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ABSTRACT

An argument for adjusting Black Scholes implied call deltas downwards for a gamma

exposure in a left skewed market is presented. It is shown that when the objective for

the hedge is the conservation of capital ignoring the gamma for the delta position is

expensive. The gamma adjustment factor in the static case is just a function of the

risk neutral distribution. In the dynamic case one may precompute at the date of trade

initiation a matrix of delta levels as a function of the underlying for the life of the trade

and subsequently one just has to look up the matrix for the hedge. Also constructed are

matrices for the capital reserve, the profit, leverage and rate of return remaining in the

trade as a function of the spot at a future date in the life of the trade. The concepts of

profit, capital, leverage and return are as described in Carr, Madan and Vicente Alvarez

(2010). The dynamic computations constitute an application of the theory of nonlinear

expectations as described in Cohen and Elliott (2010).
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1 INTRODUCTION

We shall show that in the interests of conserving capital in markets where delta hedging

leaves one exposed to residual risk one may wish to adjust one’s delta position in line

with position’s gamma. When markets are complete as in the case of a diffusion for the

underlying risk, the risk in a position’s gamma is perfectly compensated by the theta and

the resulting local cash flow is transformed into a riskless exposure. More generally, in

the presence of numerous jump possibilities, for all levels of theta, a long delta position

is exposed in left skewed markets to losses of down moves in proportion to the position

gamma. Inorder to reduce the capital cost of these exposures one may wish to reduce the

delta in line with the gamma. Similarly, a short delta position is induced to tilt the delta

to a higher short position to access downside gains thereby conserving capital. These

intuitions will be made precise and verified here. The result is the recommendation of a

gamma adjustment to delta hedging that responds to the underlying volatility and the

market skew.

We first work in a static single period context defining capital, profits, leverage and

returns as in Carr, Madan and Vicente Alvarez (2010) and show how capital conservation

strategies lead to gamma adjustments for the delta. The static model presented builds

on the theory of two price markets developed in Cherny and Madan (2010) that gave

us operational procedures for determining bid and ask prices. These prices are by con-

struction concave and convex functionals on the space of bounded random variables and

hence they are nonlinear. We go on to employ the fast developing theory of nonlinear ex-

pectations (Peng (2004), Rosazza Gianin (2006), Delbaen, Peng, Rosazza Gianin (2010),

Jobert and Rogers (2008), Cohen and Elliott (2010)) to construct dynamically consistent

sequences of bid and ask prices that result in dynamic gamma adjusted delta hedging

strategies. These are implemented and compared to delta hedging at the Black Scholes

implied volatility when the underlying risk is that of a Lévy process. Significant levels of

capital conservation are seen to result from the use of a gamma adjustment.

The outline of the rest of the paper is as follows. Section 2 briefly presents the static

concepts of profit, capital, leverage and return. Section 3 investigates in the static context

the benefits of the proposed gamma adjustment. Section 4 discusses the use of nonlinear

expectations in a multiperiod context. Section 5 develops dynamic hedging for capital

conservation. These are implemented on a one year out of the money call and put option
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and the results are reported. Section 6 concludes.

2 THE ONE PERIOD MODEL

We begin with the model of a market as a counterparty as described in Cherny and

Madan (2010). The market is modeled by describing the bounded random variables the

market will accept at zero cost to it. In keeping with classical finance where market

participants may trade arbitrary sizes with the market, it is observed that this set of

random variables acceptable to the market at zero cost must be a convex cone that

contains the nonnegative random variables. As a result (Artzner, Delbaen, Eber and

Heath (1999)) one may associate with each such set a convex set of probability measures

M equivalent to the original measure P such that X is acceptable to the market at zero

cost if and only if

EQ [X] ≥ 0, all Q ∈M.

The set M is referred to as test scenarios in Carr, Geman and Madan (2001) and sup-

porting measures in Cherny and Madan (2009, 2010). Related literature includes Jaschke

and Küchler (2001), and Černý and Hodges (2000). With a view to keeping the set of

acceptable risks strictly smaller than those acceptable in classical finance we suppose,

as in Cherny and Madan (2010) that the base or reference measure P is a risk neutral

measure and further that P ∈M.

