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ABSTRACT 

This paper considers the multiperiod hedging decision in a framework of mean-reverting spot 

prices and unbiased futures markets. The task is to determine the optimal hedging path, i.e., the 

sequence of positions in futures contracts with the objective of minimizing the variance of an 

uncertain future cash flow. The model is used to illustrate both hedging using a matched-

maturity futures contract and hedging by rolling over a series of nearby futures contracts. In each 

case, the paper derives the conditions under which a single period (myopic) strategy would be 

optimal as opposed to a dynamic multiperiod strategy. The results suggest that greater the market 

power of the hedging entity, closer the optimal strategy is to a myopic hedge. The paper also 

highlights the difference in the optimal hedging path when hedging is based on matched-maturity 

as opposed to nearby contracts. 
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1. INTRODUCTION  
 

Consider the hedging problem of a firm facing an uncertain future cash flow at a certain future 

time, T. The uncertain future cash flow (referred to as the hedged item) may arise from a fixed 

cash or spot position or, more generally, from revenues/costs/profits in a certain future period 

referred to as the terminal or target period. The hedging horizon (i.e. the time between now and 

the future terminal date T) is broken up into a series of discrete intervals, and the decision-

maker's task is to choose futures positions for each period so as to minimize the variance of the 

future cash flow. For example, the model may be applied to a commodity trader hedging a 

forward commitment or a firm hedging future input costs.  

In a classic, widely-cited study, Howard and D’Antonio (1991), henceforth referred to as 

HD, derived the optimal hedging strategy in a framework of mean-reverting spot returns and 

unbiased futures markets. Their main result is that the optimal hedging strategy depends crucially 

on the rate of mean reversion of the spot process (i.e., the price process of the hedged item, also 

referred to as the “hedged process”). The current study extends the analysis by explicitly 

allowing for mean reversion in the price process of the underlying of the futures contract as well 

(referred to as the “hedging process”). In this extended framework, the HD model may be 

viewed as a special case in which hedging is carried out by rolling over a series of nearby 

contracts (“stack and roll” hedging, or just “stack” hedging). The current study considers 

hedging based on matched-maturity futures contracts (i.e., contracts maturing at the same time as 

the occurrence of the cash flow being hedged) as well as hedging based on nearby futures 

contracts. It is seen that if hedging is based on matched-maturity contracts, the optimal hedging 

strategy depends not so much on the absolute mean reversion rate of the hedged process (as in 

the case of hedging using nearby contracts), but rather on the relative mean reversion rates of the 

hedged and hedging processes.  

The main contributions of the current paper are as follows. A simple, but empirically 

relevant setting of mean-reverting prices is used to illustrate matched-maturity hedging and 

compare it to stack hedging. However, the focus is not on determining if one is better than the 

other. Rather, the objective is to determine the optimal hedging path in each case. Possible 
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multiperiod hedging paths can be grouped into three categories: (i) a static multiperiod hedge, 

wherein the hedge position is taken at the start of the hedging horizon and then kept unchanged 

until the terminal period, (ii) a myopic or single-period hedge, wherein the hedge position is 

initiated only at the start of the terminal period, and (iii) a dynamic hedge, wherein hedging is 

initiated at the start of the hedging horizon and updated each period. The focus is on the 

conditions under which each of these categories is optimal. It is shown that, in general, the 

optimal hedging path or pattern can be very different depending on whether hedging is carried 

out using matched-maturity or nearby futures contracts. The exception to this is when futures 

prices follow a random walk. 

In addition to HD, another study to which the current paper has a strong relation is Myers 

and Hanson (1996), hereafter referred to as MH. Their paper deals with the same problem of 

hedging a fixed cash position in the presence of basis risk. They show that provided futures 

prices evolve as a martingale, it is possible to derive an optimal dynamic hedging strategy that is 

independent of risk preferences under fairly general assumptions about the relationship between 

spot and futures prices. As will be elaborated upon later, the current paper may be viewed as a 

special case of the MH model. As a result, the variance-minimizing hedge derived in the current 

study is also the expected-utility maximizing hedge. 

The next section contains a review of the literature, the following section develops the 

model and discusses implications and the final section concludes with a brief summary of the 

main results. 

2, LITERATURE REVIEW 

Several studies have examined the hedging behavior of firms facing price or exchange rate 

uncertainty in input/output markets. A seminal study by Johnson (1960) analyzed the hedging 

decision as an optimal portfolio problem and derived the minimum variance hedge ratio. While 

Sandmo (1971) showed that a firm’s output decision would be affected by price uncertainty, 

Danthine (1978) and Holthausen (1979) showed that in the presence of a forward market to 

hedge away this uncertainty, the output decision would be independent of this risk and the firm’s 

risk preferences. Extensions and refinements were made by Losq (1982), Fishelson (1984) and 

Zilcha and Broll (1992) among many others. De Meza and von Ungern Sternberg (1980) derived 
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the result that a monopolistic firm is more likely to hedge input risk than a competitive firm as 

volatile input prices will have a bigger impact on the profits of the former. Koppenhaver and 

Swidler (1996) investigated how the degree of market power enjoyed by a firm in the output 

market affects the extent to which the firm will hedge its input price risk. They concluded that 

lower the market power of the firm, more the importance of hedging. These studies are set in a 

single-period framework and focus on the relationship between hedging strategies and output 

decisions in the context of specific market structures. The decision-maker’s objective is typically 

assumed to be maximizing expected utility or minimizing the variance of end-of-period wealth. 

Examples of discrete-time, multi-period models investigating the dependency between the 

production and the hedging decision include Zilcha and Eldor (1991) and Donoso (1995). 

Among other things, these studies show that the firm will overhedge when current shocks can 

adversely affect future cash flows. 

