.257
(0.047)

164.299
(0.000)

Taiwan 36.679
(0.001)

378.213
(0.000)

Indonesia 40.282
(0.000)

476.883
(0.000)

Thailand 62.000
(0.000)

795.580
(0.000)

Japan 14.605
(0.480)

1410.031
(0.000)

Singapore 28.479
(0.019)

1180.016
(0.000)

Korea 7.941
(0.926)

816.021
(0.000)

Note: LB(15) and LB2(15) are the Ljung-Box statistics to test the null of absence of serial correlation
in levels and in their squares, respectively, up to the 15th lag. The corresponding p-values are in
parentheses. Values in italic represents significance at the 5% level.

5.1.2. Univariate SV Model

From the above discussion, we consider the univariate SV model. First, we transform the return rkt

to obtain

yit = log

2

4

 

rit � T�1
T
X

t=1

rit

!2
3

5
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for i = 1, . . . , 11 and t = 1, . . . , 1250. Second, we consider the following linearlized univariate SV
model in state-space form, namely

• Observation equation
yit = � + hit + ⇠it,

• Transition equation
hit = �hi,t�1 + ui,t�1, |�| < 1

• Structure of innovation distribution
"

⇠it

uit

#

⇠ i.i.d.N

 "

0

0

#

,

"

⌘ 0

0 !

#!

.

From the above specifications, we evaluate the likelihood and volatilities by means of the Kalman
filter and associating smoothing method. Note that the parameter vector is # = (�, ⌘, �, !).

Table 6 reports estimation results (The initial value of parameters for ML estimation are
�(0) = 1, ⌘(0) = ⇡2/2, �(0)

= 0.9, !(0)
= 0.1 for all index i.). The estimates of ⌘ are larger than

⇡2/2 in almost all index; the only exception is Philippines. The estimates of � indicate highly persistent
own dynamics of hit, with estimated own-lag coefficients; the mean of ˆ� is approximately 0.976. The
estimates of ! appear relatively small; the mean of !̂ is approximately 0.037. The estimates of ! in
Shanghai, Malaysia, Taiwan, and Singapore are insignificantly different from 0.

Table 6. Estimation results for the univariate SV model.

Market �̂ ⌘̂ �̂ !̂ Market �̂ ⌘̂ �̂ !̂

Hong Kong �9.572
(0.321)

5.183
(0.211)

0.988
(0.006)

0.023
(0.009)

Malaysia �10.095
(0.517)

5.481
(0.233)

0.998
(0.002)

0.008
(0.004)

India �9.635
(0.275)

5.422
(0.232)

0.982
(0.010)

0.031
(0.017)

Philippines �10.012
(0.138)

4.657
(0.225)

0.918
(0.031)

0.120
(0.053)

Shanghai �9.034
(0.270)

5.354
(0.218)

0.999
(0.001)

0.002
(0.001)

Taiwan �10.204
(0.230)

5.871
(0.240)

0.982
(0.011)

0.021
(0.013)

Indonesia �9.943
(0.158)

5.211
(0.230)

0.950
(0.023)

0.062
(0.034)

Thailand �9.842
(0.196)

4.993
(0.213)

0.969
(0.012)

0.041
(0.016)

Japan �9.796
(0.238)

5.593
(0.243)

0.975
(0.011)

0.045
(0.019)

Singapore �10.003
(0.265)

5.655
(0.238)

0.983
(0.011)

0.028
(0.016)

Korea �10.059
(0.317)

5.205
(0.221)

0.986
(0.009)

0.022
(0.012)

Note: The numbers in the parentheses are standard errors for the estimates. Values in italic represents
statistical significance at the 5 percent level.

In Figure 1, we plot estimated volatilities of the eleven stock indexes for comparative assessment.
Although the volatility series vary heavily over time for each markets, a similar behavior in the eleven
indexes is apparent: the volatility processes display very persistence and are very high in the period
of the global financial crisis of September 2008. In particular, the volatility processes in Indonesia,
Philippines, Taiwan, Thailand, and Singapore display very similar patterns. However, we find that the
volatility behavior in Shanghai is a quite distinct: the volatility of Shanghai shows a relatively smooth
time process and maintains high value over time.
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Figure 1. Stochastic volatilities for the eleven stock indexes. Notes: The figure depicts
the stochastic volatilities for the log of squared returns: (from top left to the right and
down) Hong Kong, India, Shanghai, Indonesia, Japan, Korea, Malaysia, Philippines, Taiwan,
Thailand, and Singapore.
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5.2. Bivariate Analysis

5.2.1. Correlation Analysis

We also examined the correlation matrix of the eleven returns, in levels and in squares, to find possible
linkage among different indexes and their volatilities. Table 7 show the correlation matrix for the returns
in levels in lower left triangle and for the squares in the upper right triangle.

The returns do exhibit positive and substantial correlations with each other not only in the levels, but
also in the squares. Out of the fifty-five correlation coefficients in the levels, forty-five are higher than
0.4, twenty-one are bigger than 0.6, and, among them, one is bigger than 0.8. As might be expected,
since their economies are more related to each other, there is a pattern of higher correlation between the
neighboring markets; namely, Hong Kong and Korea, Hong Kong and Taiwan, Indonesia and Singapore,
Japan and Korea, Korea and Taiwan. Though geographically distant, Hong Kong and Singapore have
positive correlation, presumably because they are both important financial markets. Hence, this may not
be surprising.

Table 7. Correlation Matrix for returns and squared returns.