Cherny and Madan (2010) show that for an unhedged risk X to be acceptable to the

market the cost of selling X to the market is the bid price b(X) where

b(X) = inf
Q∈M

EQ[X].

Similarly the market sells the cash flow X and takes the opposite position −X for the

ask price a(X) where

a(X) = sup
Q∈M

EQ[X].

In the presence of zero cost hedging assets, where H denotes the set of zero cost cash

flows to the hedging assets, one defines the risk neutral measures R as all measures Q

equivalent to P for which EQ[H] = 0, all H ∈ H. The bid and ask prices respectively
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bh(X), ah(X) for the hedged cash flow are respectively

bh(X) = inf
Q∈M∩R

EQ[X]

ah(X) = sup
Q∈M∩R

EQ[X].

One observes that the hedged bid is higher and the ask is lower with a correspondingly

narrower spread.

The optimal hedges for the ask price, H and the bid price H are defined by

H = arg min
H∈H

a (H −X)

H = arg max
H∈H

b(X −H).

Models defining acceptable cash flows in terms of their distribution functions F (x)

were introduced in Cherny and Madan (2010) following Kusuoka (2001) using concave

distortions for Ψ(u) a concave distribution function on the unit interval by defining X as

acceptable just if ∫ ∞

−∞
xdΨ(F (x)) ≥ 0.

The set of supporting measures M is identified in Cherny (2006) as all measures Q

equivalent to P whose density Z satisfies

EP [(Z − a)+] ≤ Φ(a) = sup
0≤u≤1

(Ψ(u− au) , all a ≥ 0.

It is shown in Cherny and Madan (2010) that if we focus on approving distribution

functions F (x) or equivalently their inverses G(u) then the supporting measures have

densities Z(u) on the unit interval with H(u) ≤ Ψ(u) where H ′ = Z. It is shown in

Cherny and Madan (2010) that in terms of distortions one may write the unhedged bid

and ask prices as

b(X) =

∫ ∞

−∞
xdΨ(F (x))

a(X) = −
∫ ∞

−∞
xdΨ (1− F (−x)) .
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Carr, Madan and Vicente Alvarez (2010) express these prices in terms of the inverse

distribution function with median, F (m) = 1/2 as

b(X) = m +

∫ 1

0

(
1u≥ 1

2
−Ψ(u)

)
dG(u) (1)

a(X) = m +

∫ 1

0

(
Ψ(1− u)− 1u≤ 1

2

)
dG(u). (2)

For hedges H ∈ H with hedged distribution functions FH(X) the distribution function

for X −H the bid and ask prices are

b(X) = sup
H∈H

∫ ∞

−∞
xdΨ(FH(x)) (3)

a(X) = inf
H∈H

−
∫ ∞

−∞
xdΨ (1− FH(−x)) . (4)

The distortion used in Cherny and Madan (2009, 2010) and Carr, Madan and Vicente

Alvarez (2010) is minmaxvar defined by

Ψ(u) = 1−
(
1− u

1
1+ξ

)1+ξ

.

We shall continue to use this distortion here.

Given explicitly computable expressions (3) and (4) for the bid and ask prices in the

presence of hedges Carr, Madan and Vicente Alvarez (2010) employ these to define the up

front profit on a trade, the capital reserve to be taken on the trade and hence the return

of the trade. In addition measuring the scale as the expectation of the absolute deviation

from the median, leverage is defined as the ratio of the scale to the capital. The upfront

profit is defined as the difference between the mid quote and the risk neutral expectation

and for options it is observed that this is generally positive. The capital reserve is defined

as the cost of going in and out of the trade with the market and hence paying the spread

between the ask and bid prices. It is observed from expressions (1) and (2) that the profit
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π and capital κ are given by

π =

∫ 1

0

H(u)dG(u)

κ =

∫ 1

0

K(u)dG(u)

where H is antisymmetric about 1/2 and is zero at 0, 1/2 and 1, while K is symmetric

about 1/2 and specifically

H(u) =
Ψ(1− u)− 1u≤ 1

2
+ 1u≥ 1

2
−Ψ(u)

2
− 1u≥ 1

2
− u

K(u) = Ψ(u) + Ψ(1− u)− 1.