Another set of studies focuses on the optimal hedging strategy for a trader or producer 

who will liquidate a non-tradable cash position at a certain future time, T. The hedging horizon 

(i.e. the time between now and the future terminal date T) is broken up into a series of discrete 

intervals, and the decision-maker's task is to choose futures positions for each period so as to 

maximize expected utility of end-of-period wealth or minimize the variance of end-of-horizon 

wealth/cash flow. Some of these models ignore basis risk (Anderson and Danthine, 1983) and 

others assume negative exponential utility with a joint normal distribution for cash and futures 

price changes (Karp, 1987, Martinez and Zering, 1992, and Vukina and Anderson, 1993). A few 

studies have tackled the optimal dynamic hedging problem in a discrete-time setting without 

making restrictive assumptions either about risk preferences or the distribution of prices. Notable 

studies of this kind include HD and MH, mentioned earlier in the introduction and discussed in 

more detail in the next section. The interested reader is referred to Low, Muthuswamy, Sakar and 

Terry (2002) for a more extensive review. 

While much of the discrete-time literature is based on expected utility maximization or 

variance minimization, some studies have explored alternative hedging objectives such as regret 

minimization and approaches based on the mean-extended Gini coefficient and the semivariance. 

Chen, Lee and Shrestha (2003) provide a fairly comprehensive review of these alternative 

theoretical approaches to hedging. Yet another branch is concerned with empirical testing of 
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alternative estimation models and techniques, such as Ordinary Least Squares Regression, 

Cointegration and Error Correction models, Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) models and stochastic volatility models. The interested reader is 

referred to Lien and Tse (2002) for an excellent review of these various econometric approaches 

and estimation methods. Some noteworthy recent empirical studies include Hung and Lee 

(2007), who focus on minimizing down-side risk in the presence of volatility clustering and price 

jumps, Power and Vedenov (2008), who estimate a copula-GARCH model, Huang, Pan and Lo 

(2010), who compare a duration-dependent Markov-switching vector autoregression approach 

with GARCH models, Chan (2010), who employs a GARCH model that is modified to allow for 

jumps, Cao, Harris and Shen (2010), who use a non-parametric approach to estimate hedge ratios 

designed to minimize Value-at-Risk, and Chen and Tsay (2011), who use a novel approach to 

estimate a Markov regime-switching, Autoregressive Moving Average model. 

There is also a vast literature that investigates optimal hedging in continuous-time. Early 

classics include Breeden (1984), Adler and Detemple (1988), Duffie and Jackson (1990) and 

Duffie and Richardson (1991). Breeden (1984) provides the dynamic optimal hedging strategy in 

terms of the value function for an agent maximizing expected utility of intertemporal 

consumption, while Adler and Detemple (1988) consider the problem of an agent hedging a non-

traded spot position and maximizing logarithmic utility of terminal wealth, and derive an 

explicit, analytical solution for the case in which markets are complete. Duffie and Jackson 

(1990) and Duffie and Richardson (1991) consider the optimal hedging problem in a setting in 

which prices follow Geometric Brownian Motion (GBM) and derive explicit solutions for 

various mean-variance hedging objectives. Among recent studies, Basak and Chabakauri (2008) 

provide a good summary of this literature and also provide explicit, tractable solutions to the 

dynamic hedging problem of a non-tradable asset. Ankirchner and Heyne (2012) solve the 

problem for the case of stochastic correlation between the process being hedged and the hedging 

instrument, and Ankirchner, Dimitroff, Heyne and Pigorsch (2012), the case in which the (log) 

spread between the hedged and hedging processes is stationary (which is not the case when the 

two processes follow GBM). 
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As is apparent from the above, there is an extensive literature on dynamic hedging using 

futures. Below are described some recent studies (other than HD and MH) to which the current 

study is closely related and a summary of how the current study complements these prior studies. 

Hilliard (1999) uses a continuous time setting in which prices follow Geometric 

Brownian motion to derive optimal hedging results using a “stack and roll” strategy. Neuberger 

(1999) studies a similar problem, but with a focus on “strip” hedges (i.e., hedging using futures 

contracts of multiple maturities). The model is based on assumptions about the cross-sectional 

character of futures prices of different maturities rather than assumptions about their time-series 

dynamics. In both these studies, the future commitment that is being hedged is far enough in the 

future so that hedging using a matched-maturity futures contract is either not possible or not 

economical. In contrast, the current study explicitly considers hedging based on matched-

maturity contracts and is set in a different setting of discrete-time, autoregressive prices. 

Another strand of research extends from a noteworthy study by Lien and Luo (1993) in 

which they derive the optimal multiperiod hedging strategy and apply it in a setting of 

cointegrated spot and futures prices. Their empirical results clearly show the superiority of 

multiperiod hedging over a myopic (single-period) strategy. Building on this work, Low et al 

(2002) study multiperiod hedging in a setting in which the futures price follows a cost of carry 

model. This allows them to capture the effect of the maturity of the futures contract on the spot-

futures basis. Their empirical tests show that their “dynamic cost-of-carry hedge” outperforms 

other strategies such as the conventional (myopic) hedge, the cointegrated price hedge of Lien 

and Luo (1993), and the GARCH hedge of Kroner and Sultan (1993), although a static, cost-of-

carry hedge is found to perform slightly better. Lien and Shaffer (2002) use a three period setting 

to compare the effectiveness of “strip” hedging with “stack” hedging in managing the risk of a 

forward commitment. They use a Vector Autoregressive framework to model spot and futures 

prices and show that “strip” hedging outperforms “stack” hedging especially when forward 

prices are subject to multiple risk factors. The current study is similar to these studies in that it 

investigates the same multiperiod hedging problem. However, it differs from these studies in 

some important respects. Firstly, the current study is set in a framework of mean-reverting rather 

than non-stationary prices. It is, of course, true that price processes of many assets – especially 

financial assets - have been determined to be non-stationary, as noted in the above studies. 
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However, as concluded by Bessembinder, Coughenour, Smoller, and Seguin (1995) and noted in 

Schwartz (1997), a mean reverting process is a good description of the price dynamics of many 

commodities. Secondly, the main focus of the current study is different. Unlike these prior 

studies, the current paper does not attempt to assess the empirical performance of alternative 

hedging approaches. Instead, using a simple, but empirically useful framework, the paper makes 

clear (i) the connection between the relative rates of mean reversion of hedged and hedging 

processes on the one hand and the optimal multiperiod hedging strategy on the other, (ii) the 

conditions under which a single period (myopic) strategy, a static multiperiod strategy and a 

dynamic multiperiod strategy would each be optimal in this framework, and (iii) the difference in 

the optimal hedging path when hedging is based on matched-maturity as opposed to nearby 

contracts. 

