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Abstract: Intra-day transactions of stocks from competing firms in the financial markets are known to
exhibit significant volatility and over-dispersion. This paper proposes some bivariate integer-valued
auto-regressive models of order 1 (BINAR(1)) that are useful to analyze such financial series. These
models were constructed under both time-variant and time-invariant conditions to capture features
such as over-dispersion and non-stationarity in time series of counts. However, the quest for the most
robust BINAR(1) models is still on. This paper considers specifically the family of BINAR(1)s with a
non-diagonal cross-correlation structure and with unpaired innovation series. These assumptions
relax the number of parameters to be estimated. Simulation experiments are performed to assess
both the consistency of the estimators and the robust behavior of the BINAR(1)s under mis-specified
innovation distribution specifications. The proposed BINAR(1)s are applied to analyze the intra-day
transaction series of AstraZeneca and Ericsson. Diagnostic measures such as the root mean square
errors (RMSEs) and Akaike information criteria (AICs) are also considered. The paper concludes that
the BINAR(1)s with negative binomial and COM–Poisson innovations are among the most suitable
models to analyze over-dispersed intra-day transaction series of stocks.

Keywords: BINAR(1); over-dispersion; CML; non-stationarity; diagnostics

1. Introduction

Initially, Pedeli and Karlis (2011) presented an extension of the classical integer-valued
auto-regressive process of order 1 (INAR(1)) by assuming two inter-related simple INAR(1)
processes with paired innovation series (BINAR(1)). Notably, in both the simple uni- and
bivariate auto-regressive discrete-valued processes, the models consist of the survivor part
which connects the current counting time series with its previous lagged observations
and the respective error or innovation terms. In fact, in their proposed BINAR(1) model,
the cross-correlation between the two series was induced solely by the paired innova-
tion terms, yielding a diagonal BINAR structure. Based on this seminal paper, further
developments in BINAR(1) models have occurred, particularly with different types of inno-
vations Sajjadnia et al. (2023), Sharafi et al. (2023), and Pascual and Akhundjanov (2021)),
with various thinning operators Ristić et al. (2009, 2012, and with different mechanisms to
model the inter-relationship between the two series (refer to Yang et al. (2023) and Chen
et al. (2022)). This paper lays emphasis on the alternative representations of the BINAR(1)
process with different innovation terms and a non-diagonal BINAR structure for capturing
the dependence between the series.

In fact, Pedeli and Karlis (2013a) extended the proposed BINAR(1) model in Pedeli and
Karlis (2011) by adding survivor terms from the counter series and allowing paired innova-
tion terms. By allowing for two sources of cross-correlation, the number of parameters to
be estimated increases and complicates the estimation procedure. In addition, the marginal
distribution of the counting series under such assumptions becomes difficult to identify.
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On the other hand, Ristic et al. (2012) and Nastic et al. (2016) proposed a similar BINAR(1)
as Pedeli and Karlis (2013a) but based on negative binomial thinning and independent
innovation terms. This modeling approach relaxes some assumptions on the innovation
distributions and reduces the number of parameters to be estimated. Nastic et al. (2016)
proved that their proposed BINAR(1) provides better AICs than Pedeli and Karlis (2013a)
and the simple BINAR(1) in Pedeli and Karlis (2011).

However, these models have mostly been developed under strict stationary or time-
independent conditions. Mamode Khan et al. (2016) proposed a first BINAR(1) process with
paired Poisson innovations with time-dependent marginal moments. This led the way to
other such BINAR(1) processes with paired negative binomial (NB) and COM–Poisson
(CMP) innovations Jowaheer and Sutradhar (2002); Mamode Khan et al. (2016); Shmueli
et al. (2005); Sunecher et al. (2017). However, these BINAR(1)s consider only the diagonal
cross-correlation structure. This paper, therefore, extends the work of Nastic et al. (2016)
by considering the non-diagonal cross-correlation structure under time-variant moments.
In addition, we compare BINAR(1) processes with different innovation specifications and
identify the most robust BINAR process under mis-specified innovation distributions. The
paper is organized as follows: In Section 2, we present the non-stationary BINAR(1) model
with non-diagonal cross-correlation structure and its properties. Section 3 provides details
on the inferential approach to obtain the model parameters in Section 2. The simulation
study in Section 4 is split into two parts: under some time-dependent covariate design, some
BINAR(1) series is generated with different innovation distributions. In the next subsection,
data are generated under a specified BINAR(1) but are fitted using a BINAR process
with a different innovation distribution. This subsection specifically measures the relative
efficiencies between the two BINAR processes. In Section 5, the different BINAR(1)s are
applied to analyze the AstraZeneca and Ericsson time series. The conclusions are presented
in Section 6.

