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ABSTRACT

Recently, there has been a considerable interest in the Bayesian approach for ex-

plaining investors’ behaviorial biases by incorporating conservative and representa-

tive heuristics when making financial decisions, (see, for example, Barberis, Shleifer

and Vishny (1998)). To establish a quantitative link between some important market

anomalies and investors’ behaviorial biases, Lam, Liu, and Wong (2010) introduced a

pseudo-Bayesian approach for developing properties of stock returns, where weights

induced by investors’ conservative and representative heuristics are assigned to ob-

servations of the earning shocks and stock prices. In response to the recent global

financial crisis, we introduce a new pseudo-Bayesian model to incorporate the impact

of a financial crisis. Properties of stock returns during the financial crisis and recovery

from the crisis are established. The proposed model can be applied to investigate some

important market anomalies including short-term underreaction, long-term overreac-

tion, and excess volatility during financial crisis. We also explain in some detail

the linkage between these market anomalies and investors’ behavioral biases during

financial crisis.

KEYWORDS: Bayesian model, Representative and conservative heuristics, Under-

reaction, Overreaction, Stock price, Stock return, financial crisis.
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1 INTRODUCTION

In the past two decades, market excess volatility, overreaction, and underreaction

have been important market anomalies which pose a major challenge to economists

and financial researchers. Advocates of market rationality, such as Fama and French

(1996) and Brav and Heaton (2002), postulated that overreaction and underreaction

can be well explained under the efficient market paradigm. Promoters of behavioral

biases, see, for example, Lam, Liu, and Wong (2010, 2011, henceforth LLW) and the

references therein developed several behavioral models to explain the overreaction and

underreaction phenomena. In contrast with the efficient market theory (Lam, Wong,

and Wong, 2006; Lean, McAleer, and Wong, 2010), these models suggest that sophis-

ticated investors may earn superior returns by taking advantage of underreaction and

overreaction without assuming extra risk.

Most behavioral models adopt the bounded rationalism approach which violate

some assumptions under rational expectations in the classical asset-pricing theory.

Basically, there are five ingredients in the classical asset-pricing model, namely, an

economic structure for asset price dynamics, rational agents’ beliefs on asset prices,

the structure of market information, rational agents’ predictions by updating their

views based on available information and rational agents’ investment decisions. Mean-

while, the following four assumptions are imposed in the rationality paradigm: 1) the

agents’ knowledge of the economic structure for asset price dynamics is correct, Sar-

gent (1993); 2) agents can process the immediately and homogenously distributed

information; 3) investors update their beliefs using a version of the Bayes’ rule; and

4) investors’ choices are determined by Savage’s notion of subjective expected utility.

In a typical behavioral model, one of the four assumptions mentioned above is

violated as investors’ behavioural bias would induce a deviation from the rational

paradigm. For example, Barberis, Shleifer, and Vishny (1998, henceforth BSV) sup-

posed that while earning announcements follow a random walk, investors adopting

conservative and representative heuristics believe that the announcements fall into

either a trending regime or a mean-reverting regime, which may be described by a

two-state Markov chain. They then deduced that such violation against Assumption

1 leads to both short-term underreaction and long-term overreaction in the mar-

ket. Through deviation from Assumption 2, Daniel, Hirshleifer, and Subrahmanyam

(1998, henceforth DHS) demonstrated that the market exhibits short-term underre-

action and long-term overreaction since some investors having private information are

overconfident. Grinblatt and Han (2005) believed that investors refuse to sell in a

falling market since they are unwilling to admit their mistakes. This leads to forma-
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tion of market momentum, Their approach violates Assumption 4 since they adopted

the prospect theory, (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992;

Broll, Egozcue, Wong, and Zitikis, 2010; Egozcue, Fuentes Garćıa, Wong, and Zitikis,

2011), where the maximization of investors’ final wealth may not be the sole criterion

for making investment decisions. Gervais and Odean (2001) developed a behavioral

model, where insider traders assign excessive weights to their past successful predic-

tions of a security’s dividend via a learning bias factor and use an updated probability

that is larger than that derived from the Bayes’ rule. This model violates Assumption

3.

Behavioral finance, which aims at combining psychological phenomena with fi-

nance theories to explain market anomalies, may be traced to the early work of Slovic

(1972). Several psychologists have observed that when new information emerges,

people are too conservative and slow in changing their prior beliefs. Furthermore,

Edwards (1968) established a Bayesian model to underweigh useful statistical evi-

dence, but to put more weight on investors’ priors since he observes that conservative

investors might pay little attention, or even no attention, to the recent earnings an-

nouncements and still hold their prior beliefs based on past earnings in their valuation

of shares. Similarly, Grether (1980) documented that individuals who exhibit conser-

vatism update their beliefs too slowly in the face of new evidence. Nonetheless, Klein

(1990), Mendenhall (1991), and Abarbanell and Bernard (1992) argued that investors

tend to underreact to new information.

On the other hand, representative heuristic, the bias in which the individuals

expect key population parameters to be “represented” in any recent sequence of

data, has been shown in many experimental studies, see, for example, DeBondt and

Thaler (1985), Lakonishok, Shleifer, and Vishny (1994), Barberis, Shleifer, and Vishny

(1998). Tversky and Kahneman (1971) suggested that local representativeness is a

belief in the “law of small numbers,” and investors may find that even small samples

are highly representative of the populations. In addition, Kahneman and Tversky

(1973) found that a person following this heuristic evaluates the probability of an

uncertain event, by the degree to which the essential properties resemble to its parent

population and reflects the salient features of the process by which it is generated.

Griffin and Tversky (1992) reconciled conservatism with representativeness by

assuming that people update their beliefs based on the “strength,” the salient and

extreme aspects of the evidence; and “weight,” the statistical information, such as

sample sizes. In this setup, when revising their forecasts, people overemphasize on the

strength of the evidence and de-emphasize on its weight. Conservatism would follow
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when facing evidence with high weight but low strength whereas overreaction occurs

in a manner consistent with representativeness when the evidence has high strength

but a low weight. Furthermore, Shefrin and Statman (1995) found that investors rely

on representative heuristics in forming expectations because they tend to regard good

stocks as the stocks of large companies with low book-to-market ratios.

In this paper, we adopt the LLW’s model for weight assignments to develop certain

important characteristic of stock returns during financial crisis and its subsequent re-

covery. More specifically, an asset pricing model based on a modified random walk

model for the earnings announcement of an asset is proposed. The modified random

walk model can incorporate the impact of a financial crisis on the earnings of a firm.

To provide a quantitative description for investors’ representative and conservative

heuristics, we follow the LLW’s pseudo-Bayesian approach and assume that the like-

lihood function for earning shocks of the stock in a Bayesian paradigm is weighted

by investors’ behavioral biases. The degree of deviation of weight from the standard

Bayesian approach, which assigns equal weights to data, could quantitatively reflect

investors’ level of behavioral biases. Then the price dynamics of the asset are derived

using the pseudo-Bayesian approach which will then be used to develop some char-

acteristics of stock returns. The proposed model can be used to study and explain

some market anomalies including short-term underreaction, long-term overreaction,

and excess volatility during financial crisis.