3. MODEL 

 
Suppose that the hedger has a fixed cash position, x. The hedger will liquidate this position at 

terminal time T and faces the problem that the price of the hedged item as of time T is uncertain. 

Suppose that the price process of the hedged item (the “hedged process”) is given by: 

    tttt uppp   ))(1( 11      (1) 

Above, pt is the value of the process in period t. If φ = 1, then pt follows a random walk. If φ is 

strictly between 0 and 1, µ is the long run mean of pt and (1-φ) is the speed of adjustment of pt to 

the long run mean. If φ = 0, then pt is independently and identically distributed (i.i.d.) each 

period. Thus, higher the value of φ, lower is the degree of mean reversion. Similar to the model 

in HD, it is assumed that ut is i.i.d. with variance 2
u . The process for pt may be equivalently 

expressed as 

    ttt upp  1)1(       (2) 

Similarly, let yt denote the price process of the underlying of the futures contract (the “hedging 

process”). 

    tttt yyy    ))(1( 11     (3) 

Above, yt is the value of the process in period t, κ is the long run mean, and (1-) is the rate of 

mean-reversion. ξt is assumed to be i.i.d. with variance 2
 . Further, ut and ξt are assumed to be 
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contemporaneously correlated with covariance  u , but all noncontemporaneous covariances are 

assumed to be zero.  

Let T
kTf   denote the futures price in period T-k of the contract that matures in period T. 

Similar to HD and MH, the current study assumes unbiased futures prices.1 This assumption can 

be stated as follows: 

     )( TkT
T

kT yEf    for k ≥ 0   (4) 

where Et is the expectations operator conditional on information available in period t.  

Take the hedger’s objective to be to minimize the variance of the cash flow at time T. (As 

discussed subsequently, the variance-minimizing hedge is also the strategy that maximizes the 

expected utility for any increasing, concave utility function.) 

 

3.1 Hedging with Matched-Maturity contracts 

The following assumes that the hedger uses matched-maturity futures contracts (i.e., contracts 

maturing at time T). The case of hedging with nearby futures contracts is considered later. 

Suppose that the earliest the hedger may initiate hedging is N periods prior to T. (This may be 

due to non-availability or lack of liquidity of longer-term futures contracts.) For 1 ≤ k ≤ N, let bT-

k denote the hedge ratio (i.e., futures position per unit of the spot position). 

 

The post-hedge cash flow in period T is given by 

   xprffxbC
N

k
T

kT
kT

T
kTkTT 




 

1

1
1 )1)((     (5) 

Above, it is assumed that futures positions are marked-to-market each period, and r is the 

constant, periodical interest rate used to compound intermediate, mark-to-market cash flows.  

 

As in HD, the optimal hedge ratios can now be derived by working backwards from the 

terminal period. As derived in Appendix A, the optimal hedge ratio at time T-k is given by 

   
2

1

1
*
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1






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
 u

k

kkT r
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 
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




   for 1 ≤ k ≤ N            (6) 
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The optimal hedging strategy derived above has several interesting features and 

implications. First, note that one period before the terminal date, the hedge ratio reduces to the 

standard single-period optimal hedge ratio, 2
uu   , derived by Ederington (1979). Second, the 

hedging strategy derived above is dynamically optimal. Each period's hedge position is chosen 

after taking into account optimal hedging behavior in the future. Third, the model can be used to 

not only hedge a long or short cash position, but can also be readily adapted to hedging a future 

cash flow (such as a future period’s revenues or costs or operating cash flows) by letting the 

hedged process, p, denote the relevant cash flow, setting the non-stochastic cash position x equal 

to unity, and interpreting bt as the futures position rather than the hedge ratio. Fourth, the model 

can be (obviously) used for hedging (either a fixed cash position or a future cash flow) not just 

on a one-time basis, but on an on-going basis. The optimal hedging strategy can then be viewed 

not just as minimizing the variance of a single future cash flow, but as minimizing the volatility 

of the time series of cash flows (provided the spot price process does not follow a random walk). 

For example, the model can be applied to a firm trying to minimize the volatility of its monthly 

foreign currency revenues (input costs) by hedging each month’s foreign currency receipts 

(consumption) over “N” prior months. Fifth, the model can be readily adapted to hedging using 

forward contracts. As shown in part B of the Appendix, the optimal, cumulative hedge ratio at 

time T-k for hedging using forward contracts is given by 

    2

1
*









 u

k

kTh


 





   for 1 ≤ k ≤ N   (7) 

Sixth, this model can be shown to be a special case of the model developed in Myers and Hanson 

(1996), referred to as MH. In this paper, they show that provided futures prices evolve as a 

martingale, it is possible to derive an optimal dynamic hedging strategy that is independent of 

risk preferences under fairly general assumptions about the relationship between spot and futures 

prices. All they require of the utility function is that it should be increasing and strictly concave. 

As shown in part C of the Appendix, the assumptions in the current model satisfy the conditions 

laid out in the MH framework. Consequently, the optimal hedging strategy derived in this study 

not only minimizes the variance of the net cash flow on the terminal date, but also maximizes the 

terminal date expected utility. This is related to the results in Lence (1995) and Rao (2000) 

derived in a single-period setting. 
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The points mentioned above are explicit or implicit in HD and/or in MH. The main point 

of the current paper is the following, which is a consequence of the additional structure imposed 

in the current study. As evident from (6), the optimal hedging strategy depends in an important 

manner on the relative magnitudes of φ and, which, as discussed below, may be influenced by 

the extent of market power enjoyed by the firm. The case φ =   reflects the situation in which 

both the hedged process and the hedging process mean-revert with the same speed. This is likely 

to occur when the hedged and hedging processes are either the same or closely related (such as 

jet fuel and crude oil). If φ < ,  the hedged process mean-reverts at a faster rate than the 

underlying of the futures contract. (Recall that the rate of mean reversion is one minus the 

autoregressive coefficient.) This is likely to be an empirically important case. For example, 

consider an airline hedging its operating cash flows against jet fuel price fluctuations using oil 

futures. In this case, the hedged process is the operating cash flow and the hedging process is oil 

price. Suppose that the firm is faced with an adverse shock, such as an increase in oil prices. If 

the firm has some degree of market power, it may be able to raise the price of its product at least 

partially and with a lag even if not immediately. As a result, its cash flows may recover (or revert 

to previous levels) quicker than the price of oil goes back down. In general, greater the pricing 

power of the firm, the better the firm can respond to adverse shocks, and therefore faster will be 

the mean reversion of its operating cash flows and hence smaller the ratio of φ to .  Lastly, if   

< φ, the hedged series mean-reverts slower than the underlying of the forward contract. This 

would, for example, reflect a situation in which operating cash flows take more time to return to 

pre-shock levels than the hedging process. Such cases are probably less common in the real 

world. 