2. Construction of BINAR(1) Model

Consider the random variable (Y[1]
t , Y[2]

t ), t = 1, 2, 3, . . . , T, where(
Y[1]

t

Y[2]
t

)
=

(
ρ11 ρ12
ρ21 ρ22

)
◦
(

Y[1]
t−1

Y[2]
t−1

)
+

(
R[1]

t

R[2]
t

)
(1)

Here, R[k]
t , k ∈ {1, 2} is the random error term at the tth time point for the kth series,

ρjk, for j, k ∈ {1, 2}, is constant over ∈ [1, 2], and ‘◦’ denotes the binomial thinning operator
such that

ρjk ◦ Yt−1 =

∑
Y[k]

t−1
t=1 bl(ρjk), Y[k]

t−1 > 0,

0 Y[k]
t−1 = 0

(2)

where bl is a binary random variable, with P(bl = 1) = ρjk = 1 − P(bl = 0).
The assumptions underlying the above model are:

(1) R[k]
t is assumed to be independent and identically distributed with mean λ

[k]
t and

variance νkλ
[k]
t with νk > 0, such that for ν = 1, Rt is Poisson (λ

[k]
t ) and for νk > (<

)1, Rt is over (under)-dispersed. Hence, in the above setup, we present a general
distributional form of R[k]

t such that for some specific representation of E(R[k]
t ) and

Var(R[k]
t ), R[k]

t can be shown to follow some popular discrete distributions. For the
special case of over-dispersion, this is discussed in Section 4.

(2)

Cov(Y[k]
t , R[k]

t ) =

{
Var(R[k]

t ), t = u,
0, t ̸= u,

for {t, u} = 1, 2, 3, . . . , T, and hence, Cov(Y[1]
t , R[2]

t+h) = 0 for any h ∈ Z+.
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(3) The pair (R[1]
t , R[2]

t ) is independent, and hence, the inter-relation between Cov(Y[1]
t , Y[2]

t )
is induced by the previous-lagged terms, and hence,

σt,1,2 = ρ11ρ21σt−1,1,1 + ρ12ρ22σt−1,2,2 + ρ11ρ22σt−1,1,2 + ρ12ρ21σt−1,2,1, (3)

where σt,j,k represents the covariance between Y[j]
t and Y[k]

t for {j, k} ∈ {1, 2}.

Under these conditions, it is worthwhile to derive some moments of the proposed
BINAR(1) model using the properties of the binomial thinning properties from Steutel and
Van Harn (1986) as

E(Y[1]
t ) = µ

[1]
t = ρ11µ

[1]
t−1 + ρ12µ

[2]
t−1 + λ

[1]
t , (4)

σt,1,1 = µ
[1]
t + ρ2

11(σt−1,1,1 − µ
[1]
t−1) + ρ2

12(σt−1,2,2 − µ
[2]
t−1) + (ν1 − 1)λ[1]

t , (5)

and, similarly we have

E(Y[2]
t ) = µ

[2]
t = ρ21µ

[1]
t−1 + ρ22µ

[2]
t−1 + λ

[2]
t , (6)

σt,2,2 = µ
[2]
t + ρ2

21(σt−1,1,1 − µ
[1]
t−1) + ρ2

22(σt−1,2,2 − µ
[2]
t−1) + (ν2 − 1)λ[2]

t , (7)

Remark 1. (1) It is clear from the above expressions that for νk ≥ 1 and for t = 1, . . . (T − 1),

if σt−1,k,k > µ
[k]
t−1, then Y[k]

t is over-dispersed.

