
Citation: Steffensen, Mogens, and

Savannah Halling Vikkelsøe. 2024. On

Smoothing and Habit Formation of

Variable Life Annuity Benefits. Journal

of Risk and Financial Management 17:

75. https://doi.org/10.3390/

jrfm17020075

Academic Editors: Shuangzhe Liu

and Svetlozar (Zari) Rachev

Received: 3 January 2024

Revised: 7 February 2024

Accepted: 9 February 2024

Published: 13 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

On Smoothing and Habit Formation of Variable Life
Annuity Benefits
Mogens Steffensen † and Savannah Halling Vikkelsøe *,†

Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
mogens@math.ku.dk
* Correspondence: xgl102@alumni.ku.dk
† These authors contributed equally to this work.

Abstract: This paper studies optimal consumption and investment strategies with lifetime uncertainty
to design a smooth pension product. In a simplified Black–Scholes market, we investigate three
strategies for consumption and investment: the classical strategy, the habit strategy, and the hybrid
strategy. Incorporating additive habit formation in preferences leads to a request for less consumption
volatility. Studying the consumption dynamics, it turns out that the hybrid strategy complies with
the same preferences as the habit strategy. In our design of a smooth pension product, we are highly
inspired by the consumption structure under the hybrid strategy and let consumption be specified as
a time-dependent weighted average of last year’s consumption level and a standard market rate life
annuity. We give two approaches for the investment portfolio. The numerical examples show that
consumption under these approaches is less volatile than consumption under the classical strategy.

Keywords: optimal consumption and investment; consumption dynamics; smooth pension product;
decumulation phase

1. Introduction

The Danish Financial Supervisory Authority frequently publishes an evaluation of
the current financial risks that dominate the Danish pension and insurance market. In
their latest evaluation, DFSA (2022a), the focus is on the interest rate, inflation, and the risk
of recession. These factors create a volatile and insecure financial market. Thus, Danish
pension companies are encouraged to revisit the pension products they offer and reassess
whether these meet the investor’s potential preferences for smoothing. The aim is to
maintain the investor’s interests and keep the investor’s faith in the pension companies.

Most Danish pension companies offer market-rate pension products, where the size
of the pension benefit depends on the return on investing pension savings in risky assets.
Such products are comparable with variable life annuities. Thus, increased volatility and
insecurity in the financial market might increase the need for the stability of pension
benefits. In terms of optimal stochastic control theory with lifetime uncertainty, we think of
the pension benefits as the consumption of an investor.

With stochastic optimal control theory, this paper aims to present optimal consumption
and investment strategies that inspire the design of a smooth pension product.
Merton (1969, 1971) formalized and solved the original problem of maximizing the to-
tal expected utility of intertemporal consumption and terminal wealth of an investor over a
fixed time interval. Lifetime uncertainty was introduced to the stochastic optimal control
problem by Richard (1975). The result of optimal consumption from the above literature
resembles the design of a standard market rate life annuity offered by most Danish pension
companies.

Introducing additive habit formation in preferences to the stochastic optimal control
problem can explain the request for smooth consumption; see Bruhn and Steffensen (2013).
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The habit level of an investor depends on past consumption. By introducing habit for-
mation to the problem, we assume that the investor only obtains utility from the current
consumption level over the current habit level. Thus, we consider the current consump-
tion level relative to past consumption. Munk (2008) studies optimal consumption and
investment strategies with additive habit formation in preferences and stochastic variations
in investment opportunities. He concludes that habit formation in preferences reduces
the speculative investments of the investor to ensure the habit level as a minimum level
of consumption.

Kashif et al. (2020) investigate different optimal consumption and investment strate-
gies for university endowment funds. Their objective is to find a strategy that smooths
consumption over time. They present an ad hoc consumption strategy called the hybrid
strategy. Consumption is specified as a weighted average of last year’s consumption level
and a constant proportion of the current wealth of the investor. They show that the hybrid
strategy is the least volatile strategy for consumption compared to the optimal consump-
tion strategy in Merton (1969, 1971) and to consumption defined as a constant proportion
of the current wealth. These strategies can be translated to pension product designs by
introducing lifetime uncertainty.

This paper aims to understand which preferences lead to the request for consumption
stability. We can only design a smooth pension product that meets these preferences with
such an understanding. A main contribution is to connect the hybrid strategy suggested
by Kashif et al. (2020) with the consumption profile arising from habit formation in the
preferences. We realize through studying the consumption dynamics that the products
they form overlap. This suggests continuing the design work within the class of hybrid
strategies since we then know more about which preferences they satisfy.

We aim for a smooth pension product that is feasible, transparent, and fair from the
perspective of both the investor and the pension company. An already existing smooth
pension product is Tidspension, as discussed by Bruhn and Steffensen (2013). This pension
product includes a buffer account to achieve a smoothing effect on consumption, increasing
the design’s complexity. We seek for even more simplicity.

The rest of the paper is structured as follows. Section 2 sets up the general framework
of the investment market and the utility maximization problem and introduces lifetime
uncertainty to the problem. Section 3 presents three strategies for consumption and in-
vestment: the classical strategy, the habit strategy, and the hybrid strategy. Continuing to
Section 4, the dynamics of consumption under the three strategies are studied. Moreover,
the similarities between the consumption dynamics under the habit and hybrid strategies
are investigated. In Section 5, the three strategies inspire two approaches for a smooth
pension product. Section 6 presents numerical examples of the classical strategy and the
two approaches. The conclusion of the results is given in Section 7. Appendix A contains
the proofs of the consumption dynamics from Section 4.

2. The Model

Initially, we set up the general framework of the investment market and the utility
maximization problem. Moreover, we introduce lifetime uncertainty to translate the results
into designs of pension products.

2.1. The General Framework

This paper considers an investor who invests continuously in a complete Black–Scholes
market over a fixed time interval [0, T]. The risk-free asset Bt (a bond) follows the dynamics
given by

dBt = rBtdt,

B0 = b0.
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The risky asset St (a stock) is governed by

dSt = λStdt + σStdWt,

S0 = s0,

where Wt is a Brownian motion under the probability space (Ω,F , P). For simplicity, we
assume that the interest rate r, the mean rate of return λ, and the volatility σ are constants.
We consider this rather simple investment market to avoid unnecessary complexity of
the calculations and the associated results. See, e.g., Munk (2008) for a similar utility
maximization problem in a more complex investment market with higher dimensions of
the risky asset and stochastic interest rate.

The investor has initial wealth x0 at time t = 0. The wealth of the investor at time t is
denoted by Xt, and the proportion of wealth invested in the risky asset at time t is denoted
by πt. The remaining proportion, 1 − πt, is invested in the risk-free asset. The investor has
consumption rate ct at time t. Hence, wealth evolves by

dXt = (r + πt(λ − r))Xtdt + πtσXtdWt − ctdt,

X0 = x0.
(1)

The investor allocates consumption and investment over [0, T] to maximize the ex-
pected utility. Merton (1969, 1971) formalized this utility maximization problem by

max
c,π

E
[ ∫ T

0
U(t, ct)dt + L(XT)

]
, (2)

subject to the wealth dynamics (1) and the constraint ct ≥ 0 for all t ≥ 0. Here, U and L are
interpreted as the utility functions for consumption and terminal wealth, respectively. The
problem given by (2) is a so-called stochastic optimal control problem, and the dynamic
programming technique solves it.

Throughout the paper, we consider power utility, which is characterized by a constant
relative risk aversion γ (CRRA), constant elasticity of intertemporal substitution γ−1 (EIS),
and a constant subjective discount rate of time preference ρ ≥ 0, i.e., the impatience factor.
Hence, the utility functions for consumption and terminal wealth are specified as

U(t, c) = e−ρt 1
1 − γ

c1−γ and L(x) = e−ρT 1
1 − γ

x1−γ, (3)

with γ ∈ (0, ∞) \ {1}. For γ = 1, we have logarithmic utility, since limγ→1
1

1−γ (c
1−γ − 1) =

log(c). In Section 3, we derive the optimal controls for γ ∈ (0, ∞) \ {1}, but we observe
that these also hold for γ = 1.

To derive the solution of (2), the problem is embedded in an (optimal) value function
given by

V(t, x) = sup
c,π

Et,x

[ ∫ T

t
e−ρ(s−t)

(
1

1 − γ
c1−γ

s ds +
1

1 − γ
X1−γ

s dεT(s)
)]

, (4)

where εT(·) = 1{T≤·} and Et,x is the conditional expectation given that Xt = x. Regarding
the integral of the terminal wealth, we have used the same notation as Bruhn and Steffensen
(2013). The value function is the indirect utility from wealth at t ∈ [0, T]. Hence, the value
function is often called the indirect utility function in the literature.