The rest of the paper is organized as follows. In the next section, we present the

asset pricing theory based on the modified random walk model for the earnings an-

nouncement of an asset. Section three first discusses the pseudo-Bayesian framework

to update information about earning shocks in the asset pricing theory. Then we

derive the price dynamics and develop some properties for the stock returns based on

the pseudo-Bayesian asset pricing theory. Section four is devoted to discussing how

cognitive biases are reflected in the weight assignment schemes in Section three. The

final section gives some concluding remarks. The proofs of the results are placed in

Appendix.

2 ASSET PRICING MODEL WITH FINANCIAL

CRISIS

In BSV, a model for market sentiment was considered, where a representative investor

observes the earnings of an asset and updates his/her belief to price the asset. It
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was assumed that Nt, the earnings announcement of the asset at time t, follows the

following random walk:

Nt = Nt−1 + yt , (1)

where yt is an earnings shock at time t.

Using a discounting model based on rational expectation, (see, for example, Thomp-

son and Wong (1991, 1996) and Wong and Chan (2004)), the asset is priced at time

t as Pt which is given by:

Pt = Et

[
Nt+1

1 + r
+

Nt+2

(1 + r)2
+ · · ·

]

=
Nt

r
+

1 + r

r
×

[
Et[yt+1]

1 + r
+

Et[yt+2]

(1 + r)2
+ · · ·

]
, (2)

where r is the discount rate, or the investor’s anticipated return, which is assumed

to be a given positive constant.

In (2), Et[·] represents the investor’s conditional expectation given the information

set Ωt describing all information available to the investor at time t. Here we assume

that yt is Ωt-measurable, (i.e., the value of yt is known exactly given information

Ωt up to and including time t). Consequently, by definition, both Nt and Pt are

Ωt-measurable.

Instead of using the random walk model in (1), we consider here a modified random

walk model which can incorporate the impact of a financial crisis on the dynamics

of the earnings announcement. The modified random walk model is presented in the

sequel.

To illustrate the main idea of the proposed model, we first consider a simplified

situation that there are two states of an economy, namely, a normal economic condi-

tion and an economic condition under a financial crisis. When the economic condition

is normal, we assume that the earnings announcement of the asset follows a random

walk model. Unfortunately, if the financial crisis occurs at time t0, then the time after

t0, the earnings announcement of the asset also follows another random walk model

which is discounted by a factor δ0 < 0 such that

Nt =





Nt−1 + yt, t < t0 ,

δ0 + Nt−1 + yt, t ≥ t0 .
(3)

In other words, the one-step, conditional expected earning of the asset is reduced by

the amount of |δ0| in each period after the crisis has occurred at time t0. The model
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(3) reflects the situation where the market is dominated by some pessimistic investors

who think that the economy will never recover and that the crisis is the end of the

world.

More generally, we consider the situation where the economy has three states,

namely, a normal economic condition, an economic condition under a financial crisis

and the condition under recovery. Again we suppose that when the economy is in

a normal condition, the earnings announcement of the asset follows a random walk

model. If the economy is experiencing a financial crisis starting at time t0, the earnings

announcement of the asset after time t0 is the modified random walk model where

the one-period conditional expected earning is discounted by the amount of |δ0| with

δ0 < 0. During recovery, the earnings announcement of the asset will follow a random

walk with drift δ1 > 0 such that

Nt =





Nt−1 + yt, t < t0 , t ≥ t2 ;

δ0 + Nt−1 + yt, t0 ≤ t < t1 ;

δ1 + Nt−1 + yt, t1 ≤ t < t2 ;

(4)

for some t0 < t0 + 1 ≤ t1 < t1 + 1 ≤ t2.

The rationale of considering this more complicated model is to incorporate the

impact of recovery from a crisis on the earnings announcement of the asset. Specifi-

cally, when the economy goes into a crisis at time t0, the stock market starts to crash

at that time. At time t1, economy is expected to recover, and thus the stock market

starts to rise. Whereas, at time t2, the economy becomes stable and the stock market

follows the random walk without drift again.

From now on, we impose the following standard assumptions which are modi-

fication of those in Lam, Liu, and Wong (2010, 2011) so as to adapt them to the

pseudo-Bayesian framework to be presented in the next section.

Assumption 1: The earnings announcement process {Nt} can follow a random walk

model (1), the random walk model with drift δ0 in (3), or the random walk

model with drifts δ0 and δ1 in (4). Furthermore, the earnings shocks {yt} is

a sequence of independent and identically distributed (i.i.d.) random variables

with a common distribution being a Gaussian distribution with constant mean

µ and variance σ2
y .

Assumption 2: The representative agent knows the nature of the random walk

model, except that the mean µ is unknown. The agent estimates µ using obser-
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vations about the earning shocks {yt}. To simplify our discussion, we assume

that the agent knows σ2
y .

Assumption 3: The agent uses a “biased” statistical method to update his or her

belief in such a way that the agent’s behavioral biases are reflected.

3 A PSEUDO-BAYESIAN APPROACH AND PROP-

ERTIES OF STOCK RETURNS

Before we present the pseudo-Bayesian approach adopted by a behaviorally biased

agent, we first describe the standard (or rational) Bayesian approach to update in-

formation on the mean level of the earnings shock. To simplify our discussion, we

consider a vague, or improper, prior for the unknown mean µ 1. That is,

P0(µ) ∝ 1 ,

see, for example, DeGroot (1970), Matsumura, Tsui and Wong (1990), Wong and

Bian (2000) for related discussions.

The likelihood function of µ given the observed earning shocks {yt} is:

L(y1, y2, · · · , yt|µ) =
t∏

i=1

L
(
yt−i+1|µ

)
. (5)

It is well-known that by applying the Bayes’ formula, the posterior distribution of µ

given {y1, y2, · · · , yt} is:

P
(
µ | y1, y2, · · · , yt

)
∝

t∏
i=1

L
(
yt−i+1 | µ

)
. (6)

In this standard Bayesian approach, an equal weight is placed on each observation in

y1, y2, · · · , yt. In consistent with the predictions of traditional efficient markets, this

rational expectations asset-pricing theory assumes that investors can have access both

to the correct specification of the “true” economic model and to unbiased estimators

of the model parameters, (see, for example, Friedman (1979)). Obviously, if the ra-

tional investor is endowed with an objectively correct prior and the correct likelihood

1Note that in a Bayesian statistical paradigm, an unknown parameter is viewed as a random
quantity and a prior distribution is then assigned to this random quantity.
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function, he/she will obtain the rational expectation equilibrium. Consequently, any

structural irrationally induced financial anomaly would disappear. Attainment of

such structural knowledge on convergence to a rational expectation solution has been

studied widely in the literature. For example, Blume and Easley (1982) and Bray and

Kreps (1987) observed that investors have to recognize and incorporate how their be-

liefs about the unknown essential features of an economy influence the structural

model of the economy. However, the extreme knowledge required in these models is

implausible. Blume and Easley (1982) showed that if investors do not recognize the

effect of learning on prices to obtain equilibrium, that convergence of beliefs is not

guaranteed within a general equilibrium learning model.