(2) The marginal distribution of Y[k]
t is difficult to identify and is considered unknown, even for

ν1, ν2 = 1 (Poisson innovations), but the conditional probability distribution f (Y[k]
t |Y[k]

t−1)
can be derived using the binomial thinning and the convolution properties. Note that the
distribution of the innovation terms needs to be known in order to specify the conditional
maximum likelihood (CML) function. In the event that the distribution of the random inno-
vation term is unknown, the CML expression is impossible and a quasi-likelihood estimation
procedure is practically infeasible since the estimation of the dispersion parameter νk requires
some complicated score.

3. Estimation of Parameters

Further to the discussion in Section 2, this section proposes the CML approach to
estimate the unknown parameters of model (1). Using Equation (1) and assuming λ

[k]
t =

exp(xtβ
[k]), where β[k] is a (p × 1) regression vector for the kth series, which implies the

vector of unknown parameters is ϵ = (ρ11, ρ12, ρ21, ρ22, ν1, ν2) is a 2(p + 3) vector, then
using the convolution property, the conditional distribution function is given by

f (y[1]t y[2]t |y[1]t−1, y[2]t−1) =
u

∑
k=0

v

∑
j=0

f1(k) f2(s)P(R[1]
t = y[1]t − k)P(R[2]

t = y[2]t − s)) (8)

where u = min(Y[1]
t Y[1]

t−1) and v = min(Y[2]
t Y[2]

t−1). Here, we define

f1(k) =
k

∑
j1=0

(
y[1]t−1

j1

)(
y[2]t−1

k − j1

)
ρ

j1
11(1 − ρ11)

y[1]t−1−j1 ρ
k−j1
12 (1 − ρ12)

y[2]t−1−k+j1 (9)

f2(s) =
s

∑
j2=0

(
y[2]t−1

j2

)(
y[1]t−1

s − j2

)
ρ

j2
22(1 − ρ22)

y[2]t−1−j2 ρ
s−j2
21 (1 − ρ21)

y[1]t−1−s+j2 (10)

Then, we can write the conditional likelihood function as L(ϵ) = ∏T
t=2 f (Y[1]

t , Y[2]
t |y[1]t−1,

Y[2]
t−1). The maximization of L(ϵ) is achieved using the standard optim routine in R with

quasi-Newton approaches (BFGS). The asymptotic properties of the CML estimators are
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established in Pedeli and Karlis (2011) and Franke and Rao (1995). The one-step-ahead
expected mean of Y[k]

t |Y[k]
t−1 is given by

E(Y[1]
t+1|y

[1]
t , y[2]t ) = ρ̂11y[1]t + ρ̂12y[2]t + λ̂

[1]
t+1 (11)

E(Y[2]
t+1|y

[1]
t , y[2]t ) = ρ̂21y[1]t + ρ̂22y[2]t + λ̂

[2]
t+1 (12)

Here, we have λ̂
[k]
t = exp(xt β̂

[k]).

4. Simulation Study
4.1. Data Generating Processes and Results

This section presents simulation experiments where series of counts are generated
using the BINAR(1) in Equation (1). We consider different distributions for the innovations
{R[1]

t , R[2]
t }, specifically,

(1) BINAR(1)NB (negative binomial): The error terms R[k]
t are assumed to follow the

ecological definition of the NB as illustrated in Jowaheer et al. (2017) such that
E(R[k]

t ) = λ
[k]
t , Var(R[k]

t ) = λ
[k]
t + ck[λ

[k]
t ]2, ck > 0, and here, the index of over-

dispersion is denoted by ck.
(2) BINAR(1) CMP (COM–Poisson): Following Shmueli et al. (2005), under the COM–

Poisson assumption, E(R[k]
t ) = λ

[k]
t = θ

[k]
t

1/νk − νk−1
2νk

and Var(R[k]
t ) =

θ
[k]
t

1/νk

νk
. For νk <

1, Shmueli et al. (2005) proved that R[k]
t is over-dispersed.

(3) BINAR(1)G (geometric): Using the geometric probability definition in Popovic et al.

(2016), E(R[k]
t ) = λ

[k]
t and Var(R[k]

t ) = λ
[k]
t + [λ

[k]
t ]2.

(4) For the BINAR(1)P (Poisson) model, refer to Section 2.