2.2. Introducing Lifetime Uncertainty

To consider the above framework in life insurance, we introduce lifetime uncertainty
to the utility maximization problem. Let the investor’s lifetime be denoted by the non-



J. Risk Financial Manag. 2024, 17, 75 4 of 27

negative random variable τ defined on the probability space (Ω,F , P). The mortality rate
or the hazard function is then defined by

µt = lim
z→0

P(t ≤ τ < t + z | τ ≥ t)
z

. (5)

As the investor has no utility from bequest, we add the income of µ∗
t Xt to the wealth

dynamics (1) (see, e.g., Konicz et al. 2015). The intuition is that if there is no utility from
bequest, the investor is willing to give up the wealth in case of death. For this wealth,
the insurance company is willing to pay the so-called mortality credits. They work as a
premium payment for reversed life insurance. It can be shown that Xt is the optimal life
insurance sum (see, e.g., Richard (1975) or Kraft and Steffensen (2008)). The function µ∗

t
is called the pricing intensity and is decided by the insurance company. Then, the wealth
evolves by

dXt = (r + µ∗
t + πt(λ − r))Xtdt + πtσXtdWt − ctdt,

X0 = x0.
(6)

Now, given the modified wealth dynamics (6), the value function is given by

V(t, x) = sup
c,π

Et,x

[ ∫ T

t
e−
∫ s

t (ρ+µu)du
(

1
1 − γ

c1−γ
s ds +

1
1 − γ

X1−γ
s dεT(s)

)]
, (7)

where Et,x is the conditional expectation given that the investor is alive at time t ∈ [0, T]
and holds wealth Xt = x. Here, we assume that the investor retires at time 0. Thus, we
focus on the decumulation phase of the investor. The utility functions are multiplied by
the conditional probability that the investor survives from time t to s given that she is
alive at time t ≤ s, i.e., exp(−

∫ s
t µudu). Reasonably, the investor only obtains utility from

consumption and terminal wealth as long as she is alive.
This paper aims to solve the utility maximization problem given by (7) under three

different strategies and interpret the optimal controls as the pension benefits and the
investment portfolio in the decumulation phase of the investor. We consider the classical
strategy derived directly from (7) without terminal wealth in contrast to two strategies
carefully chosen to achieve a smoothing effect on consumption.

3. Three Strategies for Consumption and Investment

In this section, we solve the utility maximization problem given by (7) under three
different strategies. The first strategy is derived directly from the situation without terminal
wealth and is considered classical. In the second strategy, we allow for additive habit
formation in preferences. We will refer to this strategy as the habit strategy. Continuing to
the third strategy, we examine the hybrid strategy, which is an ad hoc smoothing strategy
for consumption presented by Kashif et al. (2020).

3.1. The Classical Strategy

Initially, we consider the classical strategy and solve the value function given by

V(t, x) = sup
c,π

Et,x

[ ∫ T

t
e−
∫ s

t (ρ+µu)du 1
1 − γ

c1−γ
s ds

]
, (8)

subject to the wealth dynamics (6) and the constraint ct ≥ 0 for all t ≥ 0. Here, we assume
that the investor has utility solely from intertemporal consumption, i.e., we omit utility
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from terminal wealth. Using the technique of dynamic programming, we find and solve
the corresponding Hamilton–Jacobi–Bellman (HJB) equation given by

0 = Vt − (ρ + µ)V + sup
c,π

{
1

1 − γ
c1−γ + ((r + µ∗ + π(λ − r))x − c)Vx

+
1
2

π2σ2x2Vxx

}
,

V(T, x) = 0.

(9)

The dependencies have been suppressed for ease of notation, and the subscripts
denote the partial derivatives. The HJB equation agrees with the one in, e.g., Merton (1969),
Kashif et al. (2020) with µt = 0 and µ∗

t = 0 for all t ≥ 0. The structure is completely
maintained when we introduce lifetime uncertainty. It can also be found in Steffensen and
Søe (2023) with the mortality effect present. Therefore, we neither establish a verification
proof nor derive the solution to the HJB equation. We simply state its solution and the
corresponding optimal controls in the following. The solution to the HJB Equation (9) is
given by the following value function:

V(t, x) =
1

1 − γ
a1(t)γx1−γ, (10)

where

a1(t) =
∫ T

t
e−
∫ s

t (r̃+µ̃u)duds, (11)

with

r̃ :=
1
γ

ρ +

(
1 − 1

γ

)(
r +

1
2

θ2

γ

)
, (12)

µ̃t :=
1
γ

µt +

(
1 − 1

γ

)
µ∗

t . (13)

Here, we have defined θ := (λ − r)/σ, which is the market price of risk. The optimal
consumption and investment portfolio, i.e., the optimal controls, under the classical strategy
are given by

c∗t =
Xt

a1(t)
, (14)

π∗
t =

λ − r
σ2γ

. (15)

We emphasize that the value function and the optimal controls correspond to the
results in, e.g., Merton (1969) and Kashif et al. (2020) with µt = 0 and µ∗

t = 0 for all t ≥ 0,
as well as with Steffensen and Søe (2023).

Observe that optimal consumption at time t equals the wealth at time t. The proportion
is determined by the function a1, which has the interpretation of an annuity with the utility-
adjusted interest rate r̃ as the calculation rate and the utility-adjusted mortality µ̃t as the
calculation of mortality. The utility-adjusted interest rate is a weighted average of two
interest rate factors. These are the impatience factor and an interest rate obtained from
investing in the financial market. The utility-adjusted mortality rate is a weighted average
of the original mortality rate and the pricing intensity. The weight is determined by γ−1.
Optimal consumption under the classical strategy coincides with a standard market rate
life annuity structure. The classical strategy considers optimal expected utility.
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Moreover, the optimal proportion of wealth invested in the risky asset is constant
under the classical strategy. We refer to this constant as Merton’s constant. See Merton
(1969, 1971).

3.2. The Habit Strategy

Now, we introduce the habit formation of the investor to the utility maximization
problem. Incorporating habit formation is an additive form with respect to consumption
to achieve a smoothing effect on the optimal consumption. We refer to the strategy with
additive habit formation in preferences as the habit strategy. As Munk (2008), we define
the habit level by

ht = h0e−βt + α
∫ t

0
e−β(t−s)csds, (16)

where h0, α and β are assumed to be non-negative constants. Observe that the habit level
at time t is the sum of the discounted, initial habit level h0 and the discounted, weighted
consumption rates from time 0 to t. The constant α is interpreted as the weight providing
the relative importance to past consumption, while β is the discount rate describing the
decline in the relative importance to past consumption. Hence, α and β are parameters
measuring the habit preferences of the investor. The habit level follows the dynamics
given by

dht = (αct − βht)dt,

h0 > 0.
(17)

We include the habit level as an additional state variable in the utility maximization
problem. Then, the value function becomes

V(t, x, h) = sup
c,π

Et,x,h

[ ∫ T

t
e−
∫ s

t (ρ+µu)du 1
1 − γ

(cs − hs)
1−γds

]
,

subject to the wealth dynamics (6), the habit dynamics (17) and the constraint ct ≥ 0 for
all t ≥ 0. Here, Et,x,h is the conditional expectation given that the investor is alive at time
t, holds wealth Xt = x, and has habit level ht = h. Again, exploiting the technique of
dynamic programming, we find and solve the corresponding HJB equation given by

0 = Vt − (ρ + µ)V + sup
c,π

{
1

1 − γ
(c − h)1−γ + ((r + µ∗ + π(λ − r))x − c)Vx

+ (αc − βh)Vh +
1
2

π2σ2x2Vxx

}
,

V(T, x) = 0.