Nonetheless, as evidence has mounted against the traditional Bayesian model, the-

ories of financial anomalies have to be developed by relaxing some of those assump-

tions imposed in the standard theories. One approach is to assume that investors

are plagued with cognitive biases, (see, for example, Slovic (1972)), and they may

incorrectly assign different weights to different observations. To model such behav-

ioral biases, we assume that they place weight ω1 on the most recent observation yt,

ω2 on the second most recent observation yt−1 , and so on, with the possibility that

ωi’s may not equal to 1. Then we consider the following weighted likelihood function

associated with the vector of weights ω := (ω1, ω2, · · · , ωt):

Lω(y1, y2, · · · , yt|µ) =
t∏

i=1

L
(
yt−i+1|µ

)ωi . (7)

where Lω represents the weighted likelihood function depending on the subjective

weighted ω. Then, by the Bayes’ formula, the posterior distribution of µ given {yt}
is:

P
(
µ | y1, · · · , yt

)
∝

t∏
i=1

L
(
yt−i+1 | µ

)ωi . (8)

Consequently, the posterior mean and posterior variance of the unknown mean µ can

be obtained from the posterior distribution of µ. Using these results, we can derive

the price and return dynamics of the stock under the behavioral model. We present

these dynamics in Proposition 1.

Proposition 1 (Price and return dynamics in the pseudo-Bayesian ap-

proach) Under a pseudo-Bayesian approach with a vague prior, the random walk

Nt as stated in (1), (3), or (4) and an incorrect likelihood Lω(µ) as stated in (7),

for any k ≥ 1 the predictive mean Et[yt+k] of the future earning shock yt+k given
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{y1, y2, · · · , yt}, and the posterior variance σ2
t of µ given {y1, y2, · · · , yt} are, respec-

tively, given by:

Et[yt+k] =
ωty1 + · · ·+ ω1yt

st

:= dt ,

σ2
t =

σ2
y

st

, (9)

where st = Σt
i=1ωi.

1. If the random walk {Nt} follows (1), then the price at time t using the rational

expectation pricing model in (2) becomes:

Et

[
Pt+k

(1 + r)k

]
=

Nt

r(1 + r)k
+

[(1 + k)r + 1]dt

r2(1 + r)k
.

(10)

2. If the random walk {Nt} follows (3), then the price at time t using the rational

expectation pricing model in (2) is given by:

Et

[
Pt+k

(1 + r)k

]
=

Nt

r(1 + r)k
+

[(1 + k)r + 1]dt

r2(1 + r)k
+





δ0

r2(1 + r)at−2
if t < t + k < t0 ,

[(k+2−at)r+1]δ0
r2(1+r)k+2 if t < t0 ≤ t + k ,

[(1+k)r+1]δ0
r2(1+r)k if t0 ≤ t < t + k ,

(11)

where at = max(dt0 − te, 0).

3. If the random walk {Nt} follows (4), then the price at time t using the rational
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expectation pricing model in (2) is given by:

Et

[
Pt+k

(1 + r)k

]

=
Nt

r(1 + r)k
+

dt[(k + 1)r + 1]

r2(1 + r)k
+





δ0
r2(1+r)bt−2

[
(r + 1)bt−at − 1

]
+ δ1

(r+1)ct−2r2

(
(r + 1)ct−bt − 1

)
if t < t + k < t0

δ0
r2(1+r)bt−2

[
(r + 1)bt−k−2([k + 2− at]r + 1)− 1

]
+ δ1

(r+1)ct−2r2

(
(r + 1)ct−bt − 1

)
if t < t0 ≤ t + k < t1

(bt−at)δ0
r(1+r)k + δ1

r2(1+r)ct−2

[
(r + 1)ct−k−2([k + 2− bt]r + 1)− 1

]
if t < t0, t1 ≤ t + k < t2

(bt−at)δ0+(ct−bt)δ1
r(1+r)k if t < t0, t2 ≤ t + k

δ0
r2(1+r)bt−2

[
(r + 1)bt−k−2([k + 1]r + 1)− 1

]
+ δ1

(r+1)ct−2r2

(
(r + 1)ct−bt − 1

)
if t0 ≤ t < t + k < t1

δ0(bt−1)

r(1+r)k + δ1
(r+1)ct−2r2

(
(r + 1)ct−k−2([k + 2− bt]r + 1)− 1

)
if t0 ≤ t < t1 ≤ t + k < t2

δ0(bt−1)+δ1(ct−bt)

r(1+r)k if t0 ≤ t < t1, t2 ≤ t + k
δ1

(r+1)ct−2r2

(
(r + 1)ct−2−k([k + 1]r + 1)− 1

)
if t1 ≤ t < t + k < t2

δ1(ct−1)

r(1+r)k if t1 ≤ t < t2 ≤ t + k

0 if t2 ≤ t < t + k ,

(12)

where at = max{dt0 − te , 0}, bt = max{dt1 − te , 0}, ct = max{dt2 − te , 0},
and dt = ωty1+···+ω1yt

st
.

The proof of Proposition 1 is in the appendix.

In whatever case, we can have Et[Pt+k] = Nt

r
+ [r(1+k)+1]dt

r2 + ck where ck may

be different in different situations as described above. For Pt, we can have Pt =
Nt

r
+ [r+1]dt

r2 + c0, where c0 may also be different in different situations. Consequently,

the k-period conditional expected absolute return

Rt,t+k =
kdt

r
+ ck − c0.

Since the constant doesn’t effect the variance, so the market volatility will be

V ar(Rt,t+k) =
k2

∑t
i=1 ω2

i

r2(
∑t

i=1 ωi)2
σ2

y .

Using Cauchy inequality, we can have (
∑t

i=1 ωi)
2 ≤ t

∑t
i=1 ω2

i . On the other hand,

since 0 ≤ ωi ≤ 1 for ∀i, we can obtain that
∑t

i=1 ω2
i ≤

∑t
i=1 ωi. So, for the market

volatility, we can have

k2

r2t
σ2

y ≤ V ar(Rt,t+k) ≤ k2

r2
∑t

i=1 ωi

σ2
y .

As a result, if st =
∑t

i=1 ωi → ∞, we can have V ar(Rt,t+k) ≡ 0. If st =
∑t

i=1 ωi →
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s∞ < ∞, we can have

V ar(Rt,t+k) ≤ k2

r2s∞
σ2

y .

Rt,t+1 = dt

r
+ c1− c0, where c1 is some constance and may be different in different

situations. Let Z = yt−µ
σy

, D1(s) = E(Z|Z > s) and D2(s) = E(Z|Z < −s)

U+ = E
[
Rt+1|yt > µ + sσy, · · · , yt−j+1 > µ + sσy

]

=
1

r
E

[
dt|yt > µ + sσy, · · · , yt−j+1 > µ + sσy

]
+ (c1 − c0)

=
1

rst

E
[
ωjyt−j+1 + · · ·+ ω1yt|yt > µ + sσy, · · · , yt−j+1 > µ + sσy

]
+ (c1 − c0)

=

∑j
i=1 ωi

rst

D1(s) + (c1 − c0).