Market HKG IND SHA IDN JPN KOR MYS PHL TWN THA SGP

Hong Kong 1 0.38 0.28 0.55 0.59 0.53 0.27 0.51 0.48 0.61 0.76
India 0.65 1 0.12 0.34 0.40 0.33 0.19 0.18 0.22 0.34 0.47
Shanghai 0.51 0.32 1 0.17 0.14 0.15 0.15 0.22 0.25 0.20 0.20
Indonesia 0.68 0.55 0.33 1 0.53 0.45 0.33 0.38 0.54 0.56 0.60
Japan 0.70 0.48 0.34 0.56 1 0.69 0.24 0.42 0.43 0.56 0.50
Korea 0.70 0.51 0.38 0.61 0.73 1 0.26 0.32 0.54 0.36 0.62
Malaysia 0.61 0.48 0.36 0.62 0.55 0.55 1 0.31 0.27 0.29 0.31
Philippines 0.51 0.35 0.27 0.53 0.54 0.48 0.56 1 0.36 0.61 0.32
Taiwan 0.65 0.45 0.36 0.58 0.64 0.74 0.56 0.51 1 0.39 0.52
Thailand 0.64 0.54 0.29 0.61 0.50 0.53 0.52 0.45 0.50 1 0.63
Singapore 0.84 0.66 0.38 0.69 0.67 0.71 0.63 0.44 0.64 0.64 1

Note: The table shows the correlation matrix for the daily stock index retuns in levels (lower left
triangle) and for the squared returns (upper right triangle). Values in italic face represent correlation
coefficients greater than or equal to 0.4.

The correlations between squared returns are naturally related to the correlations between the levels of
returns, but can be helpful to discover possible co-movements in their volatilities. From the upper right
triangle in Table 7, we can see that there are twenty-three correlation coefficients above 0.4 and almost
all of them are between the neighboring markets; Indonesia and Singapore, Japan and Korea, Philippines
and Thailand, and Thailand and Singapore. The other strong correlations outside the neighboring
markets are those between Hong Kong and Singapore, Japan and Korea, and Korea and Singapore.
All these results indicate that there are strong co-movements in the volatilities of the eleven Asian stock
market indexes.
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5.2.2. Bivariate SV Model

From the above discussion, we apply our test for the presence of the common volatility, using pairwise
comparison similar to the methodology used by Engle and Susmel [9]’s; we test for a single-factor
common SV, by checking the innovations are perfectly correlated.

First, we consider the following linearlized bivariate SV model in state-space form:

• Observation equation
"
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for i, j = 1, . . . , 11, i 6= j, and t = 1, . . . , 1250. Note that the parameter vector is
# = (�1, �2, ⌘, �, �1, �2, !1, !2, �)

0. Second, we apply the Kalman filtering to the bivariate SV
model under the null hypothesis (10). Finally, we calculate the LM test statistics (12) from the smoothing
recursions.

Note that the ordering of index i and j may affect the estimation results and the LM test statistics
as per the set up in Equations (15)–(17). Hence, we conduct estimation and run the test for the index
pair of i < j, as well as the pair of i > j. Further, we also conduct the estimation under the alternative
hypothesis. However, due to space limitations, we do not mention the results in this paper (The results
will be available from the first author upon request.).

Table 8 through 13 report estimation results under the null hypothesis (The initial value of parameters
for ML estimation are �

(0)
1 = 0, �

(0)
2 = 0, ⌘(0) = ⇡2/2, �(0) = 0, �

(0)
1 = 0.9, �

(0)
1 = 0.9,

!
(0)
1 = 0.1, !

(0)
2 = 0, �(0) = 1 for all index pair i and j.). Table 11 shows the estimates of � indicate

the positive correlation between yit and yjt; the mean of �̂ is approximately 0.11. Table 12 and 13 also
show the estimates of �1 and !1 are close to that of � and ! in the univariate SV models; the mean of ˆ�1

is approximately 0.97, the mean of !1 is approximately 0.04.
Table 14 presents the result of the LM test proposed in this paper. We have some evidence of the

single common volatility for the pairs under investigation; Out of the fifty-five pairs in the upper right
triangle in Table 14, we can see that seventeen pairs are not rejected the null hypothesis. In addition,
from the lower left triangle in Table 14, twenty-one pairs are not rejected the null.

Table 15 shows the list which cannot reject the null at the 5% significance level for the pair of i < j,
as well as the pair of i > j in Table 14. These pairs have a possibility to have a single common volatility.
Table 15 suggests that the markets in Southeast Asia are frequently overridden by a single intermarket
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volatility; the null hypothesis is not rejected for the pair of Indonesia and Philippines, Indonesia and
Thailand, Indonesia and Singapore, Malaysia and Singapore, Philippines and Thailand, and Philippines
and Singapore. One possible explanation for the results is that these pairs share the same information,
since these markets lie within the same time zone. Moreover, we cannot reject the null for the pair of
Hong Kong and India, Hong Kong and Singapore, India and Singapore, Korea and Singapore. This
suggests that these important financial markets are also overridden by a single intermarket volatility
factor in the period of the financial crisis.

Table 8. Estimation results of �1 in the bivariate SV model.