Note: The link functions in BINAR(1)NB, BINAR(1)G, and BINAR(1)P are commonly
given by λ

[k]
t = exp(xtβ

[k]), while for BINAR(1)CMP, θ
[k]
t = exp(xtβ

[k]). Under this

connotation, we denote the link function by γ
[k]
t = exp(xtβ

[k]). Suppose the covariate
design is given by

xt1 =


1 (t = 1, . . . , T/4),
2t (t = (T/4) + 1, . . . , 3T/4),
cos( 2πt

6 ) (t = (3T/4) + 1, . . . , T),

xt2 =


sin( 3πt

12 ) (t = 1, . . . , T/4),
cos(πt

6 ) (t = (T/4) + 1, . . . , 3T/4),
sin( 2πt

6 ) (t = (3T/4) + 1, . . . , T),

where γ
[k]
t = exp(β

[k]
1 xt1 + β

[k]
2 xt2), with β

[1]
1 = 1.5 and β

[1]
2 = 1.00, β

[2]
1 = −0.95 and

β
[2]
2 = 2.50, k ∈ {1, 2}. R[k]

t is then generated with parameters λ
[k]
t . Note that for t = 1,

Y[k]
t = R[k]

t , for k ∈ {1, 2}. Standard routines are used in R for simulating the Poisson and

NB innovations. As for the COM–Poisson innovations R[k]
t , the COM–Poisson package in

R is used. For the above simulation study, we assume c1 = 0:5; c2 = 0:8 and ν1 = 0:2; ν2 = 0:3.
The IOD represents the corresponding over-dispersed coefficient.

The results in Tables 1 and 2 based on 2000 replications for each combination present
the mean estimate and the corresponding standard errors. If the values of the parameter
estimators are examined for each model, they become closer to true values as T increases.
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Table 1. Simulated mean estimates of the model parameters and the corresponding standard er-
ror (s.e.).

T Model β̂
[1]
1 β̂

[1]
2 β̂

[2]
1 β̂

[2]
2

60 BINAR(1)P 1.4651 1.0233 −0.9555 2.4521
(0.5871) (0.3881) (0.4662) (0.4012)

BINAR(1)NB 1.5221 1.0122 −0.9488 2.5221
(0.3892) (0.3233) (0.2671) (0.3503)

BINAR(1)G 1.4771 0.9452 −0.8956 2.6125
(0.3561) (0.2981) (0.2892) (0.3311)

BINAR(1)CMP 1.5501 1.1121 −0.9231 2.415
(0.3701) (0.2302) (0.2999) (0.3560)

200 BINAR(1)P 1.5230 0.9899 −0.9476 2.5101
(0.3775) (0.2892) (0.3579) (0.3551)

BINAR(1)NB 1.4818 1.1210 −0.9559 2.4818
(0.3542) (0.3045) (0.2222) (0.3198)

BINAR(1)G 1.5212 1.2320 −0.9444 2.5321
(0.2807) (0.2616) (0.2375) (0.3042)

BINAR(1)CMP 1.4857 0.9875 −0.9568 2.5320
(0.2881) (0.1974) (0.2065) (0.2762)

600 BINAR(1)P 1.5101 1.0142 −0.9555 2.4998
(0.1542) (0.1101) (0.1457) (0.2015)

BINAR(1)NB 1.4986 0.9972 −0.9469 2.521
(0.1066) (0.0873) (0.1066) (0.1701)

BINAR(1)G 1.5091 0.9987 −0.9561 2.5011
(0.1226) (0.2032) (0.1653) (0.1876)

BINAR(1)CMP 1.4988 1.0101 −0.9499 2.4980
(0.1501) (0.1320) (0.1503) (0.1712)

Table 2. Simulated mean estimates of the model parameters and the corresponding standard
error (s.e).