(18)

The HJB equation agrees with the one in, e.g., Munk (2008) and Kashif et al. (2020)
with µt = 0 and µ∗

t = 0 for all t ≥ 0. The structure is completely maintained when we
introduce lifetime uncertainty. Therefore, we neither establish a verification proof nor
derive the solution to the HJB equation. We simply state its solution and the corresponding
optimal controls in the following. The solution to the HJB Equation (18) is given by the
following value function:

V(t, x, h) =
1

1 − γ
a2(t)γ(x − hb2(t))1−γ,
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where

a2(t) =
∫ T

t
e−
∫ s

t (r̃+µ̃u)du(1 + αb2(s))
1− 1

γ ds, (19)

b2(t) =
∫ T

t
e−
∫ s

t (r+µ∗
u+β−α)duds, (20)

with r̃ and µ̃ defined as in (12) and (13), respectively. The optimal consumption and
investment portfolio under the habit strategy are given by

c∗t = ht + (1 + αb2(t))
− 1

γ
Xt − htb2(t)

a2(t)
, (21)

π∗
t =

λ − r
σ2γ

Xt − htb2(t)
Xt

. (22)

We emphasize that the value function as well as the optimal controls are directly
comparable with the ones obtained by, e.g., Munk (2008) and Kashif et al. (2020) with
µt = 0 and µ∗

t = 0 for all t ≥ 0.
The optimal consumption at time t under the habit strategy is to consume at the

current minimum level, i.e., the habit level at time t, plus a proportion of the current
wealth over the price of maintaining future minimum consumption, i.e., Xt − htb2(t). The
proportion is determined by the fraction (1 + αb2(t))−1/γ/a2(t). We still interpret the
function a2 as an annuity with the utility-adjusted interest rate r̃ as the calculation rate
and the utility-adjusted mortality rate µ̃t as the calculation of mortality. Still, an extra term
is added to the integral due to incorporating additive habit formation. The function b2
is an annuity determined by the habit preferences of the investor, the interest rate, and
the pricing intensity. Thus, multiplying the current habit level by b2 is interpreted as the
discounted, current habit level, i.e., the price of maintaining future minimum consumption
as mentioned above. Discounting depends on the investor’s habit preferences. Moreover,
observe that optimal consumption under the habit strategy is affine in wealth. This implies
a smoothing effect on consumption (see Bruhn and Steffensen 2013).

Unlike the classical strategy, optimal investment under the habit strategy is time-
dependent. Both strategies have Merton’s constant in common, but only Xt − htb2(t) is
invested in the risky asset as the habit level is added to the strategy. Thus, habit formation
reduces risk tolerance to secure consumption at the habit level as a minimum.

3.3. The Hybrid Strategy

This section presents an ad hoc smoothing strategy for consumption introduced by
Kashif et al. (2020), who study different optimal consumption and investment strategies for
university endowment funds. First, consider their fixed consumption–wealth ratio strategy
with consumption rate specified as a proportion of the wealth, i.e.,

ct = yXt, (23)

where y is a constant determining the consumption–wealth ratio. Then, Kashif et al. (2020)
extend this strategy by a simplified version of the Yale/Stanford rule from Cejnek et al. (2014)
and define the discrete-time consumption rate by

ct = wct−1 + (1 − w)yXt, (24)

where w is a weight. Thus, consumption is a weighted sum of the consumption in the
previous year and a fixed proportion of the wealth in the current year. Similarly to
Kashif et al. (2020), we will refer to this ad hoc strategy for consumption as the hy-
brid strategy, since it is a hybrid between last year’s consumption rate and the fixed
consumption–wealth ratio strategy.
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Observe that w and y are considered to be constants. In later sections, we will allow w
and y to be time-dependent such that (24) is more flexible in designing a pension product.
For now, we keep w and y constants.

As consumption is already predefined by (24) before solving the utility maximization
problem, we include consumption as an additional state variable, such as wealth. Thus, we
assume that (24) is the optimal way to consume, and we find the corresponding optimal
way to invest by maximizing the expected utility of terminal wealth with both the wealth
and consumption as state variables (see Kashif et al. 2020). We must find the consumption
dynamics to include consumption as a state variable. By Itô’s formula, the dynamics of c
are given by

dct =
∂

∂t
ctdt +

∂

∂x
ctdXt +

1
2

∂2

∂x2 ct(dXt)
2.

We can calculate the partial derivatives of c by considering (24). For the time-derivative,
we consider the discrete-time version

ct = (1 − (1 − w)∆)ct−∆ + (1 − w)∆yXt,

where we scale the weight on current wealth with the length of the timestep. Note that (24)
is obtained as ∆ = 1. Now, we can calculate

ct − ct−∆

∆
= (1 − w)(yXt − ct−∆).

From this equation and continuity of c, we can now obtain the partial derivatives
of c with respect to t by fixing Xt = x and taking the limit ∆ → 0. Similarly, the partial
derivatives of c with respect to x are obtained directly from fixing Xt = x in (24). The
derivatives are given by

∂

∂t
ct = (1 − w)(yx − ct),

∂

∂x
ct = (1 − w)y,

∂2

∂x2 ct = 0.

Based on the dynamics of c from Itô’s formula and the derivative specified above, we
obtain the continuous-time dynamics of consumption under the hybrid strategy,

dct = (1 − w)(yXt − ct)dt + (1 − w)ydXt

=
(

φ(1 + r + µ∗
t + πt(λ − r))Xt − (1 − w)(1 + y)ct

)
dt

+ φπtσXtdWt,

c0 > 0,

(25)

where we insert the wealth dynamics given by (6) and define φ := (1 − w)y in the second
equality (see Kashif et al. 2020). In principle, we could consider w and y as time-dependent
since we consider continuous time in (25). But we will keep w and y as constants in
this section.

Observe that the consumption dynamics can be rewritten as

dct = (1 − w)(1 + y)
(

y(1 + r + µ∗
t + πt(λ − r))Xt

1 + y
− ct

)
dt

+ φπtσXtdWt,

c0 > 0,

(26)
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Hence, consumption under the hybrid strategy is a mean reverting process where
(1 − w)(1 + y) is the strength of mean reversion. The process reverts toward

y(1 + r + µ∗
t + πt(λ − r))Xt

1 + y
.

The mean reversion property results in a smoothing effect on consumption, as noticed
and analyzed by Kashif et al. (2020). Hence, this is an underlying argument that the hybrid
strategy is an ad hoc smoothing strategy for consumption.

Including consumption as an additional state variable, investment is the only decision
variable in the utility maximization problem. We find the optimal investment portfolio by
solving the value function given by

V(t, x, c; π) = sup
π

Et,x,c

[∫ T

t
e−
∫ s

t (ρ+µu)du 1
1 − γ

X1−γ
T εT(s)

]
, (27)

subject to the wealth dynamics (6) and the consumption dynamics (25). Here, Et,x,c is the
conditional expectation given that the investor is alive at time t, holds wealth Xt = x,
and consumes ct = c. We omit the minimum subsistence level of wealth in the utility
maximization problem in Kashif et al. (2020). Thus, the investor obtains utility solely from
terminal wealth under the hybrid strategy. The corresponding HJB equation

0 = Vt − (ρ + µ)V + sup
π

{(
(r + µ∗ + π(λ − r))x − c

)
Vx

+
(

φ(1 + r + µ∗ + π(λ − r))x − (1 − w)(1 + y)c
)
Vc +

1
2

π2σ2x2Vxx

+
1
2

φ2π2σ2x2Vcc + φπ2σ2x2Vxc

}
,

V(T, x, c) =
1

1 − γ
x1−γ.

(28)

The solution to the HJB Equation (28) is given by the following value function:

V(t, x, c) =
1

1 − γ
a3(t)γ(x − b3(t, c))1−γ, (29)

where

a3(t) = e−
∫ T

t

(
r̃+µ̃u−(1− 1

γ )(1+r+µ∗
u)φη(u)

)
du,

b3(t, c) = cη(t).

Here, η(t) is the solution to the Riccati equation given by

η̇(t) = −
(
1 + r + µ∗

t
)

φη(t)2 +
(
1 + r + µ∗

t + φ − w
)
η(t)− 1,

η(T) = 0,
(30)

which can be rewritten as a second-order differential equation and solved numerically. The
optimal investment portfolio under the hybrid strategy is given by

π∗
t =

λ − r
σ2γ

Xt − ctη(t)
(1 − φη(t))Xt

. (31)

The derivation of the results follows partially Kashif et al. (2020) with µt = 0 and
µ∗

t = 0 for all t ≥ 0. The solution of the function η differs, since we think of η as a function
of time with the terminal condition η(T) = 0, whereas Kashif et al. (2020) think of η as
a constant.
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In line with the habit strategy, optimal investment under the hybrid strategy is time-
dependent. Now, the actual investment, π∗

t Xt, is a proportion of the current wealth
over a proportion of the current consumption level. The hybrid strategy reduces risk
tolerance to maintain consumption at some non-guaranteed level. However, the optimal
investment portfolio increases over time since the denominator of (31) decreases faster than
the numerator. We found the optimal investment portfolio by maximizing the expected
utility of terminal wealth. Thus, we increase the quantity invested in the risky asset to
secure enough risk exposure to maximize the expected utility of terminal wealth.

It is beyond the scope of this paper to solve η as the Riccati equation given by (30).
Alternatively, we present a special case where the derivation of the solution to η is more
manageable, as stated in the following remark. It is attained by considering a specific
construction of φ.