Similarly, we can have

U− = E
[
Rt+1|yt < µ− sσy, · · · , yt−j+1 < µ− sσy

]
+ (c1 − c0)

=

∑j
i=1 ωi

rst

D2(s) + (c1 − c0).

Consequently,

Ut(s, j) = U+ − U− =

∑j
i=1 ωi

rst

(D1(s)−D2(s)).

Consequently, we can have Ut(s, j) > 0, ∂Ut(s, j)/∂s > 0. There is no under-

reaction or over-reaction!

Brief Proof. Let h(s) = µ + sσy, g(s) = µ− sσy, we can have

D1(s) =

∫∞
h(s)

yf(y)dy∫∞
h(s)

f(y)dy · σy

− µ

σy

D2(s) =

∫ g(s)

0
yf(y)dy

∫ g(s)

0
f(y)dy · σy

− µ

σy

.
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Then, we can obtain that

D′
1(s) =

f(h(s))h′(s)
[ ∫∞

h(s)
yf(y)dy − h(s)

∫∞
h(s)

f(y)dy
]

(
∫∞

h(s)
f(y)dy)2 · σy

=
f(h(s))h′(s)

∫∞
h(s)

f(y)dy(ξ − h(s))

(
∫∞

h(s)
f(y)dy)2 · σy

where h(s) < ξ < ∞, the last equation follows from mean value theorem of integrals.

Then we can have D′
1(s) > 0

Using a similar argument, we can have

D′
2(s) =

f(g(s))g′(s)
[
g(s)

∫ g(s)

0
f(y)dy − ∫ g(s)

0
yf(y)dy

]

(
∫ g(s)

0
f(y)dy)2 · σy

=
f(g(s))g′(s)

∫ g(s)

0
f(y)dy(g(s)− ζ)

(
∫ g(s)

0
f(y)dy)2 · σy

where 0 < ζ < g(s), note that g′(s) = −σy < 0, so we can have D′
2(s) < 0. As a

result, we can have ∂Ut(s, j)/∂s > 0. This completes the proof of Proposition 5.

On the other hand, if we define the 1-period return Rt,t+1 = Pt+1 − Pt, from

the above discussion, we can know that we can obtain the same conclusion as Lam,

Liu and Wong(2009)(’A Pseudo-Bayesian Model in Financial Decision Making with

Implications to Market Volatility, Under- and Overreaction’). This can be explained

in the following way. Nor matter which model Nt, the earnings announcement of the

asset at time t follows, only the mean term will change. That’s there is some shift if

Nt follows some change-point model as model (2) or (3) instead of model 1. But as

for the variance term, no change will occur.

From Proposition 1, we observe that the conditional expected present value of

the asset at time t + k given information Ωt up to and including the current time t

depends on the current and the future earning shocks. For example, in the simplest

random walk model, the current earning announcement only depend on (1) the current

earnings announcement and (2) the current as well as the expected future earning

shocks. However, it is generally believed that the price of the asset also depends on

the economic situation. In the view of economic cycles, the economy will experience
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an expansion period after suffering from a period of financial recession. Furthermore,

in a long run, the economy will go back to the normal status. The present value

of the asset is, therefore, proportional to the predictive mean of the future earning

shocks, the current earnings announcement, the duration of economic recovery and

the recovery rate of the economy. It is also inversely proportional to the risk-free

interest rate, the duration of economic downturn and the deteriorating rate under

economic crisis.

To fully describe this situation, we may consider the random walk {Nt} follows

(4). Under this circumstance, when the current economy is in the state of just before

the economic downturn or under the recession period, the price of asset not only

depends on the current earnings announcement, the predictive mean of the future

earning shocks and the risk-free interest rate, but also depends on how long and

serious of the impact of both the economic turmoil and the economic expansion on

the price of the asset. If the duration of the economic turmoil is longer or the effect

of the economic turmoil is more serious, the price of the asset becomes lower. This is

reflected in the coefficients of δ0 and δ1, respectively. Similarly, the coefficient of δ1 is

determined by the duration of the economic expansion while the value of δ1 depends

on the level of the economic expansion. In particular, when we are at the economic

expansion period, (i.e., t1 ≤ t < t2), the effect of the term δ0 becomes vanish, and

only the term of δ1 reflects the effect of the economy shift. Furthermore, if the bad

days and the good days of the economy are all gone, (i.e., t2 ≤ t), the estimation on

the price of the asset is the same as that obtained from the random walk, {Nt}, from

(1).

To be more precise, under a different future economic condition, the effect of

the current earnings announcement and the expected future earning shocks, Et(yt+j),

j = 1, 2, · · · , on the asset price are the same in all scenarios. It is because these factors

represent the cash flows of the asset in the absence of the impact from the status of

the economy. The impact of the economic condition on the asset price is described

by both δ0 and δ1 as well as their coefficients. To begin with, we may consider four

different cases under the same condition that the current economy is in the state of
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just before the economic downturn. Also, we have the following inequalities:

b− a

(1 + r)k
<

[
(r + 1)b−a − 1

]

r(1 + r)b−2
,

1

r(1 + r)b−2
[(r + 1)b−k−2([k + 2− a]r + 1)− 1] ≤ b− a

(1 + r)k
, and

(r + 1)b−k−2([k + 2− a]r + 1) < (1 + r)b−a ,

for k > b > a.

In the first case, when the economic environment at time t + k is in the state of

just before the economic downturn, the expected present value of the asset at time

t + k depends on the coefficient of δ0 and δ1, (i.e., the duration of both economic

recession and economic expansion, and the level of the impact under both economic

conditions on the asset. Therefore, the deviation of the asset price from its price

under the stable economic condition depends on the actual effect from the change of

the economic condition.

In the second case, if the economic environment at time t+k is now in the economic

recession, the coefficient of δ0 is lower than that in the first case. It implies that if

the current economy is just before the economic recession, the expected present value

of the asset at time t + k is lower in the first case, If the economy at time t + k is

just before the recession and it is higher than that in the second case, the economy at

time t + k is in downturn period. It is because if the economy at time t + k is in the

recession period, only part of the asset loss is realized before the time t+k. However,

if the economy at time t + k is just before the recession, the total negative impact of

the economic recession is counted on the cash flow of the asset at time t + k.

In the third case, if the economic environment at time t + k is just after the

economic recession and is now in the state of the economic expansion, the present

value of the asset may be higher or lower than that of the first two cases. We observe

that the coefficient of δ1 is lower than those in the first two cases while the coefficient

of δ0 is higher than that in the second case. This implies that the asset value at the

economic expansion period is even lower than that in the economic recession period.

The main reason is that even though we experience the economic expansion at time

t+k, the additional amount of asset return is required to discount back to the current

time by going through the whole economic recession period, and this devaluation of

the asset price is significant in this recession period, which is in between time t an

time t + k.
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In the fourth case, when the economic environment at time t + k is just after the

economic expansion period, the coefficients of both δ0 and δ1 are smaller than those

in the first case. However, the coefficient of δ0 and the coefficient of δ1 is higher and

lower than those in the second case, respectively. This implies that the present value

in the fourth case is lower than that in the second case. Comparing with the third

case, the coefficient of δ1 in the fourth case is larger. Therefore, the present value of

the asset is highest when the economy at time t+k is in the recession period, medium

when the economy at time t + k is after the expansion period and lowest when the

economy at time t + k is in the expansion period.