Market HKG IND SHA IDN JPN KOR MYS PHL TWN THA SGP

HKG � 9.43
(0.30)

� 9.48
(0.36)

� 9.70
(0.48)

� 9.52
(0.26)

� 9.66
(0.31)

� 9.13
(0.42)

� 9.43
(0.26)

� 9.64
(0.27)

� 9.60
(0.25)

� 9.46
(0.28)

IND � 9.53
(0.30)

� 9.54
(0.30)

� 9.75
(0.18)

� 9.70
(0.27)

� 9.75
(0.22)

� 9.00
(0.65)

� 9.63
(0.23)

� 9.73
(0.21)

� 9.76
(0.22)

� 9.68
(0.25)

SHA � 9.40
(0.30)

� 9.31
(0.29)

� 9.51
(0.29)

� 9.39
(0.25)

� 9.68
(0.27)

� 8.66
(0.35)

� 8.84
(0.39)

� 9.65
(0.25)

� 9.63
(0.25)

� 9.33
(0.30)

IDN � 9.89
(0.23)

� 9.91
(0.17)

� 9.87
(0.22)

� 9.93
(0.20)

� 9.94
(0.19)

� 9.79
(0.25)

� 9.92
(0.14)

� 9.94
(0.17)

� 9.97
(0.18)

� 9.92
(0.19)

JPN � 9.72
(0.29)

� 9.76
(0.25)

� 9.72
(0.25)

� 9.82
(0.20)

� 9.91
(0.22)

� 9.56
(0.31)

� 9.77
(0.18)

� 9.86
(0.21)

� 9.87
(0.20)

� 9.75
(0.24)

KOR � 9.93
(0.29)

� 9.91
(0.23)

� 9.96
(0.25)

� 9.88
(0.21)

� 9.90
(0.23)

� 9.71
(0.27)

� 9.83
(0.18)

�10.47
(0.40)

�10.01
(0.23)

� 9.87
(0.24)

MYS �10.60
(0.39)

�10.33
(0.50)

�10.32
(0.37)

�10.96
(0.22)

�10.78
(0.29)

�10.99
(0.28)

� 9.68
(0.79)

�10.89
(0.27)

�10.98
(0.20)

�10.43
(0.55)

PHL � 9.88
(0.23)

� 9.91
(0.22)

� 9.36
(0.33)

�10.02
(0.15)

� 9.98
(0.16)

�10.02
(0.18)

� 8.57
(0.63)

�10.03
(0.18)

� 9.97
(0.16)

� 9.93
(0.22)

TWN �10.20
(0.30)

�10.09
(0.25)

�10.23
(0.25)

�10.13
(0.20)

�10.15
(0.21)

�10.81
(0.34)

� 9.90
(0.27)

�10.09
(0.17)

�10.24
(0.22)

�10.21
(0.26)

THA � 9.84
(0.26)

� 9.78
(0.24)

� 9.91
(0.24)

� 9.85
(0.20)

� 9.83
(0.21)

�10.80
(0.44)

� 9.66
(0.21)

� 9.74
(0.15)

�10.54
(0.38)

� 9.83
(0.22)

SGP � 9.93
(0.30)

�10.02
(0.25)

� 9.92
(0.28)

�10.08
(0.19)

�10.05
(0.24)

�10.17
(0.24)

� 9.44
(0.65)

� 9.98
(0.22)

�10.09
(0.22)

�10.13
(0.21)
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Table 9. Estimation results of �2 in the bivariate SV model.

Market HKG IND SHA IDN JPN KOR MYS PHL TWN THA SGP

HKG � 9.43
(0.30)

� 9.48
(0.36)

� 9.70
(0.48)

� 9.52
(0.26)

� 9.66
(0.31)

� 9.13
(0.42)

� 9.43
(0.26)

� 9.64
(0.27)

� 9.60
(0.25)

� 9.46
(0.28)

IND � 9.41
(0.30)

� 9.22
(0.30)

� 9.89
(0.18)

� 9.69
(0.27)

� 9.85
(0.22)

�10.31
(0.65)

� 9.87
(0.23)

�10.06
(0.22)

� 9.72
(0.22)

� 9.96
(0.25)

SHA � 9.46
(0.30)

� 9.54
(0.29)

� 9.88
(0.29)

� 9.68
(0.25)

� 9.96
(0.27)

�10.22
(0.35)

� 9.27
(0.38)

�10.23
(0.25)

� 9.86
(0.25)

� 9.87
(0.30)

IDN � 9.55
(0.23)

� 9.71
(0.17)

� 9.43
(0.22)

� 9.78
(0.19)

� 9.84
(0.19)

�10.93
(0.25)

�10.01
(0.15)

�10.10
(0.17)

� 9.80
(0.18)

�10.04
(0.19)

JPN � 9.50
(0.29)

� 9.63
(0.25)

� 9.35
(0.25)

� 9.89
(0.20)

� 9.90
(0.22)

�10.82
(0.31)

� 9.92
(0.18)

�10.11
(0.21)

� 9.79
(0.20)

�10.02
(0.24)

KOR � 9.62
(0.29)

� 9.69
(0.23)

� 9.59
(0.25)

� 9.92
(0.21)

� 9.78
(0.23)

�10.95
(0.27)

� 9.96
(0.18)

�10.70
(0.40)

� 9.87
(0.23)

�10.05
(0.24)

MYS � 9.15
(0.39)

� 8.97
(0.50)

� 8.71
(0.37)

� 9.81
(0.22)

� 9.52
(0.29)

� 9.73
(0.27)

� 8.69
(0.79)

� 9.92
(0.27)

� 9.65
(0.20)

� 9.41
(0.55)

PHL � 9.41
(0.23)

� 9.59
(0.22)

� 8.81
(0.33)

� 9.88
(0.16)

� 9.73
(0.16)

� 9.78
(0.18)

� 9.63
(0.63)

�10.06
(0.18)

� 9.70
(0.16)

� 9.97
(0.22)

TWN � 9.72
(0.30)

� 9.72
(0.25)

� 9.63
(0.25)

� 9.97
(0.20)

� 9.83
(0.21)

�10.57
(0.34)

�10.93
(0.27)

�10.00
(0.17)

� 9.86
(0.22)

�10.16
(0.25)

THA � 9.60
(0.26)

� 9.73
(0.24)

� 9.55
(0.24)

� 9.92
(0.20)

� 9.80
(0.21)

�10.86
(0.44)

�10.99
(0.21)

� 9.94
(0.15)

�10.87
(0.38)

�10.07
(0.22)

SGP � 9.43
(0.30)

� 9.62
(0.25)

� 9.26
(0.28)

� 9.92
(0.19)

� 9.71
(0.23)

� 9.86
(0.24)

�10.44
(0.65)

� 9.90
(0.22)

�10.09
(0.23)

� 9.77
(0.21)

Note: Paraemter estimates are calculated under the null hypohtesis H0 : �1 = �2, � = 1, !2 = 0. The
numbers in the parentheses are standard errors for the estimates. Values in italic represents statistical
significance at the 5 percent level.