 

INSERT TABLE 1 AND GRAPH 1 ABOUT HERE 

 

Table 1 illustrates how the optimal hedging strategy changes with the ratio of φ to. For 

ease of exposition, 2
uu    (the ratio of the covariance between the shocks affecting the hedged 

and hedging processes to the variance of the hedged process) is set equal to unity. For simplicity, 

the interest rate, r, is set equal to zero. Therefore, the results in the table may be interpreted as 

relating to hedging using forward contracts rather than futures. Thus, the table contains optimal, 
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cumulative hedge positions in forward contracts for a few selected values of the ratio of φ to. It 

is assumed in the calculations that the number of prior periods over which hedging is possible is 

twelve (i.e., N = 12).  

For convenience, define a “back-loaded” strategy as one in which substantial hedging 

positions are taken only in the period(s) just prior to the terminal date and a “front-loaded” 

strategy as one in which substantial hedging positions are taken well in advance of the terminal 

date. Now, consider the case, φ/ =1, in which both the hedged and hedging processes mean-

revert at the same rate. In this case, the optimal strategy is seen to be a front-loaded strategy. In 

fact, the optimal strategy is essentially a static, multiperiod hedge – i.e., to undertake a complete 

hedge as far ahead as possible and retain this position until the terminal date. However, if the 

ratio is strictly between zero and one, then the optimal strategy is to spread the hedging activity 

over multiple periods. For example, if the ratio is 0.8, as shown in Table 1, the hedger should 

enter into a partial hedge to the extent of 8.59% of the optimal single period hedge twelve 

periods prior to the terminal date. The hedger should gradually increase the hedge position each 

subsequent period such that it is 64% three periods prior to the terminal date and, of course, 

100% one period prior. In general, both Table 1 and Graph 1 illustrate that smaller the ratio of φ 

to, smaller should be the size of the initial position with most of the hedging concentrated in the 

last few periods prior to the terminal date. Closer the ratio is to zero, more back-loaded the 

strategy should be. If the hedged process mean-reverts at a considerably faster rate than the 

hedging process (φ << ) perhaps as a consequence of the firm’s market power, distant shocks 

have a relatively small impact on the firm and only short-term shocks (i.e., shocks close to the 

terminal date) need to be hedged against. Indeed, if the ratio is zero, then a single period 

(myopic) hedging strategy (of entering into a hedge only at the start of the terminal period) 

would be perfectly appropriate. On the other hand, larger the ratio of φ to, larger should be the 

hedging positions taken in earlier periods. In fact, if it is the hedged process that mean-reverts 

slower (φ > ), then the optimal hedging strategy is to overhedge in the initial period, and then 

reverse out the excess position gradually as the terminal date draws near. This is illustrated in the 

last column of Table 1.  
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3.2 Hedging using nearby contracts (stack hedging) 

Now consider how the optimal hedging strategy will be different if hedging is carried out by 

rolling over a series of nearby contracts.2 For simplicity, it is assumed that futures contracts are 

available for all expiration dates leading up to the terminal date. 

As shown in part D of the Appendix, the optimal hedging strategy is now given by 

    
2

1
*

1 




 u

k

kT r
b



 








  for 1 ≤ k ≤ N             (8) 

As may be seen, the autoregressive coefficient of the hedging process, θ, plays no role. The 

result above is similar to the one derived by HD. (The result in HD is slightly different as in their 

model, the hedger is hedging not just one future cash flow but several. This paper considers the 

simpler problem of hedging just one future cash flow in order to simplify the exposition and 

ensure that a key point of the paper, namely the difference between hedging using nearby 

contracts and hedging using matched-maturity contracts, is made as clearly as possible.) If the 

autoregressive coefficient of the hedged process, , is close to zero, then the optimal hedge ratio 

in all prior periods from T-2 through T-N  would be close to zero; and the optimal hedge ratio 

one period prior to the terminal period (i.e., as of T-1) would, of course, equal the standard single 

period optimal hedge. Thus, a single period (myopic) approach to hedging would be appropriate 

only in the case in which the hedged process is independently and identically distributed. 

Conversely, a front-loaded strategy of taking large hedging positions several periods prior to the 

terminal date is optimal only if  is close to unity – i.e., if the rate of mean reversion of the 

hedged process is so slow that the process is close to being a random walk. Note that the values 

in Table 1 can be used to illustrate hedging using nearby contracts as well, with the difference 

that each column of Table 1 should be taken to represent a particular value of φ rather than the 

ratio of φ to θ. 

 

3.3 Hedging using matched-maturity contracts v/s nearby contracts 

 

From (3) and (4),  

kT
kT

kT
T

kT ff   1       (9) 

kT
kT

kT
kT

kT ff 




  1       (10) 
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Thus, futures contracts of all maturities are perfectly correlated under the assumptions of our 

model, which is, of course, an immediate consequence of the fact that in this model, the entire 

term structure of futures price is driven by a single risk factor. Therefore, both hedging strategies 

– based on matched-maturity contracts and rolling over nearby contracts – will be equally 

effective (in the sense that both strategies will result in the same variance of terminal cash flow). 

However, as mentioned earlier, it is not the comparative effectiveness of these two strategies that 

is the focus of this paper, but rather the difference in the optimal hedging path and the conditions 

that determine the path in each of these cases. 