We now consider three different cases, (i.e., fifth to seventh), under the same

condition that the current economy is in the state of economic downturn. In the

fifth case, when the economic environment at time t + k is in the state of economic

downturn, we may compare the expected present value of the asset at time t + k

in this case to that in the first case, (i.e., the present asset value when the current

economy is in the state of the economy just before the downturn while the economic

environment at time t+ k is still in the state of economic downturn. We observe that

the present asset value at time t+ k in this case is higher than that in the case where

the current economy is in the state of the economy just before the downturn. It may

be attributed to the fact that part of the negative effect from the economic downturn

has already been digested when the current economy is in the state of economic

downturn. The impact of economic downturn on the current scenario is relatively

small. In the sixth case, when the economic environment at time t + k is in the state

of economic expansion, the coefficients of both δ0 and δ1 are smaller than those in

the fifth case. In the seventh case, when the economic environment at time t+k is in

the state of just after the economic expansion, the coefficient of δ1 is larger than that

in the sixth case. Consequently, the present asset value in the economy at time t + k

after the expansion period is higher than that in the expansion period. It is because

if the the economy at time t + k is after the expansion period, then the expansion

period is closer to the time t and when the present value is under consideration, the

asset price will be higher. On the other hand, when the economy at time t + k is in

the expansion period, the time interval between the current time and the economic

expansion period becomes larger and it makes the present value smaller.

We can also consider another two different cases, (i.e., eighth to ninth), under the

same condition that the current economy is in the state of economic expansion. In

this situation, the economy at time t + k is either in the expansion period or after

the expansion period. Similarly to the previously obtained results, the present asset
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value is higher if the economy at time t + k is after the expansion period.

Finally, if the current economy is just after the economy expansion, then there is

no impact from the structural changes in economic conditions.

On the other hand, some of the pessimistic investors may believe that the economic

downturn will unavoidably occur. In their opinion, the price of the asset is eventually

reduced by a future economic turmoil. Once an economic downturn occurs, the effect

of the economic turmoil will sustain forever. In this situation, when the investor

believes that the economy at time t + k is just before the economic downturn, the

present value of the asset at time t + k is the highest. However, when the investor

believes that the economy at time t is just before the economic downturn while the

economy at time t + k is in the economic downturn, the present value of the asset at

time t + k will be reduced. Finally, when the investor believes that the economy at

time t is in the economic downturn period, the present value of the asset at time t+k is

smallest. The main reason is that in the last scenario, the pessimistic investor believes

that the economic downturn occurs from the present time and will last forever.

4 HOW COGNITIVE BIASES ARE REFLECTED

IN THE WEIGHT ASSIGNMENT SCHEMES?

In the model developed in the last section, we incorporate general weights on observa-

tions into a simple asset-pricing setup. This allows us to examine the price formation

process under a rational expectation approach with biased weights. This approach

enables practitioners and academic researchers to compare ways in which investors,

with or without cognitive biases, incorporate their prior beliefs into the historical data

to estimate the valuation-relevant parameters that can lead to anomalous asset-price

behavior. We note that the idea of using different weights on evidence is not new

in the finance literature. For example, Brav and Heaton (2002) considered weights

given by:

ω1 = · · · = ω t
2

= 1 and ω t
2

= · · · = ωt = 0 ,

where t is an even number.

Under this weighting scheme, investors simply ignore the distant half of the avail-

able data. Also, it is common in the psychological literature to assume that investors

calculate the posterior mean, which is a weighted average rather than a simple aver-

age as suggested by a correct Bayesian approach. In this paper, we follow LLW to

use a more general assumption that investors may use weights, ω1, ω2, · · · , satisfying
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0 ≤ ωi ≤ 1 for all i. By allowing more flexibility in the choice of weights, investors’

various behavioral biases can be represented quantitatively. Specifically, in (A), (B),

and (C) below, we spell out three weight assignment schemes to characterize the

conservative and/or representative heuristics.

(A) Investors using a conservative heuristic assign weights as: 0 ≤ ω1 < ω2 < · · · <
ωn0 = ωn0+1 = · · · = 1 for some integers n0 ≥ 1,

(B) investors using a representative heuristic assign weights as: 1 = ω1 = ω2 = · · · =
ωm0 > ωm0+1 > ωm0+2 > · · · ≥ 0 where m0 is a positive integer, and

(C) investors using both conservative and representative heuristics assign weights as:

0 ≤ ω1 < ω2 < · · · < ωn0 = ωn0+1 = · · · = ωm0 = 1 > ωm0+1 > · · · ≥ 0 for

1 ≤ n0 ≤ m0.

Note that the weight assignment scheme of ω1 < ω2 < · · · < ωn0 = 1 is consistent with

the psychological literature on conservative heuristics as reviewed in the introduction.

Basically, people are overconservative in that they underweigh recent information and

overweigh prior information. The parameter n0 reflects the conservative heuristic that

most recent n0 observations are underweighted. If Edwards (1968) is right in that it

takes two to five observations to do one observation’s worth of work in inducing a

subject to change his/her opinions, ω1, ω2 , · · · , ωn0 can be substantially less than 1 for

n0 ≤ 5 . The smaller are the weights, the more conservative are the investors. Thus,

the magnitudes of the weights ω1, ω2 , · · · , ωn0 can be used to measure the degree

of conservatism. The evidence suggests that underreaction reflects the uncertainty

regarding possible structural change in the data and a lack of knowledge that a change

occurred. This will result in a failure to fully incorporate the price implications of

this change into the estimation of the valuation-relevant parameters.

The weight assignment in Scheme B is consistent with the psychological literature

on the representative heuristic, as reviewed in the introduction. The representative

heuristic in behavioral finance is often described as the tendency of experimental sub-

jects to overweigh recent clusters of observations and underweigh older observations

that would otherwise moderate beliefs. Heavy weights on recent data could be a re-

action to concern with structural changes. Whenever such changes occur, the weights

placed on recent data will be very high, or similarly, the weights placed on the older

data will be very low, which will result in a pattern of overreaction caused by the

representative heuristic. The representative heuristic is characterized by a parameter

m0 showing that the investor underweight the observations beyond the most recent
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m0 data points. Here, the parameter m0 arises from the “law of small numbers,” (see

Tversky and Kahneman 1971), in the mind of the investor. Because of their represen-

tative heuristic, investors have the tendency to treat a small sample size, like m0, as

if it were large enough to represent the whole population. Consequently, they assign

weights much smaller than 1 for observations beyond the most recent m0 observations.

Put it differently, the weights ωm0+1, ωm0+2, · · · are assigned to be much smaller than

1. Furthermore, we assume here that
∑∞

i=m0+1 ωi is infinite, (i.e.,
∑∞

i=m0+1 ωi = ∞),

because if the sum equals to infinity, the law of large numbers is still at work. For

a genuine belief in the law of small numbers, the sum should be finite, meaning that

the small sample of the most recent observations can play an overwhelming role in

the inference process.