T Model ρ̂11 = 0.9 ρ̂22 = 0.9 ρ̂12 = 0.3 ρ̂21 = 0.3 IOD1 IOD2

60 BINAR(1)P 0.8890 0.9201 0.2881 0.3122
(0.4522) (0.3601) (0.2832) (0.2908)

BINAR(1)NB 0.9322 0.8899 0.3221 0.2987 0.5661 0.7871
(0.2301) (0.3281) (0.2344) (0.1981) (0.3531) (0.2809)

BINAR(1)G 0.8789 0.9102 0.2897 0.3159
(0.2452) (0.3566) (0.2011) (0.1892)

BINAR(1)CMP 0.9157 0.9162 0.2817 0.3139 0.2335 0.3187
(0.2201) (0.2872) (0.1981) (0.1976) (0.2861) (0.2472)

200 BINAR(1)P 0.9101 0.8991 0.3201 0.2952
(0.3709) (0.2986) (0.2329) (0.2221)

BINAR(1)NB 0.8775 0.9212 0.2891 0.3312 0.4807 0.8122
(0.1975) (0.2605) (0.1965) (0.1652) (0.2881) (0.2227)

BINAR(1)G 0.9122 0.8829 0.3329 0.2899
(0.1976) (0.3017) (0.1875) (0.1563)

BINAR(1)CMP 0.8988 0.9035 0.3202 0.2980 0.2512 0.3331
(0.1836) (0.2356) (0.1775) (0.1652) (0.2320) (0.1854)
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Table 2. Cont.

T Model ρ̂11 = 0.9 ρ̂22 = 0.9 ρ̂12 = 0.3 ρ̂21 = 0.3 IOD1 IOD2

600 BINAR(1)P 0.8988 0.9042 0.2987 0.3015
(0.1892) (0.2042) (0.1568) (0.1892)

BINAR(1)NB 0.9015 0.8972 0.3052 0.2976 0.5023 0.7986
(0.1237) (0.2222) (0.1380) (0.1112) (0.1019) (0.1370)

BINAR(1)G 0.8972 0.9016 0.3110 0.2976
(0.1131) (0.1222) (0.1065) (0.1001)

BINAR(1)CMP 0.9015 0.8995 0.2989 0.3015 0.2508 0.3331
(0.1001) (0.1272) (0.1329) (0.1104) (0.1076) (0.1111)

4.2. Comparison Results

For a given bivariate series of over-dispersed data, it is understood that BINAR(1)P,
BINAR(1)NB, BINAR(1)G, and BINAR(1)CMP could be used for analysis, and thus, it
is worth investigating the bias effect on the estimators of a BINAR(1) when the actual
data are simulated by another of the above mentioned BINAR(1) processes. We start
with BINAR(1)P simulated data and apply the other three BINAR(1) models. The relative
efficiency (RE) ratios of the regression and thinning effects are reported, i.e., REW|M =
(s.e)BINAR(1)W
(s.e)BINAR(1)M , where W is the working BINAR(1) process and M is the exact BINAR(1)
process. The data are simulated using the same parameterization as above, with the same
number of replications. The simulated mean REs assuming BINAR(1)P, BINAR(1)NB,
BINAR(1)G, and BINAR(1)CMP models, are, respectively, given in Tables 3–6.

Table 3. Simulated mean REs assuming BINAR(1)P model.

T Model β̂
[1]
1 β̂

[1]
2 β̂

[2]
1 β̂

[2]
2 ρ̂11 = 0.9 ρ̂22 = 0.9 ρ̂12 = 0.3 ρ̂21 = 0.3

60 RENB|P 0.5781 0.6777 0.5055 0.5981 0.6022 0.4609 0.6606 0.5909

REG|P 0.7880 0.8082 0.6522 0.7001 0.7881 0.6551 0.8090 0.7821

RECMP|P 0.6070 0.6602 0.6771 0.6231 0.6111 0.5662 0.6382 0.6444

200 RENB|P 0.4301 0.3112 0.4211 0.5010 0.3651 0.4301 0.5001 0.3676

REG|P 0.5222 0.3201 0.4301 0.5661 0.4000 0.5212 0.5161 0.4331

RECMP|P 0.3667 0.4005 0.3991 0.4592 0.3881 0.3976 0.4892 0.4231

600 RENB|P 0.2333 0.1143 0.3301 0.2209 0.1667 0.2998 0.3207 0.2337

REG|P 0.2706 0.2112 0.3015 0.3221 0.2561 0.3541 0.3441 0.2201

RECMP|P 0.1991 0.1200 0.3229 0.2159 0.1886 0.2341 0.2781 0.1980

As seen in Table 3, under BINAR(1)P simulated data, where the innovations are
generated via Poisson model, the BINAR(1)NB and BINAR(1)CMP models seem to provide
more efficient estimators. For larger time points, both BINAR(1)NB and BINAR(1)CMP
model yield estimators with much lower standard errors than the BINAR(1)P model.
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Table 4. Simulated mean REs assuming BINAR(1)NB model.