 

INSERT TABLE 2 ABOUT HERE 

 

The main differences between the two cases (hedging with matched-maturity v/s nearby 

futures) are summarized in Table 2. It is clear that the optimal hedging strategy can be very 

different between hedging based on matched-maturity contracts and hedging based on nearby 

contracts. For example, if φ = θ < 1, then if hedging is based on matched-maturity contracts, the 

optimal strategy is a static multiperiod hedge, while if hedging is carried out by rolling over 

nearby futures, then the optimal strategy is either front-loaded or back-loaded depending on how 

close φ is to zero. However, it is also apparent that if the price process of the underlying of the 

futures contract follows a random walk (i.e., if θ = 1), then the optimal hedging path is the same 

regardless of whether hedging is based on matched-maturity or nearby contracts. 

It may be noted that in the case of both hedging with nearby contracts and hedging with 

matched-maturity contracts, if the model is applied to hedging on an ongoing or rolling basis, the 

optimal hedging strategy may entail taking hedging positions that exceed the quantity required to 

hedge just a single future period’s cash flow. For example, suppose that the ratio of 

autoregression coefficients is 0.8, and consider a firm using matched-maturity forwards to hedge 

monthly cash flows on a rolling twelve-month basis. For this firm, the quantity of forward 

contracts held at any point in time would be 465% of the quantity required to hedge a single 

period’s cash flow. (4.65 is the sum of the hedge ratios in the appropriate column of Table 1).   
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4. CONCLUSION 

 

This study examines the multiperiod hedging decision relating to a stochastic future cash flow in 

a setting of mean-reverting price processes and unbiased futures markets. It is seen that the 

optimal multiperiod hedging strategy depends in an important way on whether hedging is carried 

out using nearby or matched-maturity contracts. The question of interest is the hedging path – 

whether it is optimal to undertake a back-loaded strategy (in which substantial hedge positions 

are taken only in the period(s) just prior to the terminal date) or a front-loaded strategy (in which 

substantial hedge positions are taken well in advance of the terminal date). In the case of hedging 

with nearby contracts, the answer depends on the rate of mean reversion of the hedged process. 

However, in the case of hedging with matched-maturity contracts, the optimal strategy depends 

crucially on the relative rates of mean reversion of the hedged and hedging processes. If both 

processes mean-revert at roughly the same rate, then the optimal strategy is a front-loaded path. 

However, higher the rate of mean reversion of the hedged process relative to that of the futures 

contract’s underlying, the greater the appropriateness of a back-loaded (myopic or single period) 

strategy.  

 

FOOTNOTES: 

1. The issue of whether forward/futures prices are unbiased remains controversial. See 

Deaves and Krinsky (1995) for a good summary of early studies of this issue. Chinn and 

Coibion (2010) is a more recent study that also contains a good review of this topic and 

their findings appear to support this hypothesis for a range of commodities, especially 

energy related ones such as crude oil, heating oil, natural gas, and gasoline. They also 

find that even for non-energy commodities, “with almost no exceptions, we cannot reject 

the null of unbiasedness for the last five years of our sample, despite numerous 

departures from the null in the early and middle periods of our sample.” In any case, 

making any other assumption in its place would only serve to obscure the arguments of 

this paper.  

2. The term “nearby” contract is being used to mean a contract that will mature in the very        

next period. This is, of course, an assumption made primarily for convenience. However, 

it may be a close-enough approximation for practical purposes. 
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APPENDIX 

 
A Hedging with matched-maturity futures contracts  
 
As in the main body of the paper, N stands for the number of periods from today to terminal time 

T. For 1 ≤ k ≤ N, bT-k denotes the hedge ratio (i.e., futures position per unit of the spot position 

taken at time T-k in order to hedge time T cash flows). 

By repeated substitution, for n ≥ 1, the price process for the hedged item, equation (2), 

can be expressed as: 

   jT
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Similarly, the price process of the futures contract’s underlying, the hedging process in equation 

(3) can be expressed as: 
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Using the unbiased futures price assumption, it is seen that, for 1 ≤ k ≤ N 
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Note that futures prices are unbiased, but do not follow a random walk.  

As mentioned in the main body of the paper, the post-hedge cash flow in period T is 

given by 
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Above, the non-stochastic spot position has been normalized to unity for convenience. As in HD, 

the optimal hedge ratios can now be derived by working backwards from the terminal period. 

With one period to go (that is, as of time T-1),  

    T
T

TTTT pfybC   )( 11      (A6) 

Using (A3) and (2), this can be expanded as follows:  

   TTTTT upbC   11 )1(       (A7) 

The variance of CT (focusing only on the error terms) is given by 
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      uTTu bb 1
22

1
2 2               (A8) 

Differentiating with respect to bT-1, and setting the derivative equal to zero yields  
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Tb                   (A9) 

The second derivative is 2σξ
2, which is obviously positive, and it is thus clear that the second 

order condition for a minimum is satisfied.  

Next, with two periods to go,  
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Using (A1) and (A4),  

 TTTTTTTT uuprbbC   12
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The variance of CT is given by 
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Noting that optimal bT-1 is a known constant and using the first order condition gives the result 
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The second derivative is  

      222 )1(2  r      (A14) 

This is clearly positive, and thus the second order condition for a minimum is satisfied. 

In general, k periods prior to T, the variance of the cash flow in period T is given by  
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In any prior period, the optimal futures positions for subsequent periods are known 

constants. Using the first order condition for the optimal hedge ratio at time T-k, we arrive at the 

optimal hedge ratio, which is equation (6) in the main body of the paper: 
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The second derivative is  

     2)1(2)1(2 )1(2    kk r      (A17) 

This is clearly positive and thus the second order condition for a minimum is satisfied. 
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B Hedging with matched-maturity forward contracts  

The derivation of the optimal hedge ratio is very similar to that above, and is being provided 

mainly for completeness. Let T
kTf   denote the forward price in period T-k of the forward contract 

that matures in period T. As per the assumption of unbiased forward prices:   

    )( TkT
T

kT yEf    for 1 ≤ k ≤ N    (B1) 

where Et is the expectation operator conditional on information available in period t.  