Table 10. Estimation results of ⌘ in the bivariate SV model.

Market HKG IND SHA IDN JPN KOR MYS PHL TWN THA SGP

HKG 5.38
(0.17)

5.45
(0.16)

5.08
(0.16)

5.49
(0.16)

5.26
(0.15)

5.46
(0.16)

5.07
(0.15)

5.79
(0.17)

5.21
(0.16)

5.08
(0.15)

IND 5.26
(0.16)

5.86
(0.16)

5.67
(0.17)

6.10
(0.19)

5.57
(0.17)

5.84
(0.18)

5.36
(0.16)

5.74
(0.17)

5.42
(0.17)

5.53
(0.17)

SHA 5.46
(0.17)

5.50
(0.16)

5.43
(0.16)

5.70
(0.17)

5.74
(0.17)

5.60
(0.16)

5.29
(0.17)

5.73
(0.16)

5.60
(0.16)

5.48
(0.16)

IDN 5.50
(0.16)

5.50
(0.17)

5.40
(0.16)

5.60
(0.18)

5.39
(0.15)

5.40
(0.16)

5.33
(0.16)

5.59
(0.17)

5.24
(0.16)

5.23
(0.15)

JPN 5.40
(0.16)

5.75
(0.17)

5.56
(0.16)

5.38
(0.16)

5.56
(0.16)

5.62
(0.17)

5.28
(0.16)

6.01
(0.18)

5.55
(0.17)

5.54
(0.16)

KOR 5.17
(0.15)

5.63
(0.17)

5.59
(0.16)

5.33
(0.16)

5.47
(0.16)

5.56
(0.17)

5.46
(0.17)

5.36
(0.15)

5.26
(0.16)

5.38
(0.15)

MYS 5.54
(0.16)

5.66
(0.17)

5.47
(0.17)

5.54
(0.17)

5.56
(0.17)

5.54
(0.16)

5.15
(0.15)

5.71
(0.16)

5.50
(0.17)

5.37
(0.16)

PHL 5.22
(0.16)

5.29
(0.16)

5.34
(0.15)

5.08
(0.16)

5.39
(0.17)

5.29
(0.16)

5.28
(0.16)

5.67
(0.18)

4.94
(0.16)

5.24
(0.16)

TWN 5.41
(0.16)

5.48
(0.16)

5.68
(0.16)

5.49
(0.16)

6.07
(0.17)

5.38
(0.16)

5.58
(0.16)

5.45
(0.17)

5.75
(0.17)

5.65
(0.16)

THA 5.17
(0.15)

5.37
(0.16)

5.66
(0.17)

5.26
(0.16)

5.51
(0.16)

5.25
(0.15)

5.48
(0.16)

5.03
(0.16)

5.64
(0.17)

5.28
(0.16)

SGP 5.08
(0.15)

5.50
(0.17)

5.64
(0.16)

5.32
(0.15)

5.64
(0.18)

5.52
(0.16)

5.52
(0.16)

5.15
(0.15)

5.88
(0.17)

5.50
(0.16)
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Table 11. Estimation results of � in the bivariate SV model.

Market HKG IND SHA IDN JPN KOR MYS PHL TWN THA SGP

HKG 0.15
(0.03)

0.11
(0.03)

0.20
(0.00)

0.20
(0.00)

0.20
(0.00)

0.13
(0.03)

0.09
(0.03)

0.18
(0.03)

0.17
(0.03)

0.20
(0.00)

IND 0.17
(0.03)

�0.01
(0.03)

0.16
(0.03)

0.06
(0.02)

0.06
(0.03)

0.08
(0.02)

0.01
(0.03)

0.07
(0.02)

0.08
(0.03)

0.15
(0.03)

SHA 0.10
(0.02)

�0.02
(0.03)

0.02
(0.02)

0.05
(0.03)

0.05
(0.02)

0.02
(0.02)

0.02
(0.03)

0.04
(0.03)

�0.01
(0.02)

0.05
(0.03)

IDN 0.20
(0.00)

0.16
(0.03)

0.02
(0.03)

0.11
(0.03)

0.17
(0.03)

0.16
(0.03)

0.08
(0.03)

0.18
(0.02)

0.10
(0.03)

0.20
(0.00)

JPN 0.20
(0.00)

0.07
(0.02)

0.04
(0.03)

0.10
(0.03)

0.20
(0.00)

0.11
(0.03)

0.11
(0.03)

0.16
(0.02)

0.06
(0.03)

0.16
(0.03)

KOR 0.20
(0.00)

0.07
(0.03)

0.07
(0.03)

0.18
(0.02)

0.20
(0.00)

0.16
(0.03)

0.07
(0.03)

0.20
(0.00)

0.09
(0.03)

0.20
(0.00)

MYS 0.15
(0.03)

0.10
(0.03)

0.06
(0.03)

0.16
(0.03)

0.13
(0.02)

0.17
(0.03)

0.05
(0.03)

0.11
(0.03)

0.08
(0.03)

0.15
(0.02)

PHL 0.09
(0.03)

0.04
(0.03)

0.01
(0.03)

0.10
(0.03)

0.10
(0.03)

0.05
(0.03)

0.06
(0.03)

0.11
(0.03)

�0.01
(0.03)

0.06
(0.03)