Our model formulation asserts that investors are influenced by the conservative

and representativeness heuristics simultaneously. This is different from the regime

switching formulation in BSV in which investors are under the influence of one heuris-

tic and then suddenly shift to another regime of being influenced by another heuristic.

In other words, conservatism and representativeness are not mutually exclusive and

investors can be simultaneously influenced by both heuristics at any point in time.

When the investor is under the influence of both heuristics, the model has two param-

eters n0 and m0 as described above. Here, conservatism is reflected by the existence

of n0 > 0 and the smallness of the sum ω1 +ω2 + · · ·+ωn0−1, and representativeness is

reflected by the existence of m0 < ∞ and the smallness of the sum ωm0+1+ωm0+2+· · · .
Notice that a type (C) investors degenerate into a type (A) investors when m0 = ∞
and degenerate into a type (B) investors when n0 = 0. Also when m0 = ∞ and

n0 = 0, all weights are equal to 1 and the investor has no behavioral bias. In this

sense, the third type of investors embraces all of the other types. Therefore, it suffices

to consider investors of the third type.

In general, the k-period conditional expected absolute return, Rt,t+k is given by

the conditional expectation of Pt+k −Pt given the current observable information Ωt,

where Pt is Ωt-measurable. Then we have the following corollary for the value of

Rt,t+k at time t.

Corollary 1 (Expected Returns in the pseudo-Bayesian approach)

Under the pseudo-Bayesian approach with a vague prior and an incorrect likelihood

L(µ) as stated in (7),

1. if the random walk {Nt} follows (1), then the expected k-period return, Rt,t+k,

from time t to time t + k under the rational expectation pricing model in (2) is
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given by:

Rt,t+k = Et(Pt+k − Pt)

=
Nt

r(1 + r)k
+

[(1 + k)r + 1]dt

r2(1 + r)k
− Pt . (13)

2. if the random walk {Nt} follows (3), then the expected k-period return, Rt,t+k,

from time t to time t + k under the rational expectation pricing model in (2) is

given by:

Rt,t+k = Et(Pt+k − Pt)

= Et(Pt+k)− Pt , (14)

where Et(Pt+k) is defined in (11).

3. if the random walk {Nt} follows (4), then the expected k-period return, Rt,t+k,

from time t to time t + k under the rational expectation pricing model in (2) is

given by:

Rt,t+k = Et(Pt+k − Pt)

= Et(Pt+k)− Pt , (15)

where Et(Pt+k) is defined in (12).

5 CONCLUDING REMARKS

Barberis, Shleifer and Vishny (1998) and others have developed Bayesian models to

explain investors’ behavioral biases using conservative heuristics and representative

heuristics in making decisions under uncertainty. To extend their work, Lam, Liu, and

Wong (2010) posited that some investors possess conservative and/or representative

heuristics that lead them to underweigh recent observations and/or underweigh past

observations of the earnings shocks of corporations. They introduced a quantitative

pseudo-Bayesian approach to model such investors’ behavior. Compared with other

behavioral models where investors possess either conservative heuristics at one time

or representative heuristics at another time but not both at the same time, this spec-

ification captures the essential feature of either conservative or representative biases

in a parsimonious model that allows investors to possess conservative or representa-

tive heuristics at the same time. Our current paper extended their work further by
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developing properties for stock returns by incorporating the impacts of a financial

crisis and recovery from the crisis, which could then be used to study some market

anomalies including short-term underreaction, long-term overreaction, and the excess

volatility during the crisis.

Understanding investors’ behavior will be useful in making decisions about in-

vestments. The information on companies, (Thompson and Wong, 1991, 1996), the

economic and financial environment (Broll, Wahl and Wong, 2006; Fong, Lean, and

Wong, 2008), technical analysis (Wong, Chew, and Sikorski, 2001; Wong, Manzur,

and Chew, 2003; Kung and Wong, 2009) could be used to make better investment

decisions. Academic researchers and practitioners could incorporate the theory devel-

oped in this paper with the mean-variance rule (Wong, 2007; Wong and Ma, 2008; Bai,

Wang, and Wong, 2011), CAPM statistics (Leung and Wong, 2008), VaR rule (Ma

and Wong, 2010), portfolio optimization (Bai, Liu, and Wong, 2009, 2011; Egozcue

and Wong, 2010), or other advanced econometric techniques (Wong and Miller, 1990;

Li and Lam, 1995; So, Li and Lam, 1997; So, Lam and Li, 1998; Tiku, Wong, Vaughan,

and Bian, 2000; Wong and Bian, 2005; Bai, Wong, and Zhang, 2010; Bai, Li, Liu,

and Wong, 2011) to make better investment decisions. Another extension to improve

investment decision-making is to study behaviors of different types of investors (Wong

and Li, 1999; Li and Wong, 1999; Wong and Chan, 2008) or to incorporate stochastic

dominance criteria (Gasbarro, Wong and Zumwalt, 2007; Post, 2003; Wong, Phoon,

and Lean, 2008) to study investors’ conservative and representative heuristics. For

example, Fong, Wong, and Lean (2005), Wong, Thompson, Wei, and Chow (2006),

and Sriboonchitta, Wong, Dhompongsa, and Nguyen, (2009) find that it is winners

dominate losers in the sense of the second order ascending stochastic dominance while

losers dominate winners in the sense of the second order descending stochastic domi-

nance, inferring that risk averters will prefer to invest in winners whereas risk seekers

will prefer to invest in losers. This finding could explain why the momentum profit

could still exist after discovery.

In addition, we note that Lam, Liu, and Wong (2008) have developed three new

test statistics, including two ordered tests and a rank correlation test, and apply them

to examining the under- and overreaction hypothesis in global markets consisting of 25

national market indices. They find evidence to support the existence of the magnitude

effect in the under- and overreaction hypothesis. Their findings could also support the

first part of the underreaction and overreaction hypothesis in DeBondt and Thaler

(1985), Jegadeesh and Titman (1993), and others that there exist momentum profits

in short periods and contrarian profits in long periods.
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Appendix

Proof of Proposition 1:

Since the exact likelihood for the observation yi is given by L(yi | µ) ∝ e
− (µ−yi)

2

2σ2
y . The

pseudo likelihood in (7) becomes

Lω(µ) ∝ L(y1 | µ)ωt · · ·L(yt | µ)ω1 ∝ e
−ωt

(µ−y1)2

2σ2
y · · · e−ω1

(µ−yt)
2

2σ2
y ∝ e

−
(µ−ωty1+···+ω1yt

ω1+···+ωt
)2

2(
σ2

y
ω1+···+ωt

) .

(16)

One could easily obtain the posterior mean and posterior variance as stated in (1) by

maximizing the likelihood function of µ as stated in (16).

Readers may refer to Lam, Liu, and Wong (2010) for the proof of Pt when the

earning announcements Nt follow the random walk model stated in (1).