The post-hedge cash flow in period T is given by 
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Normalizing the cash position x to unity for convenience, using equations (A1) and (A3), and 

collecting terms, 
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For 1 ≤ n ≤ N, the variance of the cash flow in period T is given by (focusing on the error terms) 
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Above, 2
u is the variance of the error term, u; 2

 is the variance of the error term, ξ; and  u is 

the covariance of these error terms. 

The optimal hedge ratios can be derived by working backwards. Let hT-k denote the 

cumulative hedge ratio (cumulative futures position per unit of spot position) as of time T-k.  




 
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kj
jTkT bh    for 1 ≤ k ≤ N   (B5) 

With one period to go (that is, as of time T-1),  

    T
T

TTTT pfyhC   )( 11      (B6a) 

This can be expanded as follows:  

   TTTTT uphC   11 )1(       (B6b) 

and the variance of CT is given by (taking n to be 1 in equation B4) 
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1
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Differentiating with respect to hT-1, and setting the derivative equal to zero gives the result that  
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The second derivative is 2σξ
2, and it is thus clear that the second order condition is satisfied.  

Next, with two periods to go,  
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This can be rewritten as 
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And the variance of CT is given by  
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The first order condition for optimal hT-2 is  
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Note that bT-1 is a known constant given by 
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Using the first order condition gives the result 
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The second derivative is seen to be 

      )1(2 22         (B15) 

This is clearly positive, and thus the second order condition for a minimum is satisfied. 

In any prior period, the optimal forward positions for subsequent periods are known 

constants. Proceeding along the same lines as above, we arrive at equation (7) in the paper:  
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C The Myers and Hanson (1996) framework 

As in the current paper, the Myers and Hanson (MH) model considers a hedger with a non-

stochastic cash position, x, which will be liquidated on a certain future terminal date, T. The 

hedger’s problem relates to the stochastic cash price at that time, pT. Each period, the hedger 

chooses a hedge ratio, bt, and enters into a futures position, bt x, at the prevailing futures price, ft. 
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Futures positions are marked to market at the end of each period. The hedger’s wealth at the end 

of each period is given by: 

 xbffxpxcwrw TTTTTTT 1111 )()]()[1(       (C1) 

  xbffxcwrw tttttt 1111 )()]()[1(    for 1 ≤ t < T   (C2) 

Above, r is the constant interest rate per period, and ct(x) represents non-stochastic costs. The 

hedger’s problem is to design a strategy to choose the futures position, bt, each period so as to 

maximize the expected utility of terminal wealth subject to the wealth constraints above: 

  
 T

tt

T

b

wUE

11

0 )]([max



 or   
 N

kkT

TNT

b

wUE

1

)]([max




   (C3) 

Above Et is the expectations operator conditional on information available at time t, and U is an 

increasing and strictly concave utility function. N is the number of periods prior to the target 

period that the hedging activity can be initiated, and may be dictated either by internal corporate 

policy or external constraints such as availability of hedging contracts. 

MH make three assumptions regarding the behavior of spot and futures prices in order to 

derive their preference-free optimal hedging strategy: 

Assumption 1: Futures prices, ft, follow a martingale with a zero-mean random shock, et:   

    ttt eff  1        (C4) 

Assumption 2: The expected value of the terminal price, Et(pT), follows a martingale with a zero-

mean random shock, vt: 

    tTtTt vpEpE   )()( 1      (C5) 

Assumption 3: The two error terms, et and vt are linearly related in the following manner: 

    tttt ev          (C6) 

Above, εt is an unpredictable, zero-mean error term, and is independent of et at all lags. δt is the 

(possibly time-varying) slope coefficient of the linear regression of vt on et, and, as such, is the 

ratio of the covariance between et and vt to the variance of et 

 

Based on these three assumptions, they derive an optimal hedging strategy that is valid 

for all increasing and strictly concave utility functions: 
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Thus, the optimal hedge ratio essentially depends on the slope coefficient of the linear 

relationship between the innovations driving the expected spot price of the hedged item and the 

innovations driving the futures price.  

Note that the framework allows for basis risk. This is captured by assumption 3 which 

allows for imperfect correlation between the innovations to the expected value of the cash price 

on the terminal date and futures price changes. Further, there is obviously no requirement that 

the futures price should be the expected terminal date spot price of the cash position.  

As pointed out by MH, their framework can accommodate a wide range of behavior of 

spot and futures prices. Consider the following special case. As in the main body of the current 

paper, suppose that the spot price of the hedged item (cash position), pt, and the spot price of the 

underlying of the futures contract follow mean-reverting processes given by equations (1) and 

(3) in the main body of the current paper. Given the assumption of unbiased futures prices, the 

futures price as of time t of the contract maturing at T will evolve as follows: 
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The expected future spot price of the hedged item will evolve as follows: 

    t
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Further, given that ut and ξt are contemporaneously correlated, their relationship can be 

represented as follows: 

     ttttu         (C10) 

Above, λt is the slope coefficient of the regression of ut on ξt, and is therefore the ratio of the 

covariance of the two terms to the variance of ξt. ηt is a zero-mean random shock and unrelated 

to ξt at all lags. 

Comparing the above three equations to the three assumptions of the MH framework, it is 

apparent that the model in the current study fits into the MH framework by letting  
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The optimal hedging strategy is accordingly given by: 
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The above is, of course, essentially the same as equation (6) in the main body of the current 

paper (except that in this framework, λ is allowed to be time-varying, whereas in the main paper, 

it is assumed to be a constant for ease of exposition). Thus, the variance-minimizing strategy also 

maximizes expected-utility. 

 

D Hedging with nearby forwards or futures 

 

The derivation is very similar to the one in Appendix A and is being provided mainly for 

completeness. The objective remains to hedge a cash flow that will occur in a future period T. 

The difference is that hedging is carried out by rolling over a series of nearby forwards or futures 

contracts. Specifically, the forward or futures contract used in period t is the one maturing in 

period t+1. As the contract matures in the very next period, there is no need to distinguish 

between forwards and futures. The following exposition is in terms of forward contracts, but 

obviously applies to futures as well. Using equation (A3), 
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Note that forward prices are not only unbiased, but follow a random walk. Assuming that 

hedging is carried out over a horizon of N periods, and normalizing the spot position to unity for 

convenience, the post-hedge cash flow in period T is given by 
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Now, we derive the optimal hedge ratios, the bT-k, using dynamic programming. With one 

period to go (that is, as of time T-1),  
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This can be expanded as below:  
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The variance of CT is given  by 
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Above, bT-1 is the forward position as at time T-1, 2
u is the variance of the error term, u, 2

 is 

the variance of the error term, ξ, and  u is the covariance between these error terms. 