The return ρ is just π/κ while the leverage λ = scale/κ where the scale is given by

scale =

∫ 1

0

(
u1u≤ 1

2
+ (1− u)1u≥ 1

2

)
dG(u).

3 GAMMA ADJUSTED DELTAS IN LEFT SKEWED

MARKETS

We consider here the hedging of quadratic exposures with a view to minimizing the capital

charge for the residual risk exposure. Suppose the target cash flow c(S) to be hedged over

a time interval of size h is quadratic in the stock price with

c(S) = δ(S − S0) +
γ

2
(S − S0)

2.

Consider a hedge position ζ in the stock with a residual cash flow of

r(S) = δ(S − S0) +
γ

2
(S − S0)

2 − ζ(S − S0)

=
γ

2
(S − S0)

2 − (ζ − δ) (S − S0) .

Suppose the underlying stock price motion x = S − S0 has distribution F (x) and the

objective is to minimize the capital required defined by the difference between the ask
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and bid prices computed using the concave distortion Ψ. To evaluate this capital we need

to determine the distribution function of the residual cash flow as both the bid and ask

prices are functions of this distribution function. Let C denote the residual cash flow.

The probability FC(v) that C ≤ v is the probability that

γ

2
x2 − (ζ − δ) x ≤ v.

The minimum cash flow occurs at

x =
ζ − δ

γ

and is equal to

−(ζ − δ)2

2γ

Hence

FC(v) = 0 for v ≤ −(ζ − δ)2

2γ
.

For v > − (ζ−δ)2

2γ
we solve for x the equation

γ

2
x2 − (ζ − δ) x− v = 0

with

x =
ζ − δ

γ
±

√(
ζ − δ

γ

)2

+
2v

γ

and the probability that C ≤ v equals the probability that S − S0 lies between the

two solutions. We then have that

FC(v) = F


ζ − δ

γ
+

√(
ζ − δ

γ

)2

+
2v

γ


− F


ζ − δ

γ
−

√(
ζ − δ

γ

)2

+
2v

γ




We define

η = −ζ − δ

γ

and write

FC(v) = F

(
−η +

√
η2 +

2v

γ

)
− F

(
−η −

√
η2 +

2v

γ

)

7



Dilip B. Madan / Journal of Risk and Financial Management 1(2010) 1-25

The lower bound is now

−γη2

2
.

Now −C ≤ γη2/2 and the distribution function for −C is Pr (−C ≤ v) and

F−C(v) = 1 for v ≥ γη2/2

for v < γη2/2 we have that

F−C(v) = F

(
−η −

√
η2 − 2v

γ

)
+ 1− F

(
−η +

√
η2 − 2v

γ

)

It follows that the ask price is

a = −
∫ γη2

2

−∞
vdΨ

(
F

(
−η −

√
η2 − 2v

γ

)
+ 1− F

(
−η +

√
η2 − 2v

γ

))

and the bid price is

b =

∫ ∞

− γη2

2

vdΨ

(
F

(
−η +

√
η2 +

2v

γ

)
− F

(
−η −

√
η2 +

2v

γ

))

Hence the capital is

c = −
∫ γη2

2

−∞
vdΨ

(
F

(
−η −

√
η2 − 2v

γ

)
+ 1− F

(
−η +

√
η2 − 2v

γ

))

−
∫ ∞

− γη2

2

vdΨ

(
F

(
−η +

√
η2 +

2v

γ

)
− F

(
−η −

√
η2 +

2v

γ

))

Now we make the change of variable

w =
v

γ

to observe that

c = −γ




∫ η2

2

−∞ wdΨ
(
F

(
−η −

√
η2 − 2w

)
+ 1− F

(
−η +

√
η2 − 2w

))

+
∫∞
− η2

2

wdΨ
(
F

(
−η +

√
η2 + 2w

)
− F

(
−η −

√
η2 + 2w

))


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For the optimal value for η we just need to minimize the expression for unit γ or we

need to minimize

Λ(η) = −
∫ η2

2

−∞
wdΨ

(
F

(
−η −

√
η2 − 2w

)
+ 1− F

(
−η +

√
η2 − 2w

))

−
∫ ∞

− η2

2

wdΨ
(
F

(
−η +

√
η2 + 2w

)
− F

(
−η −

√
η2 + 2w

))

and this expression just depends on the underlying stock price distribution. One may

therefore determine the optimal η from the risk neutral distribution of the stock and then

we hedge with gamma adjustment using the delta position

ζ = δ − ηγ.