Let at = max{dt0 − te , 0}, bt = max{dt1 − te , 0}, ct = max{dt2 − te , 0} (at ≤
bt ≤ ct), and d = Et[yt+k], we have the following results:

z∑
i=j

(
1

1 + r

)i

=
1

r

[(
1

1 + r

)j−1

−
(

1

1 + r

)z
]

,

z∑
i=1

i

(1 + r)i
=

1

r2(1 + r)z

[
(1 + r)z+1 − (z + 1)r − 1

]
, and

z∑
i=j

i

(1 + r)i
=

1

r2(1 + r)z
[(1 + r)z−j+1(jr + 1)− (z + 1)r − 1] ,
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for t0 < t0 + 1 ≤ t1 < t1 + 1 ≤ t2.

Now we turn to derive the price Pt+k under the rational expectations pricing model
in (2) with the earning announcements Nt follow the random walk with drifts model
stated in (4).
For t < t + k < t0, we have

Et

[
Pt+k

(1 + r)k

]

= Et

[
Nt+k+1

(r + 1)k+1
+

Nt+k+2

(r + 1)k+2
+ · · ·

]
(17)

= Et

[
Nt+k+1

(r + 1)k+1
+

Nt+k+2

(r + 1)k+2
+ · · ·+ Nt+at−1

(r + 1)at−1

]
+

[
Nt+at

(r + 1)at
+ · · ·

]

= Et

[
Nt +

∑k+1
i=1 yt+i

(r + 1)k+1
+

Nt +
∑k+2

i=1 yt+i

(r + 1)k+2
+ · · ·+ Nt +

∑at−1
i=1 yt+i

(r + 1)at−1

]
+

Et

[
Nt +

∑at
i=1 yt+i + δ0

(r + 1)at
+

Nt +
∑at+1

i=1 yt+i + 2δ0

(r + 1)at+1
+ · · ·+ Nt +

∑v
i=1 yt+i + (v − at + 1)δ0

(r + 1)v
+ · · ·+

]

=

[
Nt

(r + 1)k+1
+

Nt

(r + 1)k+2
+ · · ·

]
+

[
(k + 1)dt

(r + 1)k+1
+

(k + 2)dt

(r + 1)k+2
+ · · ·

]
+

[
δ0

(r + 1)at
+

2δ0

(r + 1)at+1
+ · · ·+ (v − at + 1)δ0

(r + 1)v
+ · · ·+

]

=
Nt

r(1 + r)k
+

[(1 + k)r + 1]dt

r2(1 + r)k
+

δ0

r2(1 + r)at−2
.

For t < t0 ≤ t + k, from (17) we get

Et

[
Pt+k

(1 + r)k

]

= Et

[
Nt+at−1 +

∑k+1
i=at

yi+t + (k + 1− at + 1)δ0

(r + 1)k+1
+

Nt+at−1 +
∑k+2

i=at
yi+t + (k + 2− at + 1)δ0

(r + 1)k+2
+ · · ·

]

= Et

[
Nt+at−1 +

∑k+1
i=1 yi+t + (k + 2− at)δ0

(r + 1)k+1
+

Nt+at−1 +
∑k+2

i=1 yi+t + (k + 3− at)δ0

(r + 1)k+2
+ · · ·

]

= Nt

(
1

(1 + r)k+1
+

1

(1 + r)k+2
+ · · ·

)
+ dt

(
(k + 1)

(1 + r)k+1
+

(k + 2)

(1 + r)k+2
+ · · ·

)
+

(
(k + 2− at)

(1 + r)k+1
+

(k + 3− at)

(1 + r)k+2
+ · · ·

)

= Nt

(
1

r(1 + r)k

)
+ dt

(
(k + 1)r + 1

(1 + r)kr2

)
+ δ0(1− at)

1

r2

(
[(k + 2− at)r + 1](1 + r)−(k+2−at)+1

)

=
Nt

r(1 + r)k
+

[(k + 1)r + 1]dt

(1 + r)kr2
+

δ0(1− at)[(k + 2− at)r + 1]

r2(1 + r)k+1−at
.
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For t0 ≤ t < t + k, from (17) we obtain

Et

[
Pt+k

(1 + r)k

]

= Et

[
Nt +

∑k+1
i=1 yi+t + (k + 1)δ0

(r + 1)k+1
+

Nt +
∑k+2

i=1 yi+t + (k + 2)δ0

(r + 1)k+2
+ · · ·

]

=
Nt

r(1 + r)k
+

[(1 + k)r + 1](dt + δ0)

r2(1 + r)k
.

Similarly, one could easily obtain the price Pt when the earning announcements Nt

follow the random walk with drift model stated in (3).
For t < t + k < t0, from (17) one could easily get

Et

[
Pt+k

(1 + r)k

]

= Et

[
Nt+k+1

(r + 1)k+1
+

Nt+k+2

(r + 1)k+2
+ · · · +

Nt+at−1

(r + 1)at−1

]
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[
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(r + 1)at
+ · · · +

Nt+bt−1

(r + 1)bt−1

]
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+ · · · +
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]
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]
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+ · · · +
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
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

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· · ·


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= Et

[
Nt+k+1
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+ · · · +
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]
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
 Nt+at−1 + yt+at

(r + 1)at
+ · · · +

Nt+at−1 +
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yt+i

(r + 1)bt−1


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
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
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
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· · ·


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[(
1

(r + 1)at
+ · · · + (bt − at − 1)
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)
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(
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+

1
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+ · · ·

)]
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(
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+

dt[(k + 1)r + 1]
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+
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(r + 1)
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]

+
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)
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For t < t0 ≤ t + k < t1, from (18) then

Et

[
Pt+k

(1 + r)k

]

= Et


 Nt +

∑k+1
i=1 yt+i

(r + 1)k+1
+ · · · + Nt +
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(r + 1)at−1


 + Et
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+ · · · + Nt +
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(r + 1)bt−1




+Et


 Nt +

∑bt
i=1 yt+i

(r + 1)bt
+

Nt +
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+ · · · + Nt +

∑ct−1
i=1 yt+i

(r + 1)ct−1


 + Et
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+
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1
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+ · · ·
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+
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(r + 1)ct−2r2

(
(r + 1)
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)

=
Nt

r(1 + r)k
+

dt[(k + 1)r + 1]

r2(1 + r)k
+

δ0

r2(1 + r)bt−2

[
(r + 1)

bt−k−2
([k + 2− at]r + 1)− 1

]
+

δ1

(r + 1)ct−2r2

(
(r + 1)

ct−bt − 1
)

For t < t0 and t1 ≤ t + k < t2, from (18) we get

Et

[
Pt+k

(1 + r)k

]

= Et




Nt+bt−1 +
∑k+1

i=bt
yt+i + (k + 2− bt)δ1

(r + 1)k+1
+ · · · +

Nt+bt−1 +
∑ct−1

i=bt
yt+i + (ct − bt)δ1

(r + 1)ct−1




+Et




Nt+bt−1 +
∑ct

i=bt
yt+i + δ1(ct − bt)

(r + 1)ct
+

Nt+bt−1 +
∑ct+1

i=bt
yt+i + δ1(ct − bt)

(r + 1)ct+1
· · ·




= Et


 Nt+at−1 +

∑k+1
i=at

yt+i + (bt − at)δ0

(r + 1)k+1
+ · · · +

Nt+at−1 +
∑ct−1

i=at
yt+i + (bt − at)δ0

(r + 1)ct−1




+Et


 Nt+at−1 +

∑ct
i=at

yt+i + δ0(bt − at)