Differentiating with respect to bT-1, and setting the derivative equal to zero gives the result that  
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This is of course the same as the standard single-period optimal hedge ratio.  

Next, with two periods to go,  
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This can be rewritten as   
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The variance of CT is given by 
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Noting that optimal bT-1 is a known constant and using the first order condition gives the result 
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In any prior period, the optimal forward positions for subsequent periods are known 

constants. Therefore, proceeding in the same manner as above, we arrive at equation (8) in the 

paper:  

    
2

1
*

1 




 u

k

kT r
b



 








  for 1 ≤ k ≤ N             (D11) 

     



Vadhindran K. Rao / Journal of Risk and Financial Management 5(2011) 133-161 
 

155 
 

REFERENCES 

Adler, M. and Detemple, J. B., (1988), On the Optimal Hedge of a Nontraded Cash Position, 

Journal of Finance, 43, 143-153. 

Anderson, R.W. and Danthine, J.P., (1983), The Time Pattern of Hedging and the Volatility of 

Futures Prices, Review of Economic Studies, 50, 249-266. 

Ankirchner, S. and Heyne, G., (2012), Cross Hedging with Stochastic Correlation, Finance and 

Stochastics, 16(1), 17-43. 

Ankirchner, S., Dimitroff, G., Heyne, G. and Pigorsch, C., (2012), Futures Cross-Hedging with a 

Stationary Basis, Journal of Financial and Quantitative Analysis, Forthcoming. 

Basak, S. and Chabakauri, G., (2008), Dynamic Hedging in Incomplete Markets: A Simple 

Solution, Electronic copy available at: http://ssrn.com/abstract=1297182. 

Bessembinder, H., Coughenour, J.F., Smoller, M. and Seguin, P.J., (1995), Mean Reversion in 

Equilibrium Asset Prices: Evidence from the Futures Term Structure, Journal of Finance, 50(1), 

361-375. 

Breeden, D.T., (1984), Futures Markets and Commodity Options: Hedging and Optimality in 

Incomplete markets, Journal of Economic Theory, 32, 275-300. 

Cao, Z., Harris, R. D. F. and Shen, J., (2010), Hedging and value at risk: A semi-parametric 

approach, Journal of Futures Markets, 30(8), 780–794. 

Chan, W. H., (2010), Optimal Hedge Ratios in the Presence of Common Jumps, The Journal of 

Futures Markets, 30, 801-807. 

Chen, S., Lee, C. and Shrestha, K., (2003), Futures hedge ratios: a review. The Quarterly Review 

of Economics and Finance, 43, 433–465. 



Vadhindran K. Rao / Journal of Risk and Financial Management 5(2011) 133-161 
 

156 
 

Chen, C. and Tsay, W., (2011), A Markov regime-switching ARMA approach for hedging stock 

indices, Journal of Futures Markets, 31(2), 165–191. 

Chinn, M. and Coibion, O., (2010), The Predictive Content of Commodity Futures, Working 

Paper No. 89, Department of Economics, College of William and Mary, 

http://web.wm.edu/economics/wp/cwm_wp89.pdf. 

Danthine, J.P., (1978), Information, Futures Prices and Stabilizing Speculation, Journal of 

Economic Theory, 17, 79-98. 

de Meza, D. and von Ungern Sternberg, T., (1980), Market Structure and Optimal Stockholding: 

a Note, Journal of Political Economy, 88, 395-399. 

Deaves, R. and Krinsky, I., (1995), Do Futures Prices for Commodities Embody Risk Premiums? 

The Journal of Futures Markets, 15, 637-648. 

Donoso, G., (1995), Exporting and Hedging Decisions with a Forward Currency Market: The 

Multiperiod Case, The Journal of Futures Markets, 15, 1-11. 

Duffie, D. and Jackson, M. O., (1990), Optimal Hedging and Equilibrium in a Dynamic Futures 

Market, Journal of Economic Dynamics and Control, 14, 21-33. 

Duffie, D. and Richardson, H. R., (1991), Mean-Variance Hedging in Continuous Time, The 

Annals of Applied Probability, 1(1), 1-15. 

Ederington, L.H., (1979), The Hedging Performance of the New Futures Markets, Journal of 

Finance, 34, 157-170. 

Fishelson, G., (1984), Constraints on Transactions in the Futures Markets for Outputs and Inputs, 

Journal of Economics and Business, 36, 415-420. 

Hilliard, J.E., (1999), Analytics underlying the Metallgesellschaft Hedge: Short-Term Futures in 

a Multiperiod Environment, Review of Quantitative Finance and Accounting, 12(3), 195-219. 



Vadhindran K. Rao / Journal of Risk and Financial Management 5(2011) 133-161 
 

157 
 

Holthausen, D.M., (1979), Hedging and the Competitive Firm under Price Uncertainty, 

American Economic Review, 69, 989-995. 

Howard, C.T. and D’Antonio L.J., (1991), Multiperiod Hedging Using Futures:  A Risk 

Minimization Approach in the Presence of Autocorrelation, The Journal of Futures Markets, 11, 

697-710. 

Huang, S., Pan, T. and Lo, Y., (2010), Optimal Hedging on Spot Indexes with a Duration-

Dependent Markov-Switching Model, International Research Journal of Finance and Economics, 

49, 168-179. 

Hung, J. and Lee, M., (2007), Hedging for multi-period downside risk in the presence of jump 

dynamics and conditional heteroscedasticity, Applied Economics, 39(18), 2403-2412. 

Johnson, L., (1960), The Theory of Hedging and Speculation in Commodity Futures, Review of 

Economic Studies, 27, 139-151. 

Karp, L.A., (1987), Methods for Selecting the Optimal Dynamic Hedge When Production is 

Stochastic, American Journal of Agricultural Economics, 69, 647-657. 