T Model β̂
[1]
1 β̂

[1]
2 β̂

[2]
1 β̂

[2]
2 ρ̂11 = 0.9 ρ̂22 = 0.9 ρ̂12 = 0.3 ρ̂21 = 0.3

60 RENB|P 1.2331 0.9890 1.6432 1.8995 0.8788 1.6678 1.3501 1.0111

REG|P 1.0101 0.9995 1.1105 0.9063 1.0001 1.0542 1.2110 1.0722

RECMP|P 0.8093 1.1551 0.9899 1.0001 0.9099 1.0651 0.9994 1.0311

200 RENB|P 2.0541 1.6660 1.8988 1.4321 0.9899 1.2201 1.0871 1.5611

REG|P 1.0056 1.1221 1.0005 1.0043 0.9997 1.2022 1.0762 1.1167

RECMP|P 0.9996 1.0056 1.0121 0.9996 1.0233 1.0064 0.9988 1.0112

600 RENB|P 1.3333 1.5042 1.2331 1.4320 1.1665 1.3990 0.9995 1.1335

REG|P 1.0441 1.0084 1.0771 0.9997 1.1782 1.0301 1.0014 1.0656

RECMP|P 0.9999 1.0002 0.9996 0.9098 0.9936 1.0352 0.9890 1.0012

It is clear that for the BINAR(1)NB model simulated series, the BINAR(1)P and
BINAR(1)G model estimators are not as efficient as the BINAR(1)CMP, while the BI-
NAR(1)CMP estimators have almost the same level of efficiency, in particular for a larger
number of time points.

Table 5. Simulated mean REs assuming BINAR(1)G model.

T Model β̂
[1]
1 β̂

[1]
2 β̂

[2]
1 β̂

[2]
2 ρ̂11 = 0.9 ρ̂22 = 0.9 ρ̂12 = 0.3 ρ̂21 = 0.3

60 RENB|P 1.8991 1.0341 1.1167 1.8899 1.0952 1.1209 1.6667 1.2331

REG|P 0.8993 0.9088 0.9976 1.0012 0.9989 1.0022 0.9998 0.9552

RECMP|P 0.9191 1.0035 0.9899 1.0222 0.9997 0.9987 0.9890 1.0044

200 RENB|P 1.5662 1.1120 1.0771 1.1242 1.1402 1.3333 1.3021 1.1101

REG|P 0.6707 0.4313 0.5662 0.8987 0.9562 0.9877 0.8917 0.9001

RECMP|P 0.7761 0.5612 0.6672 0.9631 0.9870 0.9660 0.8230 0.8652

600 RENB|P 1.3241 1.1111 1.4321 1.2012 1.1555 1.4452 1.3201 1.0998

REG|P 0.4320 0.3309 0.3678 0.5555 0.7812 0.6702 0.6712 0.8688

RECMP|P 0.5420 0.3812 0.4552 0.5402 0.6612 0.7889 0.6809 0.7677

Table 6. Simulated mean REs assuming BINAR(1)CMP model.