We illustrate the function Λ as a function of η for the variance gamma model (Madan

and Seneta (1990), Madan Carr and Chang (1998)) calibrated to options on the SPX

on July 15 2010. For weekly monitoring with V G parameters .2196, .3317,−.3596 we

graph in Figure (1) the unit gamma capital as a function of the adjustment factor η. The

minimum in this case occurs at η = 4.6071.
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Figure 1: Capital as a function of the gamma adjustment factor
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We observe from this section the basic intuition underlying the gamma adjustment for

delta hedging when markets are skewed downwards. Residual risks even if they are sym-

metric are not symmetrically priced and since the downside exposure is more expensive,

the optimal delta should be adjusted downwards in the presence of of some gamma risk.

We now take up issues of dynamic hedging in incomplete markets.

4 A MULTI PERIOD MODEL

We now consider dynamic models for capital and the implementation of hedges that

minimize the capital required to hold the remaining risk or uncertainty that is yet to

be resolved in a trade. This requires a dynamic definition of bid and ask prices from

which we will get our dynamic definition of capital. The hedges are then chosen to

successively minimize this dynamically constructed measure of capital. With a view

to understanding dynamically consistent sequences of bid and ask prices we consider a

discrete time multiperiod model with dates t = {0, 1, 2, · · · , T}. For our construction of

dynamically consistent sequences of bid and ask prices we follow Cohen and Elliott (2010).

We therefore suppose the underlying risk is that of a finite state Markov chain Xt, for

X0 = 0 and t = 1, 2, · · · , T with

Xt ∈ {e1, e2, · · · eN} ,

where ei is the ith row of an N dimensional identity matrix. Without loss generality one

may identify the states of any finite state Markov process with the unit vectors of N

dimensional space. Let (Ω,F , {Ft}0≤t≤T ,P) be a filtered probability space, where Ft is

the completion of the sigma algebra generated by the process X up to time t.

One may then define a martingale difference process Mt implicitly by

Xt = E [Xt|Ft−1] + Mt.

The process Mt represents the Ft−1 conditional local risk in the underlying risk process.

We shall construct our dynamically consistent sequence of bid and ask prices as nonlinear

expectations using Theorem 6.1 of Cohen and Elliott (2010) as solutions of a backward

stochastic difference equation for a suitably chosen driver F (ω, t, Y, Z). For a continuous
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time analysis one has to involve backward stochastic differential equations El Karoui and

Huang (1997), Cohen and Elliott (2010b).

Since even in a static context bid prices are concave functionals and ask prices are

convex functionals of the random variables being priced these valuations cannot be repre-

sented by expectation operators traditionally used as valuation operators. In the context

of discrete time Markov chains Cohen and Elliott (2010) have defined dynamically con-

sistent translation invariant nonlinear expectation operators E(.|Ft) defined on the family

of subsets {Qt ⊂ L2(FT )} . Our dynamic bid and ask prices will be examples of such

operators.

For completeness we recall the definition of an Ft−consistent nonlinear expectation

for{Qt} . A system of operators

E(.|Ft) : L2(FT ) → L2 (Ft) , 0 ≤ t ≤ T

is an Ft−consistent nonlinear expectation for{Qt} if it satisfies the following properties:

1. For Q,Q′ ∈ Qt, if Q ≥ Q′ P− a.s. componentwise, then

E(Q|Ft) ≥ E(Q′|Ft)

P−a.s. componentwise, with for each i,

eiE(Q|Ft) = eiE(Q′|Ft)

only if eiQ = eiQ
′ P−a.s.