TWN 0.20
(0.00)

0.06
(0.02)

0.05
(0.02)

0.17
(0.03)

0.18
(0.03)

0.20
(0.00)

0.10
(0.03)

0.09
(0.03)

0.07
(0.02)

0.17
(0.03)

THA 0.16
(0.03)

0.11
(0.03)

0.00
(0.03)

0.10
(0.03)

0.07
(0.03)

0.09
(0.03)

0.07
(0.03)

0.00
(0.03)

0.07
(0.03)

0.16
(0.03)

SGP 0.20
(0.00)

0.18
(0.03)

0.06
(0.03)

0.20
(0.00)

0.14
(0.03)

0.19
(0.03)

0.13
(0.03)

0.06
(0.03)

0.17
(0.02)

0.13
(0.02)

Note: Paraemter estimates are calculated under the null hypohtesis H0 : �1 = �2, � = 1, !2 = 0. The
numbers in the parentheses are standard errors for the estimates. Values in italic represents statistical
significance at the 5 percent level.

Table 12. Estimation results of �1 in the bivariate SV model.

Market HKG IND SHA IDN JPN KOR MYS PHL TWN THA SGP

HKG 0.98
(0.01)

0.99
(0.00)

0.98
(0.01)

0.98
(0.01)

0.99
(0.01)

0.99
(0.01)

0.97
(0.01)

0.99
(0.01)

0.98
(0.01)

0.98
(0.01)

IND 0.99
(0.01)

0.99
(0.01)

0.96
(0.02)

0.98
(0.01)

0.98
(0.01)

0.99
(0.01)

0.97
(0.01)

0.98
(0.01)

0.97
(0.01)

0.98
(0.01)

SHA 0.99
(0.00)

1.00
(0.00)

0.99
(0.01)

0.99
(0.01)

0.99
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.99
(0.01)

1.00
(0.00)

IDN 0.97
(0.01)

0.96
(0.01)

0.99
(0.01)

0.97
(0.01)

0.97
(0.01)

0.98
(0.01)

0.92
(0.03)

0.97
(0.01)

0.96
(0.01)

0.97
(0.01)

JPN 0.98
(0.01)

0.98
(0.01)

0.99
(0.01)

0.97
(0.01)

0.98
(0.01)

0.98
(0.01)

0.96
(0.02)

0.98
(0.01)

0.97
(0.01)

0.98
(0.01)

KOR 0.99
(0.01)

0.98
(0.01)

0.99
(0.00)

0.98
(0.01)

0.98
(0.01)

0.99
(0.01)

0.96
(0.02)

0.98
(0.01)

0.97
(0.01)

0.98
(0.01)

MYS 0.99
(0.01)

0.99
(0.01)

1.00
(0.00)

0.98
(0.01)

0.98
(0.01)

0.99
(0.01)

0.96
(0.02)

0.99
(0.01)

0.97
(0.01)

0.99
(0.01)

PHL 0.98
(0.01)

0.97
(0.01)

1.00
(0.00)

0.94
(0.02)

0.96
(0.02)

0.96
(0.02)

0.96
(0.02)

0.96
(0.02)

0.95
(0.02)

0.97
(0.01)

TWN 0.99
(0.01)

0.98
(0.01)

1.00
(0.00)

0.97
(0.01)

0.98
(0.01)

0.98
(0.01)

0.99
(0.01)

0.96
(0.02)

0.97
(0.01)

0.99
(0.00)

THA 0.98
(0.01)

0.98
(0.01)

0.99
(0.01)

0.97
(0.01)

0.98
(0.01)

0.98
(0.01)

0.98
(0.01)

0.95
(0.02)

0.98
(0.01)

0.98
(0.01)

SGP 0.98
(0.01)

0.98
(0.01)

0.99
(0.00)

0.97
(0.01)

0.98
(0.01)

0.98
(0.01)

0.99
(0.00)

0.97
(0.01)

0.98
(0.01)

0.97
(0.01)
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Table 13. Estimation results of !1 in the bivariate SV model.

Market HKG IND SHA IDN JPN KOR MYS PHL TWN THA SGP

HKG 0.03
(0.01)

0.01
(0.00)

0.03
(0.01)

0.03
(0.01)

0.02
(0.01)

0.02
(0.01)

0.04
(0.01)

0.02
(0.01)

0.03
(0.01)

0.03
(0.01)

IND 0.02
(0.01)

0.01
(0.01)

0.06
(0.02)

0.04
(0.01)

0.04
(0.01)

0.02
(0.01)

0.04
(0.01)

0.03
(0.01)

0.03
(0.01)

0.04
(0.02)

SHA 0.01
(0.00)

0.00
(0.00)

0.01
(0.00)

0.01
(0.01)

0.01
(0.00)

0.01
(0.00)

0.01
(0.00)

0.00
(0.00)

0.01
(0.00)

0.01
(0.00)

IDN 0.04
(0.01)

0.05
(0.02)

0.01
(0.01)

0.04
(0.01)

0.03
(0.01)

0.02
(0.01)

0.11
(0.04)

0.03
(0.01)

0.05
(0.02)

0.04
(0.01)

JPN 0.03
(0.01)

0.04
(0.01)

0.01
(0.01)

0.04
(0.01)

0.03
(0.01)

0.02
(0.01)

0.05
(0.02)

0.03
(0.01)

0.04
(0.01)

0.04
(0.01)

KOR 0.02
(0.01)

0.04
(0.01)

0.01
(0.00)

0.03
(0.01)

0.04
(0.01)

0.01
(0.01)

0.05
(0.03)

0.02
(0.01)

0.03
(0.01)

0.03
(0.01)

MYS 0.02
(0.01)

0.01
(0.01)

0.00
(0.00)

0.02
(0.01)

0.02
(0.01)