T Model β̂
[1]
1 β̂

[1]
2 β̂

[2]
1 β̂

[2]
2 ρ̂11 = 0.9 ρ̂22 = 0.9 ρ̂12 = 0.3 ρ̂21 = 0.3

60 RENB|P 1.6998 1.8972 1.5132 1.6082 1.1928 1.6699 2.6781 1.4991

REG|P 1.0881 1.4331 1.3031 1.5421 1.1802 1.2115 1.5231 1.8802

RECMP|P 1.0561 1.2301 1.2778 1.4231 1.0112 1.2310 1.3112 1.2402

200 RENB|P 1.2303 1.2102 1.2561 1.0321 1.0112 1.2221 1.2310 1.3683

REG|P 1.1011 1.3222 1.2314 1.0112 1.0231 1.0123 1.2301 1.3402

RECMP|P 1.0331 1.1111 1.2042 1.2356 1.1011 1.0042 1.2212 1.2212

600 RENB|P 1.1333 1.0143 1.0332 1.0220 1.1321 1.0321 1.0221 1.0317

REG|P 1.0012 1.0102 1.0056 0.9989 1.0562 1.0510 1.0414 1.0201

RECMP|P 0.9995 1.0901 1.0209 0.9900 0.9967 1.0340 1.0781 1.0801



J. Risk Financial Manag. 2024, 17, 100 8 of 13

From Tables 5 and 6, it is clearly seen that under the true model BINAR(1)G, the
BINAR(1)NB and BINAR(1)CMP estimators show some slight efficiency and robustness,
while in Table 5, in some cases of T = 600, the BINAR(1)NB estimators almost share the
same level of efficiency as BINAR(1)CMP. Thus, we could conclude from these tables that
BINAR(1)NB and BINAR(1)CMP are appropriate to model over-dispersed bivariate series
where the innovation distributions may be unknown.

5. Application to AstraZeneca and Ericsson Data Sets

In this section, we analyze the tick by tick AstraZeneca and Ericsson data using the dif-
ferent BINAR(1) models: BINAR(1)P, BINAR(1)NB, BINAR(1)G, and BINAR(1)CMP. These
data are downloaded from the Ecovision system and represent the most frequently traded
stocks on the Stockholmsbrsen, that opens at 09.30 and closes at 17.20. The AstraZeneca
stock series data are collected for the period 2–22 July 2002, wherein the data in this study
were aggregated into one-minute intervals of time and are based on minute 5501 to 5800,
thus making 300 observations Quoreshi (2006, 2008).

As seen from examination of the data sets, some key descriptive statistics, including
the mean, standard deviation, skewness, and kurtosis, in Table 7 are highly skewed. The
minimum values of both the AstraZeneca and Ericsson series were recorded at 0.00 and
the maximum values were at 17.00 and 64.00, respectively. During the sample period,
the highest standard deviation value was recorded in the Ericsson and the lowest average
value was in the AstraZeneca. Moreover, the plot of the Ericsson data is presented in
Figure 1. Then, the autocorrelation function (ACF) and the partial ACF are, respectively,
shown in Figures 2 and 3 for Ericsson. Similarly, a time-series plot of the AstraZeneca
data is shown in Figure 4. The ACF and PACF plots are presented in Figures 5 and 6,
respectively.

Table 7. Descriptive statistics for Ericsson and AstraZeneca data.

Mean Min Max Standard
Deviation Skewness Kurtosis

AstraZeneca 1.33 0.00 17.00 1.79 2.44 9.88
Ericsson 8.12 0.00 64.00 6.36 2.05 7.16
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Figure 1. Ericsson plot.
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Figure 2. ACF for Ericsson plot.
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Figure 3. PACF for Ericsson plot.
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Figure 4. AstraZeneca plot.
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Figure 5. ACF for AstraZeneca plot.
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Figure 6. PACF for AstraZeneca plot.

From Figures 2 and 5, the Ericsson and AstraZeneca time series both display an
almost auto-regressive pattern and their PACFs in Figures 3 and 6 show that the lag-1
autocorrelation has the highest peak, as compared to the other significant lags. However,
the sample cross-correlation is nearly −0.01.

When applying the BINAR(1) models, we consider the effects of some categorical
(0–1) variables such as news (xt,1), the Friday effect (xt,2), and the time of day effect
(xt,3), where 0 denotes the reference code. The link predictor can, thus, be expressed as:
λ
[k]
t = exp(β̂

[k]
0 + β̂

[k]
1 xt,1 + β̂

[k]
2 xt,2 + β̂

[k]
3 xt,3). As seen in Tables 8 and 9 the four bivariate

models illustrate that the factors news, Friday effect, and time of day effects are significant
and contribute positively to explain the variation in the stock transactions of the two
series. We can notice that the BINAR(1)NB and BINAR(1)CMP provide the estimates with
lower standard errors than BINAR(1)P and BINAR(1)G. Using the corresponding links in
Section 5, the contributory effects can be computed easily. Since BINAR(1)P, BINAR(1)G,
and BINAR(1)NB share a common link, it can be noticed that the factors related to Ericsson
contribute more to its link predictor than for AstraZeneca. This helps to conclude that
investment in Ericsson seems more lucrative.
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Table 8. Estimates with standard errors under the BINAR(1) models for AstraZeneca (ast) data sets.