2. E(Q|Ft) = Q P−a.s. for any Ft−measurable Q.

3. E(E(Q|Ft)|Fs) = E(Q|Fs) P−a.s. for any s ≤ t

4. For any A ∈ Ft, 1AE(Q|Ft) = E(1AQ|Ft) P−a.s.

Furthermore the system of operators is dynamically translation invariant if for any

Q ∈ L2 (FT ) and any q ∈ L2 (Ft) ,

E(Q + q|Ft) = E(Q|Ft) + q.

Such dynamically consistent translation invariant nonlinear expectations may be con-

structed from solutions of Backward Stochastic Difference Equations. These are equations
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to be solved simultaneously for processes Y, Z where Yt is the nonlinear expectation and

the pair (Y, Z) satisfy

Yt −
∑

t≤u<T

F (ω, u, Yu, Zu) +
∑

t≤u<T

ZuMu+1 = Q

for a suitably chosen adapted map F : Ω × {0, · · · , T} × RK × RK×N → RK called the

driver and for Q an RK valued FT measurable terminal random variable. We shall work

in this paper generally with the case K = 1. For all t, (Yt, Zt) are Ft measurable.

For a translation invariant nonlinear expectation the driver F must be independent of

Y and must satisfy the normalisation condition F (ω, t, Yt, 0) = 0. Additionally to ensure

the existence of a solution the driver must satisfy the following two conditions.

(i) For any Y, if Z1 ∼M Z2 (Z1
t−1Mt = Z2

t−1Mt P−a.s. for all t), then F (ω, t, Yt, Z
1
t ) =

F (ω, t, Yt, Z
2
t ) P−a.s. for all t.

(ii) For any Z, for all t, the map Yt → Yt − F (ω, t, Yt, Zu) is P−a.s. a bijection from

RK → RK , up to equality P−a.s.

Finally drivers used in constructing nonlinear expectations must be balanced. A driver

is said to be balanced if it satisfies the following two conditions, for each t, and any Q1, Q2

∈ Qt and two solutions (Y 1, Z1) and (Y 2, Z2)

(iii) P−a.s. for all i, the ith component of F, given by eiF satisfies

eiF (ω, t, Y 2
t , Z1

t )− eiF (ω, t, Y 2
t , Z2

t ) ≥ min
j∈Jt

{
ei(Z

1
t − Z2

t ) (ej − E [Xt+1|Ft])
}

,

with equality only if eiZ
1
t ˜Mt+1eiZ

2
t .

(iv) P−a.s. if

Y 1
t − F (ω, t, Y 1

t , Z1
u) ≥ Y 2

t − F (ω, t, Y 2
t , Z2

u)

then Y 1
t ≥ Y 2

t .

We shall use different drivers for our dynamically consistent bid and ask price sequences

that we denote by Fb, Fa respectively.

For the bid price construction we define

Fb(ω, t, Yt, Zt) =

∫ ∞

−∞
xdΨ(Θt(x))
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where

Θt(x) = Pr (ZtMt+1 ≤ x) .

While for the ask price we define

Fa(ω, t, Yt, Zt) = −
∫ ∞

−∞
xdΨ (1−Θt(−x)) .

It is clear that the normalisation condition Fu(ω, t, Yt, 0) = 0 for u = a, b is satisfied.

For the existence of a solution and condition (i) we observe that if Z1 ∼M Z2 then

Z1
uMu+1 = Z2

uMu+1 P − a.s. and so they have the same one step ahead distribution

functions and so both

Fb(ω, t, Yt, Z
1
t ) = Fb(ω, t, Yt, Z

2
t )

Fa(ω, t, Yt, Z
1
t ) = Fa(ω, t, Yt, Z

2
t )

Condition (ii) is clearly satisfied as Fu, u = a, b are independent of Y. Finally we wish to

check that the driver is balanced. For this consider two solutions (Y 1, Z1) and (Y 2, Z2)

to the backward stochastic difference equations and we consider first condition (iii) We

wish to show that

Fb(ω, t, Y 2
t , Z1

t )− Fb(ω, t, Y 2
t , Z2

t ) ≥ min
j

(
Z1

t − Z2
t

)
Mt+1

Now we may define X = Z1
t Mt+1 and Y = Z2

t Mt+1 and we observe that b(X) >x1

and b(Y ) < yN where x1 is the worst outcome for X and yN is the best outcome for Y.