Remark 1. If we consider w and y to be time-dependent and assume that

φ(t) = (1 − w(t))y(t) =
kη

η(t)
,

where 0 < kη < 1 is a constant, then the Riccati equation given by (30) becomes an ODE on
the form

η̇(t) =
(
(1 + r + µ∗

t )(1 − kη)− w(t)
)
η(t)− (1 − kη),

η(T) = 0,

which has a unique solution given by

η(t) = (1 − kη)
∫ T

t
e−
∫ s

t ((1+r+µ∗
u)(1−kη)−w(u))duds.

In this case, the function η is equal to a constant (1− kη) multiplied by an annuity determined
by (1 + r + µ∗

t )(1 − kη)− w(t).

4. The Development of Consumption over Time

The dynamics of a process reveal the development of the process over time. This
section aims to study the effect of optimal consumption under the three strategies. We find
the optimal consumption dynamics in the classical and habit strategies by Itô’s formula.
In the hybrid strategy, we induce the already seen consumption dynamics by the optimal
investment to find the optimal version of the dynamics.

4.1. Consumption Dynamics in the Classical Strategy

Applying Itô’s formula to the optimal consumption in the classical strategy given by
(14), the dynamics of optimal consumption are derived by

dc∗t =
∂

∂t
c∗t dt +

∂

∂x
c∗t dXt +

1
2

∂2

∂x2 c∗t (dXt)
2. (32)

Finding the derivatives of c∗, inserting these, the wealth dynamics with the optimal
investment portfolio into (32) and rearranging, we can state the following result:

Theorem 1. Consider optimal consumption in the classical strategy defined by (14). Then, the
dynamics of optimal consumption are given by
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dc∗t =
r + µ∗

t − ρ − µt +
1

2γ (1 + γ)θ2

γ
c∗t dt +

θ

γ
c∗t dWt, (33)

c∗0 =
x0

a1(0)
, (34)

where the deterministic function a1 is defined by (11).

Proof of Theorem 1. See Appendix A.1.

From Theorem 1, we note that optimal consumption in the classical strategy is a
geometric Brownian motion. As Bruhn and Steffensen (2013), we deduce that the stock
market fluctuations immediately affect the current consumption level due to the stochastic
dW-term.

The dt-term reveals the expected development of consumption over time since a Brow-
nian motion has a mean zero. Disregarding the risk aversion parameter in the denominator
of the dt-term, we see that consumption increases by the interest rate, the pricing intensity,
and the quantity obtained from investing in the risky asset, i.e., capital gains. Moreover,
consumption decreases with the impatience factor and the mortality rate. Consequently,
ignoring capital gains, an increasing or decreasing tendency in the consumption level can
be explained by the relation between the interest rate and the impatience factor or the
pricing intensity and the mortality rate.

Regarding the impact of the risk aversion parameter γ on the development of con-
sumption over time, observe that the dt-term and the dW-term explode as γ → 0. On the
other hand, both terms vanish as γ → ∞. Hence, the risk-tolerant investor experiences a
highly volatile development in consumption, and the risk-averse investor prefers a less
volatile or constant consumption level. Thus, the risk-averse investor is averse to variation
over time.

4.2. Consumption Dynamics in the Habit Strategy

Again, by applying Itô’s formula to the optimal consumption in the habit strategy
given by (21), the dynamics of optimal consumption are in the following form:

dc∗t =
∂

∂t
c∗t dt +

∂

∂x
c∗t dXt +

∂

∂h
c∗t dht +

1
2

∂2

∂x2 c∗t (dXt)
2. (35)

Finding the partial derivatives of c∗, inserting these, the wealth dynamics, and the
habit dynamics with the optimal investment portfolio into (35) and rearranging, we obtain
the following result:

Theorem 2. Consider optimal consumption in the habit strategy defined by (21). Then, the
dynamics of optimal consumption are given by

dc∗t =

[( r + µ∗
t − ρ − µt +

1
2γ (1 + γ)θ2 + κ(t)

γ
+ α

)
c∗t

−
(

r + µ∗
t − ρ − µt +

1
2γ (1 + γ)θ2 + κ(t)

γ
+ β

)
ht

]
dt

+
θ

γ
(c∗t − ht)dWt,

c∗0 = h0 + (1 + αb2(0))
− 1

γ
x0 − h0b2(0)

a2(0)
,

(36)
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where

κ(t) = α

(
1 − (r + µ∗

t + β)b2(t)
1 + αb2(t)

)
. (37)

The deterministic functions a2 and b2 are defined by (19) and (20), respectively.

Proof of Theorem 2. See Appendix A.2.

From Theorem 2, we infer that optimal consumption under the habit strategy is
less volatile than optimal consumption under the classical strategy. Now, stock market
fluctuations immediately affect only consumption over the current habit level. Optimal
consumption over the current habit level is a geometric Brownian motion, which can be
obtained by a minor rewriting of (36) (see Bruhn and Steffensen 2013). This supports the
idea of using the habit strategy as a smoothing strategy for consumption.

Furthermore, the incorporation of additive habit formation impacts the expected
development of consumption. Now, consumption evolves as a proportion of the current
consumption level over a proportion of the existing habit level. The proportions are
identical to the fraction in the dt-term of optimal consumption in the classical strategy,
including a quantity, κ(t), added to the numerator as a result of introducing habit formation.
Additionally, the habit preferences are added to the fraction.

Moreover, note that for α = β = 0 and ht = 0 for all t ≥ 0 in Theorem 2, we arrive at
the optimal consumption dynamics from Theorem 1. Hence, the structure of the dynamics
allows us to switch between the classical and the habit strategy.

For another special case, observe that for γ → ∞, the consumption dynamics in the
habit strategy are equal to the habit dynamics given by (17). Thus, the optimal consumption
of a risk-averse investor with additive habit formation in the preferences evolves as the
habit level.

Next, recall the expression of optimal consumption under the habit strategy given
by (21). Observe that c∗ is affine in h. Thus, isolating h in the expression of c∗, we obtain an
expression of the habit level in terms of optimal consumption and wealth:

ht =
a2(t)c∗t − (1 + αb2(t))

− 1
γ Xt

a2(t)− b2(t)(1 + αb2(t))
− 1

γ

. (38)

Inserting (38) into the dynamics of c∗ given by Theorem 2 and rearranging, we rephrase
the optimal consumption dynamics as follows.

Theorem 3. Consider the habit level given by (38). Then, the dynamics of optimal consumption in
the habit strategy from Theorem 2 can be rewritten as

dc∗t = f1(t)c∗t dt + f2(t)Xtdt + g1(t)c∗t dWt + g2(t)XtdWt,

c∗t = 0,
(39)

where f1, f2, g1 and g2 are deterministic functions given by
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f1(t) =
(α − β)a2(t)−

(
r+µ∗

t −ρ−µ+ 1
2γ (1+γ)θ2+κ(t)
γ + α

)
b2(t)(1 + αb2(t))

− 1
γ

a2(t)− b2(t)(1 + αb2(t))
− 1

γ

, (40)

f2(t) =

(
r+µ∗

t −ρ−µ+ 1
2γ (1+γ)θ2+κ(t)
γ + β

)
(1 + αb2(t))

− 1
γ

a2(t)− b2(t)(1 + αb2(t))
− 1

γ

, (41)

g1(t) = − θ

γ

b2(t)(1 + αb2(t))
− 1

γ

a2(t)− b2(t)(1 + αb2(t))
− 1

γ

, (42)

g2(t) =
θ

γ

(1 + αb2(t))
− 1

γ

a2(t)− b2(t)(1 + αb2(t))
− 1

γ

. (43)

Proof of Theorem 3. The result of Theorem 3 follows directly from inserting the habit level
given by (38) into the optimal consumption dynamics given by (36) and gathering the
dt-terms and dW-terms multiplied by c∗ and X, respectively.

Hence, we have rephrased the dynamics of optimal consumption in the habit strategy
without the habit level. This is reasonable when considering the design of a pension
product. The visible variables in a pension product should solely be consumption and
wealth, but the habit formation of the investor could reasonably drive the underlying
mechanisms. But it is difficult as a pension company to form the value of the initial habit
level of the investor, and now we have avoided this difficulty.

In addition, recall that the optimal investment under the habit strategy is given by

π∗
t =

λ − r
σ2γ

Xt − htb2(t)
Xt

.