0.02
(0.01)

0.06
(0.03)

0.01
(0.01)

0.03
(0.02)

0.01
(0.01)

PHL 0.04
(0.01)

0.04
(0.02)

0.00
(0.00)

0.08
(0.03)

0.06
(0.02)

0.05
(0.02)

0.05
(0.02)

0.04
(0.02)

0.07
(0.02)

0.04
(0.02)

TWN 0.01
(0.01)

0.02
(0.01)

0.00
(0.00)

0.03
(0.01)

0.03
(0.01)

0.02
(0.01)

0.01
(0.01)

0.04
(0.02)

0.03
(0.01)

0.02
(0.01)

THA 0.02
(0.01)

0.03
(0.01)

0.01
(0.00)

0.04
(0.01)

0.03
(0.01)

0.02
(0.01)

0.02
(0.01)

0.06
(0.02)

0.02
(0.01)

0.02
(0.01)

SGP 0.03
(0.01)

0.04
(0.02)

0.01
(0.01)

0.05
(0.01)

0.04
(0.01)

0.04
(0.02)

0.02
(0.01)

0.04
(0.01)

0.02
(0.01)

0.03
(0.01)

Note: Paraemter estimates are calculated under the null hypohtesis H0 : �1 = �2, � = 1, !2 = 0. The
numbers in the parentheses are standard errors for the estimates. Values in italic represents statistical
significance at the 5 percent level.
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Table 14. LM test statistics for the bivariate SV model with a single common volatility.

Market HKG IND SHA IDN JPN KOR MYS PHL TWN THA SGP

Hong Kong 5.87
(0.12)

16.15
(0.00)

15.85
(0.00)

7.87
(0.05)

10.50
(0.01)

12.25
(0.01)

17.62
(0.00)

11.79
(0.01)

20.50
(0.00)

2.17
(0.54)

India 4.76
(0.19)

13.47
(0.00)

9.12
(0.03)

12.40
(0.01)

9.69
(0.02)

12.17
(0.01)

10.27
(0.02)

8.54
(0.04)

8.14
(0.04)

3.14
(0.37)

Shanghai 15.71
(0.00)

11.57
(0.01)

14.82
(0.00)

28.21
(0.00)

25.44
(0.00)

13.56
(0.00)

12.06
(0.01)

11.62
(0.01)

30.07
(0.00)

10.22
(0.02)

Indonesia 16.05
(0.00)

16.45
(0.00)

19.05
(0.00)

21.95
(0.00)

11.65
(0.01)

11.46
(0.01)

0.82
(0.85)

2.99
(0.39)

1.36
(0.71)

7.23
(0.06)

Japan 5.25
(0.15)

11.56
(0.01)

23.54
(0.00)

12.09
(0.01)

9.81
(0.02)

20.83
(0.00)

16.69
(0.00)

1.50
(0.68)

18.92
(0.00)

11.72
(0.01)

Korea 14.87
(0.00)

8.98
(0.03)

26.10
(0.00)

11.86
(0.01)

11.65
(0.01)

12.38
(0.01)

8.60
(0.04)

4.11
(0.25)

3.73
(0.29)

6.07
(0.11)

Malaysia 13.21
(0.00)

7.57
(0.06)

12.86
(0.00)

12.20
(0.01)

20.56
(0.00)

8.26
(0.04)

10.59
(0.01)

4.77
(0.19)

19.65
(0.00)

3.09
(0.38)

Philippines 13.26
(0.00)

8.04
(0.05)

4.72
(0.19)

1.42
(0.70)

21.23
(0.00)

14.92
(0.00)

9.26
(0.03)

9.22
(0.03)

3.84
(0.28)

6.35
(0.10)

Taiwan 13.56
(0.00)

4.97
(0.17)

8.19
(0.04)

0.28
(0.96)

5.75
(0.12)

1.04
(0.79)

1.59
(0.66)

1.54
(0.67)

5.47
(0.14)

2.84
(0.42)

Thailand 12.78
(0.01)

8.48
(0.04)

30.63
(0.00)

4.17
(0.24)

20.87
(0.00)

5.11
(0.16)

24.85
(0.00)

2.83
(0.42)

7.43
(0.06)

10.34
(0.02)

Singapore 3.67
(0.30)

0.79
(0.85)

14.34
(0.00)

4.63
(0.20)

10.31
(0.02)

1.59
(0.66)

2.95
(0.40)

9.66
(0.02)

4.67
(0.20)

8.49
(0.04)

Note: The variables in each cell are the LM test statistics under the null hypohtesis H0 : �1 = �2,

� = 1, !2 = 0. The corresponding p-values are paretheses. Values in italic represents statistical
significance at the 5 percent level.

Table 15. The pairs which cannot the null hypothesis of the single common volatility.

No. Pair of markets No. Pair of markets

1 Hong Kong and India 9 Korea and Taiwan
2 Hong Kong and Singapore 10 Korea and Thailand
3 India and Singapore 11 Korea and Singapore
4 Indonesia and Philippines 12 Malaysia and Taiwan
5 Indonesia and Taiwan 13 Malaysia and Singapore
6 Indonesia and Thailand 14 Philippines and Thailand
7 Indonesia and Singapore 15 Taiwan and Thailand
8 Japan and Taiwan 16 Taiwan and Singapore

It is worth noting that the pairs between Taiwan and the other six indexes cannot reject the null;
namely, Indonesia and Taiwan, Japan and Taiwan, Korea and Taiwan, Malaysia and Taiwan, Taiwan
and Thailand, Taiwan and Singapore. This suggests that the idiosyncratic volatility factor of Taiwan are
negligible in size in the period of the financial crisis. Then, the pairs between Taiwan and the other six
indexes are looked as if they have a single common volatility process in common. On the other hand, we
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strongly reject the null for all the pairs between Shanghai and the other ten indexes. This confirms that
the stock market in Shanghai has a powerful idiosyncratic volatility.