It follows that b(X)− b(Y ) > x1− yN the worst outcome for X − Y. Hence condition (iii)

holds. A similar argument works for Fa. Condition (iv) follows as F is independent of Y.

Hence one may obtain dynamically consistent sequences of bid and ask prices as non-

linear expectations by solving the backward stochastic difference equations associated

with these drivers. In fact we have for X ∈ L2 (FT ) that

Bt(X) = Y b
t

At(X) = Y a
t

13
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where

Y b
t = Y b

t+1 + F b(ω, t, Y b
t , Zb

t )− Zb
t Mt+1

Taking t conditional expectations we see that

Y b
t = Et

[
Y b

t+1

]
+ F b(ω, t, Y b

t , Zb
t ) (5)

= Et

[
Y b

t+1

]
+

∫ ∞

−∞
xdΨ(Θb

t(x)) (6)

Θb
t(x) = Pr

(
Zb

t Mt+1 ≤ x
)

(7)

= Pr
(
Y b

t+1 − Et

[
Y b

t+1

] ≤ x
)
, (8)

for the bid process and similarly for the ask process

Y a
t = Et

[
Y a

t+1

]
+ F a(ω, t, Y b

t , Zb
t ) (9)

= Et

[
Y a

t+1

]
+

∫ ∞

−∞
xdΨ(Θa

t (x)) (10)

Θa
t (x) = Pr (Za

t Mt+1 ≤ x) (11)

= Pr
(
Y a

t+1 − Et

[
Y a

t+1

] ≤ x
)
. (12)

The equations (5),(6),(7). and (8) constitute our recursion for the bid price sequence, while

(9),(10),(11). and (12) form the recursion for the sequence of ask prices. We observe from

equations (8) and (12) that one may make the computations even when we do not have a

finite state Markov chain and do not identify the process for Zu
t , u = a, b and we just use

the recursions to compute the values for Y u
t , u = a, b and in our applications this is what

we will do.

We now consider this recursion in a two period setting to help fine tune the details of

the procedure. Consider then a risk A2 representing an asset with uncertainty resolved at

time 2. We shall compare treating the two periods as a single period and computing the

bid price in a single step, with what is obtained on employing a two step iteration for two

periods of unit length. For simplicity we suppose that A2 evolves as a Lévy martingale

so that

A2 = A1 + X2

A1 = A0 + X1

14
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where X1, X2 are independent draws from a single zero mean Lévy process at unit time.

If we apply our procedure for the two periods in one step we obtain for the bid price

B = A0 + b(A2 − A0)

where we use for b(X) the distorted expectation of the zero mean random variable X. We

know that b(A2 − A0) < 0 and hence that B < A0.

Now consider the computation in two steps of one period. This will give at time 1 the

value

b1 = A1 + b (A2 − A1)

and we know from the stationarity of the law for the increment,

A2 − A1 = X2

that

b(A2 − A1) = b(X2)

= c

It follows that

b1 = A1 + c

Going one more time step we get

b0 = A0 + c + b(X1)

= A0 + 2c

Now

b(A2 − A0) = b(X1 + X2) ≥ b(X1) + b(X2) = 2c

and hence we get that

B ≥ b0.

We get a better bid price going in one step compared to the two short steps of one period.

However if we think of the penalty b(A2−A0) as a capital charge then this is a charge for
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two periods while the two one step charges are for one period. The correct comparison is

then between

2b(A2 − A0) and 2c.

It is now possible that

2b(A2 − A0) < 2c

making the one step procedure the one with the higher bid. These considerations suggest

that we take the timing factor into account in defining the penalty. Note further that the

continuous time penalty is in the form

∫ T

s

F (ω, t, Yt, Zt)dt.