Inserting the habit level expressed by (38) into π∗, we obtain an expression of optimal
investment without the habit level:

π∗
t =

λ − r
σ2γ

a2(t)(Xt − c∗t b2(t))(
a2(t)− b2(t)(1 + αb2(t))

− 1
γ

)
Xt

. (44)

Hence, the optimal investment under the habit strategy has the same structure as
the optimal investment in the hybrid strategy. Now, the actual investment, π∗

t Xt, is a
proportion of the current wealth over a proportion of the current consumption level.

4.3. Consumption Dynamics in the Hybrid Strategy

Recall the dynamics of consumption in the hybrid strategy:

dct =
(

φ(1 + r + µ∗
t + πt(λ − r))Xt − (1 − w)(1 + y)ct

)
dt

+ φπtσXtdWt,

c0 > 0,

(45)

with φ = (1−w)y. We found that optimal investment under the hybrid strategy is given by

π∗
t =

λ − r
σ2γ

Xt − ctη(t)
(1 − φη(t))Xt

, (46)

where η solves the Riccati equation given by (30). Inserting (46) into the dynamics of c
given by (45) and doing a minor rewriting, we obtain the following result:
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Theorem 4. Consider consumption in the hybrid strategy defined by (24) following the dynamics
given by (45). With the optimal investment strategy given by (46), the consumption dynamics in
the hybrid strategy can be rewritten as

dct = f̃1(t)ctdt + f̃2(t)Xtdt + g̃1(t)ctdWt + g̃2(t)XtdWt,

c0 > 0,
(47)

where f̃1, f̃2, g̃1 and g̃2 are deterministic functions given by

f̃1(t) = − θ2

γ

φη(t)
1 − φη(t)

− (1 − w)(1 + y), (48)

f̃2(t) =
θ2

γ

φ

1 − φη(t)
+ φ(1 + r + µ∗

t ), (49)

g̃1(t) = − θ

γ

φη(t)
1 − φη(t)

, (50)

g̃2(t) =
θ

γ

φ

1 − φη(t)
. (51)

Proof of Theorem 4. The result of Theorem 4 follows directly from inserting the optimal in-
vestment strategy given by (46) into the consumption dynamics given by (45) and gathering
the dt-terms and dW-terms multiplied by c and X, respectively.

Note the astonishing similarities between the structure of the consumption dynamics
from Theorems 3 and 4. We will elaborate and employ these similarities in the design of a
smooth pension product in Section 5. We formalize the comparison of the two strategies in
the following subsection.

4.4. Comparing Consumption Dynamics in the Habit and the Hybrid Strategy

In the preceding section, we compare the habit and hybrid strategies by comparing
their consumption dynamics.

Theorem 5. The consumption dynamics in the habit strategy given by Theorem 3 and the con-
sumption dynamics in the hybrid strategy given by Theorem 4 coincide if

f1(t) = f̃1(t), (52)

f2(t) = f̃2(t), (53)

g1(t) = g̃1(t), (54)

g2(t) = g̃2(t). (55)

Proof of Theorem 5. The result of Theorem 5 follows directly by comparing the consump-
tion dynamics from Theorems 3 and 4.

Hence, the habit strategy and the hybrid strategy for consumption are identical if
Equations (52)–(55) in Theorem 5 are fulfilled. Even though the equations are not fulfilled,
we still obtain that the structure of consumption and wealth is the same in the consumption
dynamics under the two strategies. Thus, consumption under the two strategies evolves
similarly but with (possibly) different deterministic functions. This remarkable result shows
that the hybrid strategy complies with the preferences of additive habit formation. Hence,
we conclude that the habit and hybrid strategies satisfy the same preferences.
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5. Designing a Smooth Pension Product

This section aims to give two approaches for designing a smooth pension product,
i.e., a smooth life annuity, which complies with the preferences of an investor who wants
stability with respect to consumption and has no utility from their bequest. This is accom-
plished by inspiration of the habit and hybrid strategies and their similarities studied in
Section 4. In addition, we incorporate optimal consumption under the classical strategy.
We aim for a feasible, transparent, and fair design from the perspective of both the investor
and the pension company. In designing a pension product, we need to specify the strategy
for consumption and investment in the risky asset. With inspiration from the habit strategy
and the hybrid strategy, this boils down to defining the constant and the weight in the
discrete-time formulation of consumption under the hybrid strategy given by (24) and
revisiting the optimal investment portfolio under the two strategies.

Consider the discrete-time formulation of consumption under the hybrid strategy
given by (24), but now let w and y be time-dependent. Thus, we redefine consumption by

ct = w(t)ct−1 + (1 − w(t))y(t)Xt. (56)

In the design of a pension product, it is reasonable to let w and y be time-dependent.
For feasibility and transparency, the liabilities of the pension company should be equal to
the investor’s wealth. For fairness, the investor’s wealth should tend to zero as we reach
termination, since we are considering a life annuity and assuming that the investor has no
utility from the bequest. We can incorporate these criteria by allowing time-dependent w
and y.

Let y be defined as follows

y(t) =
1

a1(t)
, (57)

where a1 is given by (11) from the classical strategy. Recall that a1 is interpreted as an
annuity with the utility-adjusted interest rate as the calculation rate and the utility-adjusted
mortality rate as the calculation of mortality. Thus, with y defined as (57), we have that
y(t)Xt is the optimal consumption under the classical strategy, which we interpreted as a
standard market rate life annuity.

Now, let w be defined as follows

w(t) =

{
αaw(t)

1+αaw(t)
, for t ∈ (0, T],

0, for t = 0,
(58)

where α is a non-negative constant, and we define aw as an annuity given by

aw(t) =
∫ T

t
e−
∫ s

t (rw+µ̃u)dyds, (59)

with the calculation rate given by an interest rate, rw, and the utility-adjusted mortality rate
as the calculation of mortality.

The reasoning behind the construction of w given by (58) is that the impact of last
year’s consumption level should depend on where the investor is in the decumulation
phase. At the beginning of the decumulation phase, we want a higher weight on last
year’s consumption level to stabilize consumption. At the end of the decumulation phase,
we want a higher weight on the future, i.e., a lower weight on past consumption, to let
the standard market rate life annuity take over and the wealth go to zero. Observe that
this reasoning is achieved by w defined as (58) since αaw(t)/(1 + αaw(t)) → 0 for t → T.
We use aw instead of a1 since we want to change the interest rate to adjust the value of
w. The higher the value of rw, the lower the value of w. Inspired by the definition of the
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habit level given by (16), we weigh the annuity by α to provide relative importance to past
consumption.

Requiring that w(t) = 0 for t = 0, we set the initial value of consumption equal to
x0/a1(0), where x0 is the value of the wealth at the time of retirement. Thus, we assume
that the initial consumption value in the smooth pension product is equal to that in the
classical strategy. This is also reasonable when comparing the two strategies.

Summarizing the above assumptions of w and y, we rewrite consumption given
by (56) as

ct =
αaw(t)

1 + αaw(t)
ct−1 +

1
1 + αaw(t)

Xt

a1(t)
,

c0 =
x0

a1(t)
.

(60)

Hence, we have specified the strategy for consumption in the smooth pension product
as a hybrid between a standard market rate life annuity and stability with respect to last
year’s consumption level.

Regarding the investment portfolio in the smooth pension product, we need to recon-
sider how the optimal investment portfolio in the hybrid strategy was found before using
the result given by (31) from this strategy. The optimal investment portfolio was found by
optimizing the expected utility of terminal wealth similar to Kashif et al. (2020). This is a
somewhat artificial construction when designing a smooth pension product where we want
to let the wealth go to zero as we reach termination. However, by Remark 1, we observe a
simple structure of the optimal investment portfolio under the hybrid strategy. We wish
to examine how this investment portfolio works with consumption specified as (60). This
constitutes the first approach to a smooth pension product.

To obtain even more feasibility and transparency of the investment portfolio in the
smooth pension product, we become inspired by the optimal investment portfolio under
both the habit and hybrid strategies. We employ the structure of the optimal investment
portfolio under the habit strategy. Instead of subtracting a proportion of the current habit
level from the wealth, we subtract a proportion of the current consumption level as in the
optimal investment portfolio under the hybrid strategy given by (22). Moreover, we avoid
a term multiplied by the wealth in the denominator as in the optimal investment portfolio
under the habit strategy. This constitutes the second approach to a smooth pension product.

Hence, we have two approaches for the investment portfolio in the smooth pension
product. With y and w given by (57) and (58), respectively, such that consumption is given
by (60), we formalize two approaches for the smooth pension product.