Summarizing, the findings in empirical analysis are as follows; the volatility process displays a high
degree of similarities in the Asian stock market indexes. The only exception is Shanghai. Moreover, we
cannot the null hypothesis of the single common volatility in the pairs of Southeast Asia. This suggests
that the markets in Southeast Asia are frequently overridden by a single intermarket volatility.

6. Conclusions

This paper provided the Lagrange multiplier test statistic for the null hypothesis that the bivariate
time series has only a single stochastic volatility factor. The test statistic is constructed using smoothing
algorithm for linear state-space models under the assumption that the log of squared measurement error
is normally distributed. The finite sample properties of the test has reliable size and power, when the
sample size is moderately large. In an empirical analysis we have shown that the test can capture key
features of the Asian Stock markets.
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Appendix

A. Derivation of Scores

It is shown here that we can obtain the score function under the null hypothesis using integration by
parts, even though the integrated function is degenerate under the null. Hereafter, we denote ỹT , ˜hT by
ỹ, ˜h, respectively, the multiple integration simply by

Z

dh ⌘
Z 1

�1
· · ·
Z 1

�1
dh11dh21 · · · dh1Tdh2T

and the integration region (�1, 1) is suppressed for the sake of notational simplicity, where there is
no fear of ambiguity.

A.1. Integration by Parts Formula

We now derive a useful formula for calculating score functions in the following:
Z 1

�1

@$(x)

@x
f(x)dx = �

Z 1

�1
$(x)

@f(x)

@x
dx (18)

where $(x) is a normal density function and f(·) denotes an arbitrary function whose n-th derivative
f (n)

(x) for n � 0 converges to zero as |x| ! 1. We have this formula easily noting that the left-hand
side is equal to

�
Z 1

�1
$(x)

@f(x)

@x
dx+$(1)f(1)�$(�1)f(�1).

We also have that
Z 1

�1

@2$(x)

@x2
f(x)dx =

Z 1

�1
$(x)

@2f(x)

@x2
dx (19)

easily by using the formula (18) iteratively.

A.2. Scores of ⇢1 and ⇢2

We obtain the scores of ⇢1 = �1 and ⇢2 = �2 � �1, where �1 and �2 are autocorrelation coefficients
of the transition Equation (5). The score of �1 is expressed as the derivative of the log likelihood L(#)
evaluated the constrained maximum likelihood estimate of # = (�1, �2, ⌘, �, �1, �2, !1, !2, �)

0, say
ˆ#, namely

@L(ˆ#)
@�1

=

1

f(ỹ)

T
X

t=1

(A1|t + A2|t)

where
A1|t ⌘

Z

✓

@⌧1t
@�1

◆

⌧�1
1t f(ỹ,

˜h)dh, A2|t ⌘
Z

✓

@⌧2t
@�1

◆

⌧�1
2t f(ỹ,

˜h)dh (20)

and ⌧1t = f(h1t|h1,t�1), ⌧2t = f(h2t|h2,t�1, h1t, h1,t�1) are transition densities defined in (7), since �1 is
included only in ⌧1t and ⌧2t. Note that, under the null hypothesis, ⌧2t is a degenerate density function and

⌧�1
2t

✓

@⌧2t
@�1

◆

=

[(h2t � h2,t�1)� (h1t � h1,t�1)]�h1,t�1

!2
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in the integrand of Equation (20) is intractable; the denominator and numerator converges to zero as !2

converges to zero under the null, namely !2 ! +0, � = 1, �1 = �2, and hence h1t = h2t. We show in
the following that this integral can be evaluated by means of integration by parts.

To evaluate Equation (20), we first change the derivative with respect to �1 to the derivative with
respect to h2t in the integrand and obtain

A2|t = �

Z

h1,t�1

✓

@⌧2t
@h2t

◆

⌧�1
2t f(ỹ,

˜h)dh

using the identity
@⌧2t
@�1

= �h1,t�1

✓

@⌧2t
@h2t

◆

which can be shown easily by direct differentiation of Equation (7). Then, using Equation (18), we
obtain

A2|t = �

Z

h1,t�1

✓

@⌧2t
@h2t

◆

⌧�1
2t f(ỹ,

˜h)dh = ��
Z

h1,t�1
@(⌫2t⌧2,t+1)

@h2t
(⌫2t⌧2,t+1)

�1 f(ỹ, ˜h)dh

= ��
Z

h1,t�1

✓

@⌫2t
@h2t

◆

⌫�1
2t f(ỹ,

˜h)dh� �

Z

h1,t�1

✓

@⌧2,t+1

@h2t

◆

⌧�1
2,t+1f(ỹ,

˜h)dh (21)

noting that, from Equation (7), h2t is included in ⌫2t and ⌧2,t+1 as well as ⌧2t. Note that we cannot
evaluate the second term of Equation (21) numerically, because ⌧�1

2,t+1(@⌧2,t+1/@h2t) is intractable again
under the null hypothesis. Then, using

@⌧2,t+1

@h2t
= ��2

✓

@⌧2,t+1

@h2,t+1

◆

(22)

and Equation (18), we have

A2|t = ��
Z

h1,t�1

✓

@⌫2t
@h2t

◆

⌫�1
2t f(ỹ,

˜h)dh+ ��2

Z

h1,t�1

✓

@⌧2,t+1

@h2,t+1

◆

⌧�1
2,t+1f(ỹ,

˜h)dh. (23)

Using Equation (18) and Equation (22) in Equation (23) iteratively, we finally have

A2|t =� �

T�t
X

i=0

�i
2

Z

h1,t�1

✓

@⌫2,t+i

@h2,t+i

◆

⌫�1
2,t+if(ỹ,

˜h)dh

=� �

T
X

j=t

�j�t
2

Z

h1,t�1

✓

@⌫2j
@h2j

◆

⌫�1
2j f(ỹ,

˜h)dh.