Koppenhaver, G.D. and Swidler, S., (1996), Corporate Hedging and Input Price Risk, 

Managerial and Decision Economics, 17, 83-92. 

Kroner, K.F. and Sultan, J., (1993), Time-Varying Distributions and Dynamic Hedging with 

Foreign Currency Futures, Journal of Financial and Quantitative Analysis, 28, 535-551. 

Lence, S.H., (1995), On the Optimal Hedge under Unbiased Futures Prices, Economics Letters, 

47, 385-388. 

Lien, D. and Luo, X., (1993), Estimating Multiperiod Hedge Ratios in Cointegrated Markets, 

The Journal of Futures Markets, 13(8), 909-920. 

Lien, D. and Shaffer, D.R., (2002), Multiperiod Strip Hedging of Forward Commitments, 

Review of Quantitative Finance and Accounting, 18(4), 345-358. 



Vadhindran K. Rao / Journal of Risk and Financial Management 5(2011) 133-161 
 

158 
 

Lien, D. and Tse, Y.K., (2002), Some recent developments in futures hedging, Journal of 

Economic Surveys, 16(3), 357–396. 

Losq, E., (1982), Hedging with Price and Output Uncertainty, Economics Letters, 20, 83-89. 

Low, A., Muthuswamy, J., Sakar, S. and Terry, E., (2002), Multiperiod Hedging with Futures 

Contracts, The Journal of Futures Markets, 22(12), 1179-1203.  

Martinez, S.W. and Zering, K.D., (1992), Optimal Dynamic Hedging Decisions for Grain 

Producers, American Journal of Agricultural Economics, 72, 879-888. 

Myers, R.J. and Hanson, S.D., (1996), Optimal Dynamic Hedging in Unbiased Futures Markets, 

American Journal of Agricultural Economics, 78, 13-20. 

Neuberger, A., (1999), Hedging Long-Term Exposures with Multiple Short-Term Futures 

Contracts, The Review of Financial Studies, 12(3), 429-459. 

Power, G. J. and Vedenov, D.V., (2008), The Shape of the Optimal Hedge Ratio: Modeling Joint 

Spot-Futures Prices using an Empirical Copula-GARCH Model. In Proceedings of the NCCC-

134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk 

Management. St. Louis, MO. [http://www.farmdoc.uiuc.edu/nccc134]. 

Rao, V., (2000), Preference-Free Optimal Hedging using Futures, Economics Letters, 66, 223-

228. 

Sandmo, A., (1971), On the Theory of the Competitive Firm under Price Uncertainty, American 

Economic Review, 61, 65-73. 

Schwartz, E.S., (1997), The stochastic behavior of commodity prices: Implications for valuation 

and hedging, Journal of Finance, 52, 923-974. 

Vukina, T. and Anderson, J.L., (1993), A State-Space Approach to Optimal Intertemporal Cross-

Hedging, American Journal of Agricultural Economics, 75, 416-424. 



Vadhindran K. Rao / Journal of Risk and Financial Management 5(2011) 133-161 
 

159 
 

Zilcha, I. and Broll, U., (1992), Optimal Hedging by Firms with Multiple Sources of Risky 

Revenues, Economics Letters, 39, 473-477. 

Zilcha, I. and Eldor, R., (1991), Exporting Firm and Forward Markets:  The Multiperiod Case, 

Journal of International Money and Finance, 10, 108-117. 

 

Table 1 

Hedging with matched-maturity forward contracts: 
 

How the ratio of the autoregressive coefficients (φ/θ) affects the optimal hedging path 
 
Notes:  

1. Hedge ratios have been calculated for one to twelve periods prior to the terminal date 

(i.e., N = 12) and  .12   uu  

2.  hT-k  is the (cumulative) forward position as of time T-k for the purpose of hedging cash 

flows in period T. Thus, k = number of periods remaining. 

 
 hT-k 

k φ/θ = 0.1 φ/θ = 0.8 φ/θ = 1 φ/θ = 1.2 

1 1 1 1 1.0 
2 0.1 0.8 1 1.2 
3 0.01 0.64 1 1.4 
4 0.001 0.512 1 1.7 
5 0.0001 0.4096 1 2.1 
6 0.00001 0.3277 1 2.5 
7 0.00000 0.2621 1 3.0 
8 0.00000 0.2097 1 3.6 
9 0.00000 0.1678 1 4.3 
10 0.00000 0.1342 1 5.2 
11 0.00000 0.1074 1 6.2 
12 0.00000 0.0859 1 7.4 
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Table 2 
 
Hedging with nearby futures Vs Hedging with matched-maturity futures contracts 
 
Optimal Hedging 
Strategy 

Hedging with nearby 
futures  

 Hedging with matched-
maturity futures  

Optimal Hedge Ratio k 
periods prior to the 
terminal date 

2

1
*

1 




 u

k

kT r
b



 








   2

1

1
*

)1(

1









 u

k

kkT r
b



 










   

Back-Loaded Hedging 
Strategy* (Take 
substantial hedging 
positions only in periods 
close to the terminal date) 

If φ ≈ 0  
(Hedged process is close 
to being i.i.d.) 

If φ << θ 
(Hedged process mean-reverts 
considerably quicker than the 
hedging process) 

Underhedge and then 
augment 

If 0 < φ < 1 If 0 < φ/θ  < 1 

Front-Loaded Hedging 
Strategy** (Take 
substantial hedging 
positions as far ahead as 
possible) 

If φ ≈ 1  
(Hedged process is close 
to a random walk) 

If  φ ≈ θ  
(Both the hedged and hedging 
processes mean-revert at 
roughly the same rate) 

Overhedge and then 
reduce positions 

If  φ > 1 If φ/θ  > 1 

Notes:  

* The limiting case of a back-loaded hedging strategy is a myopic or single-period hedge. 

** The limiting case of front-loaded hedging strategy is a static, multiperiod hedge. 
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Graph 1 

Hedging with matched-maturity forward contracts: 
 

Cumulative forward position, hT-k against number of periods remaining, k for alternative 

values of the ratio of the autoregressive coefficients, φ/θ (assuming  uu 2 ) 
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