(r + 1)ct
+

Nt+at−1 +
∑ct+1

i=at
yt+i + δ0(bt − at)

(r + 1)ct+1
+ · · ·




+δ1

[(
k + 2− bt

(r + 1)k+1
+ · · · + (ct − bt − 1)

(r + 1)ct−2

)
+ (ct − bt)

(
1

(r + 1)ct−1
+

1

(r + 1)ct
+ · · ·

)]

=
Nt + (bt − at)δ0

r(1 + r)k
+

dt[(k + 1)r + 1]

r2(1 + r)k
+

δ1

r2(1 + r)ct−2

[
(r + 1)

ct−k−2
([k + 2− bt]r + 1)− 1

]

For t < t0 and t2 ≤ t + k, from (18) then

Et

[
Pt+k

(1 + r)k

]

= Et




Nt+bt−1 +
∑k+1

i=bt
yt+i + (ct − bt)δ1

(r + 1)k+1
+

Nt+bt−1 +
∑k+2

i=bt
yt+i + (ct − bt)δ1

(r + 1)k+2
+ · · ·




= Et


 Nt+at−1 +

∑k+1
i=at

yt+i + (ct − bt)δ1 + (bt − at)δ0

(r + 1)k+1
+

Nt+at−1 +
∑k+2

i=at
yt+i + (ct − bt)δ1 + (bt − at)δ0

(r + 1)k+2
+ · · ·




=
Nt + (bt − at)δ0 + (ct − bt)δ1

r(1 + r)k
+

dt[(k + 1)r + 1]

r2(1 + r)k
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For t0 ≤ t < t + k < t1, from (18) one could easily obtain

Et

[
Pt+k

(1 + r)k

]

+Et




Nt+bt−1 +
∑ct

i=bt
yt+i + δ1(ct − bt)

(r + 1)ct
+

Nt+bt−1 +
∑ct+1

i=bt
yt+i + δ1(ct − bt)

(r + 1)ct+1
· · ·




= Et


 Nt +

∑k+1
i=1 yt+i + δ0(k + 1)

(r + 1)k+1
+ · · · + Nt +

∑bt−1
i=1 yt+i + δ0(bt − 1)

(r + 1)bt−1




+Et


 Nt +

∑bt
i=1 yt+i + δ0(bt − 1)

(r + 1)bt
+

Nt +
∑bt+1

i=1 yt+i + δ0(bt − 1)

(r + 1)bt+1
+ · · · + Nt +

∑ct−1
i=1 yt+i + (bt − 1)δ0

(r + 1)ct−1




+Et


 Nt +

∑ct
i=1 yt+i + δ0(bt − 1)

(r + 1)ct
+

Nt +
∑ct+1

i=1 yt+i + δ0(bt − 1)

(r + 1)ct+1
· · ·




+δ1
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1
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+ · · · + (ct − bt − 1)
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(
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+

1
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+ · · ·
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=
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+
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(
(r + 1)
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)

For t0 ≤ t < t1 ≤ t + k < t2, from (18) then

Et
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Pt+k

(1 + r)k

]
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
 Nt+bt−1 +

∑k
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(r + 1)k+1
+ · · · +
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∑ct−1
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(r + 1)ct−1




+Et




Nt+bt−1 +
∑ct

i=bt
yt+i + δ1(ct − bt)

(r + 1)ct
+

Nt+bt−1 +
∑ct+1

i=bt
yt+i + δ1(ct − bt)

(r + 1)ct+1
· · ·




= Et


 Nt +

∑k+1
i=1 yt+i + δ0(bt − 1)

(r + 1)k+1
+ · · · + Nt +

∑ct−1
i=1 yt+i + (bt − 1)δ0

(r + 1)ct−1




+Et


 Nt +

∑ct
i=1 yt+i + δ0(bt − 1)

(r + 1)ct
+

Nt +
∑ct+1

i=1 yt+i + δ0(bt − 1)

(r + 1)ct+1
· · ·




+δ1

[(
k − bt

(r + 1)k+1
+ · · · + (ct − bt − 1)

(r + 1)ct−2

)
+ (ct − bt)

(
1

(r + 1)ct−1
+

1

(r + 1)ct
+ · · ·

)]

=
Nt + δ0(bt − 1)

r(1 + r)k
+

dt[(k + 1)r + 1]

r2(1 + r)k
+

δ1

(r + 1)ct−2r2

(
(r + 1)

ct−k−2
([k + 2− bt]r + 1)− 1

)

For t0 ≤ t < t1, t2 ≤ t + k, from (17) we have

Et

[
Pt+k

(1 + r)k

]

= Et


 Nt+ct−1 +

∑k+1
i=ct

yt+i

(r + 1)k+1
+

Nt+ct−1 +
∑k+2

i=ct
yt+i

(r + 1)k+2
· · ·




=
Nt + δ0(bt − 1) + δ1(ct − bt)

r(1 + r)k
+

dt[(k + 1)r + 1]

r2(1 + r)k
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For t1 ≤ t < t + k < t2, from (18) one could get

Et

[
Pt+k

(1 + r)k

]

= Et

[
Nt+k+1

(r + 1)k+1
+ · · · +

Nt+ct−1

(r + 1)ct−1

]
+ Et


 Nt+ct−1 + yt+ct

(r + 1)ct
+

Nt+ct−1 +
∑ct+1

i=ct
yt+i

(r + 1)ct+1
· · ·




= Et


 Nt +

∑k+1
i=1 yt+i + (k + 1)δ1

(r + 1)k+1
+ · · · + Nt +

∑ct−1
i=1 yt+i + (ct − 1)δ1

(r + 1)ct−1




+Et


 Nt +

∑ct
i=1 yt+i + δ1(ct − 1)

(r + 1)ct
+

Nt +
∑ct+1

i=1 yt+i + δ1(ct − 1)

(r + 1)ct+1
· · ·




=
Nt

r(1 + r)k
+

dt[(k + 1)r + 1]

r2(1 + r)k
+

δ1

(r + 1)ct−2r2

(
(r + 1)

ct−2−k
([k + 1]r + 1)− 1

)

For t1 ≤ t < t2 ≤ t + k, from (18) then

Et

[
Pt+k

(1 + r)k

]
= Et


 Nt+ct−1 +

∑k+1
i=ct

yt+ct

(r + 1)k+1
+

Nt+ct−1 +
∑k+2

i=ct
yt+ct

(r + 1)k+2
+ · · ·




=
Nt + δ1(ct − 1)

r(1 + r)k
+

dt[(k + 1)r + 1]

r2(1 + r)k

For t2 ≤ t < t + k, from (17) we obtain

Et

[
Pt+k

(1 + r)k

]
= Et


 Nt +

∑k+1
i=1 yt+ct

(r + 1)k+1
+

Nt +
∑k+2

i=1 yt+ct

(r + 1)k+2
+ · · ·




=
Nt

r(1 + r)k
+

dt[(k + 1)r + 1]

r2(1 + r)k

Thus, the assertions hold.
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