5.1. First Approach

In the first approach, we employ the simple structure obtained by Remark 1. From the
remark, we have that

η(t) =
kη

φ(t)
=

kη

(1 − w(t))y(t)
=

{
kηa1(t)(1 + aw(t)), for t ∈ (0, T],
kηa1(t), for t = 0,

(61)

where we insert y and w defined by (57) and (58), respectively, in the last equality. Inserting
(61) into the optimal investment portfolio under the hybrid strategy given by (31), we
specify the investment portfolio in the first approach for the smooth pension product by

πt =
λ − r
σ2γ

Xt − kηa1(t)(1 + aw(t))ct

(1 − kη)Xt
,

π0 =
λ − r
σ2γ

x0 − kηa1(0)c0

(1 − kη)x0
.

(62)
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Thus, the investment portfolio’s denominator equals a constant multiplied by the
wealth. Moreover, the proportion subtracted from the wealth is the current consumption
level multiplied by a function similar to an annuity.

5.2. Second Approach

In the second approach, we set the denominator of the optimal investment portfolio
under the hybrid strategy given by (31) equal to one multiplied by the wealth. Moreover, we
specify the term subtracted from the wealth in the numerator by the current consumption
level multiplied by an annuity. The construction is established by inspiration of the optimal
investment portfolio under the habit strategy with the expression of the habit level in terms
of optimal consumption and wealth inserted (see (44)). Thus, we define the investment
portfolio in the second approach by

πt =
λ − r
σ2γ

Xt − aw(t)ct

Xt
, (63)

for all t ∈ [0, T], where the annuity aw is given by (59). Compared to the first approach,
the second approach attempts to achieve even more simplicity and transparency in the
structure of the investment portfolio.

In the first and second approaches, the term multiplied by the current consumption
level tends to zero as we reach termination. Furthermore, note that if we choose a high
value of the interest rate, rw, in aw, then the term becomes small. Thus, it is interpreted
as the lack of protection against a decline in the market in the attempt to achieve stability
concerning consumption.

5.3. Valuation

With the structure of consumption and investment portfolio in the two approaches for
a smooth pension product given above, we have that the liabilities of the pension company
are precisely equal to the investor’s wealth. This holds by the fact that consumption, given
by (60), tends to the optimal consumption under the classical strategy such that the whole
wealth is paid out when we reach termination. Thus, we omit the complexity of setting
aside a buffer to achieve a smoothing effect on consumption, which is the case in the existing
smooth pension product Tidspension by Bruhn and Steffensen (2013). The simplicity of
the two approaches also relies on the fact that the consumption level is non-guaranteed.
Instead, we aim at a less volatile development of consumption.

We have obtained two feasible, transparent, and fair designs considering everything.
Compared to the existing smooth pension products, we have increased the simplicity.

6. Numerical Examples

In this section, numerical examples of consumption over time illustrate the smoothing
effect on consumption under the two approaches for a smooth pension product. We
compare the development of wealth, consumption, and investment portfolios under the
two approaches and the classical strategy. See Munk (2008) for a numerical study of
optimal consumption and investment with additive habit formation in preferences. See
Kashif et al. (2020) for numerical examples of the hybrid strategy.

The first subsection below establishes the numerical setup by specifying the parameters
to simulate the simplified financial market. Additionally, we decide upon a representative
estimation of the mortality rate and the pricing intensity. In the second subsection, we
illustrate and analyze the development of wealth, optimal consumption, and investment
portfolio in the classical strategy. Continuing to the third and the fourth subsection, we give
numerical examples of the two approaches for a smooth pension product from Section 5.
These examples are compared with the numerical results of the classical strategy from the
second subsection.



J. Risk Financial Manag. 2024, 17, 75 18 of 27

6.1. Numerical Setup

The Euler scheme is used to simulate the development of the wealth process by a time-
discretized approximation with independent normal random variables representing the
Brownian motion for every year in the fixed time interval [0, T]. The simulation is repeated
n = 100,000 times under the classical strategy and the two approaches, respectively, with the
chosen values of the parameters from Table 1 and a specified model for the mortality rate
and the pricing intensity as described below. We let the parameter α be equal to 0.2 aligned
with Munk (2008). The rest of the parameters are chosen in line with comparable life
insurance literature (see, e.g., Bruhn and Steffensen (2011) or Konicz et al. (2015)). The time
frame used for the simulation under the classical strategy is 3.56 s, while it is 30.08 s under
the first approach, and 24.66 s under the second approach.

Table 1. Parameter values needed for simulating the simplified financial market.

Parameter Describtion Value

x0 Initial wealth 100
T Fixed time horizon 45
ρ Impatience factor 0.04
γ Risk aversion parameter 2
r Drift of the risk-free asset 0.02
λ Drift of the risky asset 0.05
σ Volatility of the risky asset 0.2

As we only consider the decumulation phase of the investor, the fixed investment time
interval [0, T] represents that the investor retires at time 0 with age 65, and we assume the
specified time horizon T = 45 at which the investor is age 110.

Regarding the lifetime uncertainty, we assume that µt = µ∗
t , i.e., zero market price

of insurance risk, is modeled by a linear interpolation of the benchmark mortality rate
for Danish women in 2021 over age 65 constituted by the Danish Financial Supervisory
Authority (see DFSA 2022b). We omit to consider expected future lifetime improvements.
Thus, we assume that a 65-year-old woman today in 2023 has the same mortality rate as a
65-year-old woman in 2021. Next year, when she turns 66, we think she will have the same
mortality rate as a 66-year-old woman in 2021. A more realistic model for the mortality rate
could have been constructed, but it is not the focus of this paper.

All numerical results are based on the assumption of no utility from bequest such
that full mortality credits are assigned to the investor’s wealth until death. The case of
full utility from bequest, in the sense that no insurance is wanted, can, essentially, be
obtained by setting µt = µ∗

t = 0 in all the formulas above. From a financial point of view, it
corresponds to lowering the return rates r and α simultaneously by µt. This would lead
to lower levels of consumption but along the same curvature as below. It is beyond the
scope of this paper to examine in full the impact of utility from bequest, though. A different
interesting case is where there is no utility from bequest but also no access to a life insurance
market. The welfare loss from losing access to the insurance market is the main objective of
Steffensen and Søe (2023) where there is no attention to smoothing, though.

6.2. The Classical Strategy

With the numerical setup from the preceding Section 6.1, we demonstrate the develop-
ment of wealth, optimal consumption, and investment portfolio under the classical strategy.
The optimal consumption and investment portfolio are given by (14) and (15), respectively.
The expected development over time, accompanied by the 5% and 95% quantile, illustrates
the strategy’s volatility.
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We leave out the graph of the optimal investment portfolio in the classical strategy as
it is constant over time. With parameter values from Table 1, the optimal quantity invested
in the risky asset is

π∗
t =

λ − r
σ2γ

= 0.375,

for all t ∈ [0, T]. Thus, about one-third of the wealth is invested in the risky asset throughout
the entire decumulation phase.

Figure 1 shows that the investor is more eager to consume at the beginning of the
decumulation phase than at the end, as we observe a decreasing graph of expected optimal
consumption. An explanation of this development can be found by inspecting the drift term
in the dynamics of optimal consumption under the classical strategy given in Theorem 1.
Disregarding the return of the risky asset, the drift term contains the interest rate subtracted
from the impatience factor, and as the values of these parameters are chosen such that
ρ > r, we experience a decline in consumption over time. Hence, the investor is impatient.

Figure 1. Wealth and consumption under the classical strategy simulated with parameter values from
Table 1. The solid lines show the mean of 100,000 simulations, and the dashed lines show the 5% and
95% quantile.

Moreover, the wealth tends to zero as we reach expiry; i.e., the entire wealth is
consumed since the investor has no utility from the bequest. This observation aligns with
the insurance company’s liabilities, which are repealed at expiry or the investor’s death.
Hence, the figure shows that the liabilities are equal to the wealth.

The 5% and 95% quantile emphasized by the dashed lines in Figure 1 visualize that 90%
of the simulated paths of wealth and optimal consumption lie within this interval indicated
by the shaded area. The path volatility expresses how the risky asset investment affects
wealth development and optimal consumption over time. As observed by the dynamics
of optimal consumption under the classical strategy from 1, consumption is immediately
influenced by the volatility in the financial market. This uncertainty might be undesirable to
an investor who favors stability in consumption over time. Hence, the optimal investment
portfolio in the classical strategy is too risky to comply with the preferences of this type
of investor.

6.3. The First Approach of a Smooth Pension Product

Now, we illustrate the first approach of a smooth pension product, where consumption
and investment portfolio are specified as (60) and (62), respectively. The developments of
wealth and consumption are shown in Figure 2. We examine the sensitivity of wealth and
consumption to different values of the interest rate rw in the annuity aw.
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Figure 2. Wealth and consumption under the first approach of a smooth pension product simulated
with different values of the interest rate rw, α = kη = 0.2 and parameter values from Table 1. The
solid lines show the mean of 100,000 simulations, and the dashed lines show the 5% and 95% quantile.