Model INTCast NEWSast FRIast T IMEast

BINAR(1)P 1.3451 0.3141 0.2551 0.1401
(0.0431) (0.0285) (0.0323) (0.0444)

BINAR(1)G 1.5612 0.3441 0.3022 0.1221
(0.0376) (0.0276) (0.0229) (0.0356)

BINAR(1)NB 1.3210 0.3562 0.2616 0.1011
(0.0253) (0.0181) (0.0188) (0.0152)

BINAR(1)CMP 0.8911 0.2991 0.3422 0.09871
(0.0389) (0.0202) (0.0222) (0.0112)

Table 9. Estimates with standard errors under the BINAR(1) models for Ericsson (eric) data sets.

Model INTCeric NEWSeric FRIeric T IMEeric

BINAR(1)P 0.8971 0.1021 0.3461 0.4009
(0.0431) (0.0285) (0.0323) (0.0444)

BINAR(1)G 0.8612 0.1054 0.3276 0.3201
(0.0310) (0.0289) (0.0277) (0.0392)

BINAR(1)NB 0.8452 0.1101 0.3482 0.3982
(0.0312) (0.0233) (0.0223) (0.0310)

BINAR(1)CMP 0.3909 0.3561 0.4872 0.4061
(0.0502) (0.0521) (0.0661) (0.0321)

The corresponding over-dispersion indices in Table 10 are proved significant, as well
as the thinning dependence coefficients. From Tables 8–10 and Equations (11) and (12),
the root mean square errors (RMSEs) and Akaike information criterion (AICs) were com-
puted from the log-likelihood values in the optimum function. The AICS in Table 11 show
that BINAR(1)NB and BINAR(1)CMP are more reliable models for the above over-dispersed
series. Here, the RMSEs represent the sum of squared differences between true values and
one-step conditional expectations using the same training period from 3 to 22 July 2002.

Table 10. Estimates and standard errors of the over-dispersion indices and correlations under the
BINAR(1) models for AstraZeneca and Ericsson data sets.

Model IODast IODeric ρ11 ρ12 ρ21 ρ22

BINAR(1)P 0.3501 0.1501 0.0911 0.4771
(0.0887) (0.0571) (0.0602) (0.0687)

BINAR(1)G 0.2980 0.0909 0.1010 0.5032
(0.0503) (0.0455) (0.0222) (0.0333)

BINAR(1)NB 0.4322 0.1031 0.2885 0.0888 0.0911 0.0818
(0.0853) (0.0981) (0.0488) (0.0252) (0.0187) (0.0333)

BINAR(1)CMP 0.7811 0.1091 0.4422 0.09010 0.0810 0.0761
(0.1103) (0.1011) (0.0321) (0.0303) (0.0219) (0.0551)

Table 11. Goodness-of-fit criteria.

BINAR(1)P BINAR(1)G BINAR(1)NB BINAR(1)CMP

AICs 2331.210 2011.210 1890.545 1991.321
RMSEast 4.321 4.051 3.761 3.788
RMSEeric 5.011 4.899 4.320 3.891
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6. Conclusions

This paper extends the research findings of Nastic et al. (2016) and illustrates that
the family of BINAR(1) models where the respective innovations are independent yield
better AICs than the BINAR(1) model, induced by correlated innovations, or those that
incorporate both sources of cross-correlation through correlated innovations and previous-
lagged survivors. In this work, the proposed BINAR(1)s are adapted to the non-stationary
setups with several popular innovation distributions: geometric, negative binomial and
COM–Poisson. We also noticed that under mis-specified innovation distributions, the BI-
NAR(1)NB and BINAR(1)CMP yield reliable results. Hence, these two competing models
are highly commendable for time series of counts that exhibit simultaneous significant
over-dispersion. On the other hand, the paper offers a variety of BINAR(1) models suitable
for financial stock series. Last but not least, the proposed models provide the financial
analysts insights about the forecast number of transactions subject to the market dynamics.
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