For a time step of h we revise our recursion to

Y b
t = Et

[
Y b

t+1

]
+ F b(ω, t, Y b

t , Zb
t )h (13)

= Et

[
Y b

t+1

]
+ h

∫ ∞

−∞
xdΨ(Θb

t(x)), (14)

for the bid process and similarly for the ask process

Y a
t = Et

[
Y a

t+1

]
+ F a(ω, t, Y b

t , Zb
t )h (15)

= Et

[
Y a

t+1

]
+ h

∫ ∞

−∞
xdΨ(Θa

t (x)). (16)

5 DYNAMIC HEDGING FOR CAPITAL CONSER-

VATION

Given that the bid and ask price processes are nonlinear expectations we have that both

the profit and the capital are nonlinear expectations. We now take for the stock an

underlying exponential Lévy process with a given risk neutral law. For our time step we

shall work with one week and then we report on dynamic hedging where each week the

hedge position is chosen to minimize the capital reserve to be held against the remaining

uncertainty yet to be resolved. We shall also report on the Black Scholes deltas computed
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at the implied volatility and the capital reserves to be held against such a hedging strategy.

We shall observe that hedging at Black Scholes implied volatilities is considerably more

expensive than the minimum capital hedge. We shall hedge a one year 120 call and a one

year 80 put and in each case we compute the profit, the capital, the rate of return and the

leverage as a function of the level of the spot at week’s end. We present graphs of these

functions at the end of 3, 6, and 9 months along with the bid, ask, mid, and risk neutral

prices initially and the asscoiated profit, capital, return and leverage all computed using

our dynamically consistent recursion. In addition we present graphs for the minimum

capital delta as a function of the spot price also at 3, 6 and 9 months.

The initial spot price is 100 the interest rate is 0.0379 the dividend yield is 0.0229 and

the stock price dynamics calibrated to one year SPX options on July 15 2010 are given

by the variance gamma process with σ = 0.2397, ν = 2.2765 and θ = −0.2109. The V G

process is

XV G(t) = θg(t) + σW (g(t))

where W (t) is a standard Brownian motion and g(t) is an independent gamma process

with mean rate unity and variance ν. The stock price porcess is then given by

S(t) = S(0) exp ((r − q + ω)t + XV G(t)) .

For each of 52 week ends we determine a nonuniform grid between the lower and upper

stock price with a probability of a tenth of a percent of being outside this interval. The grid

is constructed with 100 levels for the stock price at each week end. The grid construction

is based on the procedure described in Mijatović and Pistorius (2010). We know the payoff

at week 52 and all prices, bid, ask and risk neutral equal this payoff at week 52. For each

week end from week 51 to week 1 we work back recursively computing the bid, ask and

risk neutral expectation at each grid point by simulating the process forward for one week

and then computing the required expactations and distorted expectations. The distortion

used is minmaxvar and the stress level is 0.25. At each grid point we numerically solve

an optimization problem to minimize the capital reserve and determine the delta position

in the stock for this grid point. The final output consists of three matrices of size 51 by

100 that contain the bid, ask and risk neutral expectation at each grid point when there

is no hedge. In the presence of an optimized delta hedge we have one more matrix and
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this is capital minimizing delta if the stock is at the particular grid level at the particular

week end. Finally we simulate for one week the stock from the initial start level of 100

to compute the initial bid, ask and risk neutral price. We then get the initial profit,

capital, return and leverage. The one step ahead bid, ask and risk neutral values in the

simulation are interpolated from the stored grid point values as we work back through

the recursion. The results for the unhedged and minimum capital hedges are presented

in two subsections.

5.1 Unhedged Results

We first report on the initial values of the variables of interest for the 80 put and the 120

call in the absence of any dynamic hedging. The variables of interest are the bid, ask, the

mid price, rne the risk neutral expectation, scale the expected absolute deviation from

the median, prf the profit, cap the capital reserve,ret the return and lev the leverage

provided. These are presented in Table 1.

Table 1

Initial Unhedged Values

Variable 80 Put 120 Call

bid 5.0738 1.6162

ask 5.5572 1.8419

mid 5.3155 1.7291

rne 5.1966 1.6988

scale 0.1259 0.0670

prf 0.1189 0.0303

cap 0.4834 0.2256

ret 0.2460 0.1343

lev 0.2605 0.2971

We next present in Figures (2) and (3) graphs of the profit, capital, return and leverage

at 3, 6 and 9 months as a function of the level of the spot price.
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Figure 2: 120 one year Call Profits, Capital Return and Leverage as a function of the spot. At
three months in blue, six months in red and 9 months in black.
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Figure 3: 80 one year put profit, capital, return and leverage as a function of the spot. At
three months in blue, six months in red and 9 months in black.
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5.2 Minimum capital hedge results

We report in this subsection on the results of implementing at each week end, a delta po-

sition that minimizes the post hedge reserve capital charge for the remaining uncertainty.