By Figure 2, we observe that the development of consumption under the first approach
is less volatile than consumption under the classical strategy. The lower the value of rw,
the less volatility of consumption. This holds since the lower the value of rw, the higher
the value of w. Thus, for lower values of rw, we maintain a higher proportion of last
year’s consumption level in calculating the current consumption level. At the same time,
we observe that consumption under the first approach tends to consumption under the
classical strategy as the value of rw increases. This holds since the weight, w, becomes
small for higher values of rw. By constructing consumption in the smooth pension product,
consumption under the classical strategy takes over. Additionally, we observe a lower
expected level of consumption for lower values of rw. It is a compensation for maintaining
a higher proportion of last year’s consumption level.

As we approach termination, the volatility of consumption increases. An explanation
of this can be found in developing the investment portfolio under the first approach.

Unlike the classical strategy, the investment portfolio under the first approach of a
smooth pension product is time-dependent. Figure 3 visualizes the impact of different
values of rw on the investment portfolio. The investment portfolio has different initial
values for different values of rw: a lower value of rw leads to a lower initial investment
portfolio value. Thus, we invest less in risky assets to maintain a higher proportion of last
year’s consumption.

Figure 3. Investment portfolio under the first approach of a smooth pension product simulated with
different values of the interest rate rw, α = kη = 0.2 and parameter values from Table 1. The solid
lines show the mean of 100,000 simulations, and the dashed lines show the 5% and 95% quantile.

Moreover, the investment portfolio is increasing and tending to the same value for
the different values of rw. The increasing development of the investment portfolio holds
because the first approach is a special case of the hybrid strategy, where the optimal
investment portfolio results from maximizing the expected utility of terminal wealth.
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However, by constructing consumption under the smooth pension product, we let the
wealth go to zero as we reach expiry, which we observe by Figure 2. The increasing
investment portfolio is also why we keep increasing volatility in consumption over time.

At last, we substantiate the above analysis by illustrating the function η given by (61)
and the weights, y and w, defined by (57) and (58), respectively, for different values of rw.

By Figure 4, we only observe one graph of y, since y is independent of rw. Thus, the
graphs of y for different values of rw are indistinguishable. Note that the graph of y is
increasing over time and is rapidly closer to expiry such that the rest of the wealth is paid
out by the construction of consumption under the smooth pension product.

Figure 4. The function η and the weights, w and y, under the first approach of a smooth pension
product with different values of the interest rate rw, α = kη = 0.2 and parameter values from Table 1.

The graphs of w in Figure 4 show that the weight decreases over time such that the
standard market rate life annuity takes over as we reach expiry. For lower values of rw, the
higher the initial value of w and vice versa. Thus, we maintain a higher proportion of last
year’s consumption level for lower values of rw. Conversely, the standard market rate life
annuity is more dominant for higher values of rw.

Moreover, the function η decreases rapidly through the entire decumulation phase.
This contributes to the fact that we observe an increasing investment portfolio since the
numerator decreases slower than the denominator by the structure of Equation (62). Ad-
ditionally, the lower the value of rw, the higher the value of η. Thus, for higher values
of rw, we subtract a higher proportion of the current consumption level to determine the
quantity invested in the risky asset. This dampens the risk taking at the beginning of the
decumulation phase, as Figure 3 shows.

6.4. The Second Approach of a Smooth Pension Product

Next, we illustrate the second approach of a smooth pension product, where consump-
tion and investment portfolio are defined by (60) and (63), respectively. The development
of wealth and consumption is shown in Figure 5. Again, we study the sensitivity of wealth
and consumption to different values of the interest rate rw in the annuity aw.

By Figure 5, we observe that the development of consumption under the second
approach is less volatile than consumption under the classical strategy and consumption
under the first approach. The same smoothing effect is reflected in wealth development
under the second approach. Both wealth and consumption become less volatile for lower
values of rw. Note that consumption volatility increases at the beginning of the decumu-
lation phase but stabilizes later in the decumulation phase. The stabilization of volatility
happens sooner for lower values of rw. This observation is supported by developing the
investment portfolio under the second approach, as shown in Figure 6.

As in the first approach, the investment portfolio of a smooth pension product under
the second approach is time-dependent. Figure 6 presents the impact of different values
of rw on the investment portfolio. Again, we observe different initial investment portfolio
values for different values of rw. In contrast to the first approach, we observe that the
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investment portfolio is decreasing over time, which explains the stabilization of volatility
in Figure 5. As opposed to both the first approach and the classical strategy, the quantity in-
vested in the risky asset is smaller compared to the three graphs of the expected investment
portfolio with the respective corresponding value of rw. Hence, to obtain less consumption
volatility, the risk appetite is reduced.

Figure 5. Wealth and consumption under the second approach of a smooth pension product simulated
with different values of the interest rate rw, α = 0.2 and parameter values from Table 1. The solid
lines show the mean of 100,000 simulations, and the dashed lines show the 5% and 95% quantile.

Figure 6. Investment portfolio under the second approach of a smooth pension product simulated
with different values of the interest rate rw, α = 0.2 and parameter values from Table 1. The solid
lines show the mean of 100,000 simulations, and the dashed lines show the 5% and 95% quantile.

Finally, we assist the above analysis by considering the annuity aw given by (59),
which is multiplied by the current consumption level and subtracted from the wealth in the
investment portfolio under the second approach given by (63). In Figure 7, we present aw
and the weights, y and w, defined by (57) and (58), respectively, for different values of rw.

Note that the graphs of the weights in Figure 7 are identical to those in Figure 4.
This holds since the definition of consumption and the weights are similar under the two
approaches. Thus, regarding the weights, the same analysis and interpretation remain
as above.

Figure 7 shows that the graphs of the annuity aw decrease over time. The higher the
value of rw, the higher the initial value of aw. Thus, for lower values of rw, we subtract a
higher proportion, i.e., aw, of the current consumption level directly from the actual amount
invested in the risky asset by the construction of the investment portfolio in the second
approach given by (63). As we subtract a proportion directly from the amount invested
in the risky asset, the risk taking is dampened in the entire decumulation phase for all
values of rw as observed by Figure 6. The value of rw dictates how much the risk taking
is dampened.
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Figure 7. The annuity aw and the weights, w and y, under the second approach of a smooth pension
product with different values of the interest rate rw, α = 0.2 and parameter values from Table 1.

7. Conclusions

With inspiration from three strategies for consumption and investment, we have
managed to design two approaches to a smooth pension product. The three strategies are
the classical strategy, the habit strategy, and the hybrid strategy. Combining and modifying
these strategies engenders the two approaches.

It turns out that optimal consumption under the classical strategy has the same
structure as a standard market rate life annuity. Deriving the consumption dynamics under
the classical and hybrid strategies, we observe that additive habit formation in preferences
leads to the request for consumption stability. Comparing the consumption dynamics
under the habit strategy and the hybrid strategy, we observe that the structures of the
dynamics coincide. Hence, we deduce that the hybrid strategy meets the same preferences
as the habit strategy. We wanted to understand these preferences to design a smooth
pension product.

The objective of the smooth pension product is not to guarantee the same consumption
level each year, but it is an attempt to smoothen the volatility of consumption. Moreover, we
aim for a smooth pension product that is feasible, transparent, and fair from the perspective
of both the investor and the pension company. Highly inspired by the consumption
structure under the hybrid strategy, we let consumption be a weighted average of last
year’s consumption level and consumption under the classical strategy, i.e., a hybrid
between stability with respect to last year’s consumption level and a standard market rate
life annuity. We let the weight be time-dependent such that the traditional market rate life
annuity takes over as we reach termination. Hence, the pension company’s liabilities equal
the investor’s wealth. Thus, we have obtained the smooth pension product’s feasibility,
transparency, and fairness. Reconsidering and inspired by both the hybrid strategy and
the habit strategy, we give two approaches for the investment portfolio of the smooth
pension product.

The development of the wealth process is simulated under the classical strategy and
the two approaches, respectively. Each simulation is repeated n = 100,000, and the time
frame under the classical strategy is 3.56 s, while it is 30.08 s under the first approach
and 24.66 s under the second approach. The numerical examples show that consumption
under the first and second approaches for the smooth pension product is less volatile than
consumption under the classical strategy, i.e., a standard market rate life annuity. We
see that consumption under the second approach is even less volatile than the first. An
explanation for this result can be found in developing the investment portfolio under the
respective approaches.