We now express the scores by means of the conditional moments given the observation vector ỹ under
the null hypothesis, noting that f(ỹ|˜h) = f(ỹ, ˜h)/f(˜h). Let us denote ht = h1t = h2t for the sake of
notational simplicity, noting that h1t = h2t under the null hypothesis. Then, under the null hypothesis,
we have (Note that � in Equation (24) equals to one under the null hypothesis.)

@L(ˆ#)
@�1

=

T
X

t=1

"

˜A1|t �
T
X

j=t

ˆ�j�t
2

˜A2|jt

#

(24)
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where

˜A1|t ⌘
Z

✓

@⌧1t
@�1

◆

⌧�1
1t f(

˜h|ỹ)dh =

E0(ht�1u1,t�1|ỹ)
!̂1

,

˜A2|jt ⌘
Z
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✓

@⌫2j
@h2j

◆

⌫�1
2j f(

˜h|ỹ)dh =

E0 (ht�1⇠2j|ỹ)� �̂E0(ht�1⇠1j|ỹ)
⌘̂(1� �̂2)

since
✓
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@�1

◆

⌧�1
1t =

h1,t�1u1,t�1

!1
,

✓

@⌫2j
@h2j

◆

⌫�1
2j =

⇠2j � �⇠1j
⌘(1� �2)

.

The score of �2 is expressed as
@L(#)
@�2

=

1

f(ỹ)

T
X

t=1

Bt

where
Bt ⌘

Z

✓

@⌧2t
@�2

◆

⌧�1
2t f(ỹ,

˜h)dh

since �2 appears only in ⌧2t as shown in Equation (7). Similarly to the derivative with respect to �1, this
expression is rewritten as the derivative with respect to h2t in the integrand; we have

Bt = �
Z

h2,t�1

✓

@⌧2t
@h2t

◆

⌧�1
2t f(ỹ,

˜h)dh
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@⌧2t
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✓

@⌧2t
@h2t

◆

.

For t = T , we have

BT =

Z

h2,T�1

✓

@⌫2T
@h2t

◆

⌫�1
2T f(ỹ,

˜h)dh

using Equation (22), since h2T is included in ⌫2T , as well as ⌧2T , as shown in Equations (4) and (7).
For t < T , we have
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Then, under the null hypothesis, we have
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T
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T
X
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ˆ�j�t
2
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where
˜Bjt =
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and that
˜A2|jt = ˜Bjt (25)
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since �1 = �2 and h1t = h2t = ht. Then, we see that the scores of ⇢1 and ⇢2 are

@L(ˆ✓)
@⇢1

=
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· @�1
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+
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T
X
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2
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from �1 = ⇢1, �2 = ⇢1 + ⇢2, and Equation (25).

A.3. Score of �

The score of � is expressed as
@L(#)
@�

=

1

f(ỹ)

T
X

t=1

Ct

where
Ct ⌘

Z

✓

@⌧2t
@�

◆

⌧�1
2t f(ỹ,

˜h)dh (26)

since � is only included in the transition density ⌧2t. We express Equation (26) using a derivative with
respect to h2t in the integrand as
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Then, for t = T , we have
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using Equation (18). For t < T , using Equations (18) and (22) iteratively, we have
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A.4. Score of !2

The score of !2 is expressed as
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where
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We reexpress Equation (27) as
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which can be easily shown from Equation (7). For t = T , using the formula (19), we have
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For t < T , we have
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because h2t is included in ⌫2t and ⌫2,t+1 as well as ⌧2t. The second term Ft is expressed as
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using Equation (22). We then have that
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(22) iteratively, Ft can be expressed as
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where
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for i = 1, . . . , T � t. The third term Ht can be expressed as

Ht = �2
2Dt+1

from the identity
@2⌧2,t+1

@h2
2t

= �2
2

✓

@2⌧2,t+1

@h2
2,t+1

◆

.
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A.5. Scores of �1

The score of �1 is expressed as
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A.6. Score of �2

Under the null hypothesis, the score of �2 is expressed as
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E0(⇠2t|ỹ)� �̂E0(⇠1t|ỹ)
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The score of ⌘ is expressed as
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Then, under the null hypothesis, we have
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A.8. Score of �

Under the null hypothesis, the score of � is expressed as
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A.9. Score of !1

Under the null hypothesis, the score of !1 is expressed as
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B. Conditional Moments of State Variables

As we derived in Appendix A, the scores are expressed as the conditional moments of the state
variables h1t, h2t, given the observation ỹ. We here show that these moments can be easily obtained by
applying the completing square formula to the likelihood. Under the null hypothesis, from the transition
and measurement density functions (4) and (7),

f( ỹ| ˜h) / exp
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and 1T is a T ⇥ 1 vector of ones. Then, we have

f(ỹ, ˜h) / exp
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applying the completing square formula. Then, we have that

f(˜h|ỹ) / exp
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The conditional expected value and variance-covariance matarix of ˜h given the value of ỹ are
expressed as E0(

˜h|ỹ) = m, Var0(˜h|ỹ) = ⌦

�1
1 , respectively. Hereafter, we denote mt = E0(ht|ỹ),

cts = E0(hths|ỹ). We also have that

E0(⇠1t|ỹ) = y1t � �1 �mt, E0(⇠2t|ỹ) = y2t � �2 �mt

E0(u1,t�1|ỹ) = E0(u2,t�1|ỹ) = mt � �1mt�1

from (2) and (5) under the null hypothesis (10).
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