Again we first present the results on the variables of interest at the initial date in Table

2.

Table 2

Minimum Capital Delta Hedge

Variable 80 Put 120 Call

bid 4.6723 1.5221

ask 4.9465 1.6834

mid 4.8094 1.6028

rne 4.7471 1.5644

scale 0.0681 0.0476

prf 0.0623 0.0384

cap 0.2741 0.1613

ret 0.2273 0.2382

lev 0.2485 0.2948

We present in Figures (4) and (5) the profit, capital, return and leverage at 3, 6 and

9 months for the 120 one year Call and the 80 one year Put as functions of the level of

the spot.

Additionally we present a graph for the delta positions taken in Figures (6) and (7)

to hedge the remaining risk with a view to minimizing reserve capital charges.

We also computed the dynamic levels of profit, capital, return and leverage for both

the 120 one year call and 80 one year put using Black Scholes deltas computed at the

implied volatility. The Black Scholes call deltas were considerably higher and the put

deltas were lower in absolute value than what is observed under the optimal minimum

capital hedge. We report in Table 3 the initial values for hedging at Black Scholes implied.
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Figure 4: Profit, Capital Return and Leverage with a minimum capital dynamic hedge as
functions of the spot for a one year 120 call. At three months in blue, six months in red and
nine months in black.
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Figure 5: Profit, Capital Return and Leverage with a minimum capital dynamic hedge as
functions of the spot for a one year 80 put. At three months in blue, six months in red and
nine months in black.
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Figure 6: Minimum capital delta positions as functions of the spot for the 120 one year call.
At three months in blue, 6 months in red and 9 months in black.
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Figure 7: Minimum capital delta positions as functions of the spot for the 80 one year put. At
three months in blue, 6 months in red and 9 months in black.
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We observe that the capital levels are sufficiently higher for the Black Scholes delta hedge.

Table 3

Black Scholes Delta Hedge

Variable 80 Put 120 Call

bid 3.8532 2.3318

ask 4.8601 3.8047

mid 4.3566 3.0683

rne 4.3386 2.9177

scale 0.1478 0.0904

prf 0.0180 0.1506

cap 1.0069 1.4728

ret 0.0179 0.1023

lev 0.1468 0.0641

6 CONCLUSION

We present first in the static case and then in the dynamic case the argument for adjusting

Black Scholes implied call deltas downwards for a gamma exposure in a left skewed market

when the objective for the hedge is the conservation of capital. For similar reasons the

absolute value of put deltas should be increased to accomodate the costs imposed on

residual risks by the market skewness. The gamma adjustment factor in the static case

is shown to be just a function of the risk neutral distribution that can be calibrated from

the option surface. This could be periodically adjusted as skewness levels are observed to

move around. In the dynamic case one may precompute at the date of trade initiation

a matrix of delta levels as a function of the underlying for the life of the trade and

subsequently one just has to look up the matrix for the hedge. Additionally the matrix

could be periodically recalibrated. Also constructed are matrices for the capital reserve,

the profit, leverage and rate of return remaining in the trade as a function of the spot at

a future date in the life of the trade. These could be periodically recalibrated using the

procedures outlined. The concepts of profit, capital, leverage and return are as described

in Carr, Madan and Vicente Alvarez (2010).

The dynamic computations constitute an application of the theory of nonlinear ex-
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pectations as described in Cohen and Elliott (2010) for a finite state stochastic difference

equation framework. Bid and ask prices are computed as nonlinear expectations using

a penalty driver for the periodic risk that comes from our static model. The dynamic

implementation could be speeded up on employing the static adjustment factors as ap-

proximations where by one estimates gamma exposures by regression or the use of the

Black Scholes gamma.
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