In the first approach, the quantity invested in the risky asset increases over time
because the first approach is a special case of the hybrid strategy. The optimal investment
portfolio under the hybrid strategy is found by maximizing the expected utility of terminal
wealth. Thereby, we observe an increasing investment portfolio under the first approach.
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The second approach is established to obtain an even simpler investment portfolio
structure. It is inspired by the structure of the result obtained under the habit strategy with
the expression of the habit level in terms of optimal consumption and wealth inserted.

For further research, we would study whether maximizing the expected utility of
intertemporal consumption is possible given specified consumption dynamics when finding
the optimal investment portfolio under the hybrid strategy. We claim that this changes the
final result under the hybrid strategy.

We observed that the development of the investment portfolio impacts consumption
volatility. Thus, we might have found the dynamics of the investment portfolio under
the three strategies to increase the understanding of the development over time. Then,
the influence of the different terms in the dynamics of the investment portfolio could
be studied.

Finally, the investment portfolio under the second approach is low compared to the
classical strategy. This is a result of smoothing the volatility of consumption. One might
wonder whether the price of the smooth pension product is too high as the investor is
dictated to take too low a risk. We need to avoid the smooth pension product becoming a
guaranteed pension product. Thus, for further research, we could consider lower values of
the risk aversion parameter γ such that the investment portfolio under the second approach
is increased at the beginning of the decumulation phase but still decreasing over time
such that the volatility of consumption is still smoothed over time. Hence, we aim to take
enough risk over the entire decumulation phase.
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Appendix A. Studying Optimal Consumption

We give proof of the consumption dynamics under the classical and habit strategies in
the first and the second subsections, respectively.

Appendix A.1. Proof of Theorem 1—Consumption Dynamics in the Classical Strategy

Applying Itô’s formula to c∗ given by (14), we find the dynamics of optimal consump-
tion in the classical strategy by

dc∗t =
∂

∂t
c∗t dt +

∂

∂x
c∗t dXt +

1
2

∂2

∂x2 c∗t (dXt)
2. (A1)

By fixing Xt = x, the derivatives of c∗ are

∂

∂t
c∗t = − x

a1(t)2 ȧ1(t),

∂

∂x
c∗t =

1
a1(t)

,

∂2

∂x2 c∗t = 0.
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Inserting the derivatives of c∗ and the wealth dynamics induced by the optimal
controls into (A1), we obtain that

dc∗t =

(
− Xt

a1(t)2 ȧ1(t) +
1

a1(t)
((r + µ∗

t + π∗
t (λ − r))Xt − c∗t )

)
dt +

1
a1(t)

π∗
t σXtdWt.

Inserting the expression of π∗ given by (15), recognizing the expression of c∗ and
rewriting, we obtain that

dc∗t =

(
−1 + ȧ1(t)

a1(t)
+ r + µ∗

t +
θ2

γ

)
c∗t dt +

θ

γ
c∗t dWt. (A2)

By Leibniz’s integral rule, we have that

ȧ1(t) = −1 + (r̃ + µ̃t)a1(t).

Thus, we see that

−1 + ȧ1(t)
a1(t)

= −(r̃ + µ̃t). (A3)

Inserting (A3) together with the expression of r̃ and µ̃ into (A2), then by a minor
rewriting, we obtain the result of Theorem 1, where the initial condition follows directly by
letting t = 0 and X0 = x0 in (14).

Appendix A.2. Proof of Theorem 2—Consumption Dynamics in the Habit Strategy

Applying Itô’s formula to c∗ given by (21), we find the dynamics of optimal consump-
tion in the habit strategy by

dc∗t =
∂

∂t
c∗t dt +

∂

∂x
c∗t dXt +

∂

∂h
c∗t dht +

1
2

∂2

∂x2 c∗t (dXt)
2. (A4)

Fix Xt = x and ht = h. Then, by a combination of the product and the quotient rule,
the derivative of c∗ with respect to t is

∂

∂t
c∗t = −αḃ2(t)(1 + αb2(t))

− 1
γ −1

γ

x − hb2(t)
a2(t)

+ (1 + αb2(t))
− 1

γ
−hḃ2(t)a2(t)− (x − hb2(t))ȧ2(t)

a2(t)2 .

By Leibniz’s integral rule, we have that

ȧ2(t) = −(1 + αb2(t))
1− 1

γ + (r̃ + µ̃t)a2(t), (A5)

ḃ2(t) = −1 + (r + µ∗
t + β − α)b2(t). (A6)

Inserting the expression of ȧ2, recognizing c∗t − h and gathering the terms multiplied
by c∗ and those multiplied by h, we have that

∂

∂t
c∗t =

(
− αḃ2(t)

γ(1 + αb2(t))
+

(1 + αb2(t))
1− 1

γ

a2(t)
− r̃ − µ̃t

)
c∗t

−
(
− αḃ2(t)

γ(1 + αb2(t))
+

ḃ2(t)(1 + αb2(t))
− 1

γ

a2(t)
+

(1 + αb2(t))
1− 1

γ

a2(t)
− r̃ − µ̃t

)
h

=: C(t)− H(t).
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The remaining necessary derivatives are

∂

∂x
c∗t =

(1 + αb2(t))
− 1

γ

a2(t)
,

∂

∂h
c∗t = 1 − b2(t)(1 + αb2(t))

− 1
γ

a2(t)
,

∂2

∂x2 c∗t = 0.

Inserting the derivatives of c∗, the wealth and the habit dynamics induced by the
optimal controls into (A4), we obtain that

dc∗t =

[
C(t)− H(t) +

(1 + αb2(t))
− 1

γ

a2(t)
(
(r + µ∗

t + π∗
t (λ − r))Xt − c∗t

)
+

(
1 − b2(t)(1 + αb2(t))

− 1
γ

a2(t)

)
(αc∗t − βht)

]
dt

+
(1 + αb2(t))

− 1
γ

a2(t)
π∗

t σXtdWt

=

[(
− αḃ2(t)

γ(1 + αb2(t))
+

(1 + αb2(t))
1− 1

γ

a2(t)
− r̃ − µ̃t

+
θ2

γ
− (1 + αb2(t))

− 1
γ

a2(t)
+ α − αb2(t)(1 + αb2(t))

− 1
γ

a2(t)

)
c∗t

−
(
− αḃ2(t)

γ(1 + αb2(t))
+

ḃ2(t)(1 + αb2(t))
− 1

γ

a2(t)
+

(1 + αb2(t))
1− 1

γ

a2(t)

− r̃ − µ̃t +
θ2

γ
+ β − βb2(t)(1 + αb2(t))

− 1
γ

a2(t)

)
ht

]
dt

+
(r + µ∗

t )Xt(1 + αb2(t))
− 1

γ

a2(t)
dt +

θ

γ
(c∗t − ht)dWt. (A7)

In the second equation above, we insert the expression of π∗, recognize c∗t − ht, recall
the definition of C(t) and H(t) and gather the dt terms multiplied by c∗ and those multiplied
by h.

Now, observe that three of the terms multiplied by c∗ vanish as

(1 + αb2(t))
1− 1

γ

a2(t)
− (1 + αb2(t))

− 1
γ

a2(t)
− αb2(t)(1 + αb2(t))

− 1
γ

a2(t)
= 0.

With the expression of ḃ2 given by (A6), we see that

− αḃ2(t)
γ(1 + αb2(t))

=
α

γ

(
1 − (r + µ∗

t + β)b2(t)
1 + αb2(t)

)
.
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Again with the expression of ḃ2, two of the terms multiplied by h read as

ḃ2(t)(1 + αb2(t))
− 1

γ

a2(t)
− βb2(t)(1 + αb2(t))

− 1
γ

a2(t)

=
(r + µ∗

t )b2(t)(1 + αb2(t))
− 1

γ

a2(t)
− (1 + αb2(t))

1− 1
γ

a2(t)
.

Remember that the two terms in the last equality above are multiplied by h. The last
term cancels out with an identical term in the dynamics of c∗. The first term together with
the dt term in line (A7) are rewritten by

(r + µ∗
t )Xt(1 + αb2(t))

− 1
γ

a2(t)
− (r + µ∗

t )htb2(t)(1 + αb2(t))
− 1

γ

a2(t)
= (r + µ∗

t )(c
∗
t − ht).

Combining all the observations and using the expression of r̃ and µ̃ to undergo a final
rewriting, we obtain the dynamics of c∗ stated in Theorem 2. The initial condition follows
directly by letting t = 0 and X0 = x0 in (21).
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