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Abstract: We aim to detect outliers in the daily stock price indices from the Saudi Arabia stock
exchange (Tadawul) with 2026 observations from October 2011 to December 2019 provided by the
Saudi Authority for Statistics and the Saudi Central Bank. We apply the Multi-Layer Perceptron
(MLP) algorithm for detecting outliers in stock returns. We select the inflation rate (Inflation), oil price
(Loil), and repo rate (Repo) as input variables to the MLP architecture. The performance of the MLP
is evaluated using standard metrics for binary classification, namely the false positive rate (FP rate),
false negative rate (FN rate), F-measure, Matthews correlation coefficient (MCC), accuracy (ACC),
and area under the ROC curve (AUC). The results demonstrate the efficiency and good performance
of the MLP algorithm based on different criteria tests.

Keywords: outlier detection; Multi-Layer Perceptron (MLP) algorithm; metrics for binary classification;
Saudi Arabia stock exchange

1. Introduction

The time series outlier detection problem has many applications, such as fraud de-
tection, fault detection, cybersecurity attack detection, etc., see Kaastra and Boyd (1996).
Outliers in time series data usually occur when some observed data differ significantly
from the patterns and trends of the other values. Numerous models and methods have
been proposed to detect and deal with outliers in different contexts and applications. Many
common practices to detect outliers are based on the use of threshold values computed
from the available dataset, as in the classical Tukey (1977) method. In contrast to the tradi-
tional approach, machine learning and Artificial Neural Network (ANN)-based methods
have been successfully applied in time series forecasting and are promising in the field
of anomaly detection, refer to Rosenblatt (1958), McClelland et al. (1986), Werbos (1989),
Zurada (1992), Boughaci et al. (2021), Rashedi et al. (2021), Al-Saif et al. (2021), and
Bakhshande et al. (2022). They offer several potential advantages with respect to alternative
methods such as ARIMA models in that they are robust methods in tasks related to pattern
classification and time series forecasting. They do not require formal specification of the
model or assumptions about the form of the underlying probability distribution of the data.

Our aim in this paper is to explore ANN algorithms in detecting outliers in time series
data. The learning algorithms are classified into two main categories: supervised and
unsupervised. In the supervised learning models, each input data point in the training
has a known output data point. This make it possible for the model to learn, and this
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is called training relative to the known outcomes. In the unsupervised learning models,
the input data do not have known corresponding labelled output data, and in this case
the algorithm self-discovers relationships within the data. In our research work, we
only consider supervised variants of neural networks. The ANN is considered as one
of the most successful tools in machine learning, and its success mostly depends on its
architecture and learning procedure, see Riedmiller and Braun (1993) and Saha et al.
(2021). Using the unsupervised approach, several research work have been conducted. For
instance, Chen et al. (2017) introduced autoencoder ensembles using the unsupervised
outlier detection scheme. They applied RandNet, which stands for Randomized Neural
Network for Outlier Detection, in which they used randomly connected autoencoders
where some of the connections were randomly dropped. They showed that their method
was competitive with respect to other methods. Walaa Gouda et al. (2022) also proposed an
unsupervised technique based on a deep Variational Auto-Encoder (VAE) to detect outliers
in IoT data. Their model was evaluated using a Statlog (Landsat Satellite) dataset and
achieved an outlier detection rate with accuracy of approximately 90%. Sathe and Aggarwal
(2016) explored the Local Density Spectral Outlier Detection method (LODES), obtained by
combining spectral techniques with local density-based methods, and demonstrated the
ability of LODES to detect outliers in high-dimensional manifolds.

Despite the fact that various solutions have been proposed to deal with outliers, such
as deep learning algorithms, it still remains a difficult task to develop an effective and
appropriate model tailored to a specific domain of applications, and this constitutes a
limitation of prior work that is relevant to this research work.

In this paper, we consider the MLP neural network, which is a form of the general
Feed-Forward Neural Network (FFNN). For more details, we refer to Al-Saif et al. (2021),
Saha et al. (2021), Agahian and Akan (2022), Bani-Salameh et al. (2021), and Hounmenou
et al. (2021).

The MLP is one of the most widely implemented neural networks and consists of one
or more hidden layers between the input and output layers of neurons. The neurons are
such that each neuron of a layer is linked to all of the neurons of the next layer, and the
output of a neuron of a layer is the input of a neuron of the next layer. The connections
between the layers are associated with weights to control the effect of the related input
on neurons. Each neuron in the MLP uses a nonlinear activation function to produce
the output. This network is trained using the backpropagation algorithm, which enables
the MLP to update all of its weights by minimizing the output error. Usually the weight
parameters (wij) and the bias (bj) are estimated from a learning sample, and the estimation
is obtained by minimizing a loss function with a gradient descent algorithm.

Using machine learning algorithms, the outlier detection problem in time series can be
explored using supervised learning. Our focus here is applying the MLP without making
any assumption about the data model. In this setting, we try to predict whether a data
point is an outlier based on how close it is to previously observed data.

As far as we know, there is no research work that focuses on application of the MLP
in detecting outliers in Tadawul returns. The Saudi stock market is considered as one of
the largest financial market. However, the economy of the Kingdom of Saudi Arabia relies
mostly on the production of oil as a major source of revenue, and the stock market volatility
depends on oil price changes. In addition, Saudi Arabia is a part of the Twenty (G20)
group, which is an international economic cooperation forum including representatives
from 19 countries plus the European Union. Due to its position of being open to the world
economy, it is exposed to sudden and abrupt changes in the financial world, and this causes
the Saudi stock market to suffer from heavy volatility across different periods. Based on the
Tadawul dataset, we selected three variables that have direct effects on Saudi stock market
closed prices, namely the monthly inflation rate (Inflation), logarithm of oil price (Loil),
and repo rate (Repo), as input variables to the MLP architecture.
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This paper is structured as follows: in Section 2, we summarize the material and the
methodology. The mathematical model of the MLP algorithm is described in Section 3. The
results and discussion are presented in Section 4, and the conclusion is in Section 5.

2. Material and Methods

The research work in this paper is split into two stages. In the first stage, we seek to
detect outlier values in the stock returns output variable. The classical Tukey method is
used to select outlier values using the obtained upper and lower bounds of the interval
[−0.01783, 0.01908], as discussed in Section 4.2. It should be noted here that the main focus
is on the exploration of the MLP algorithm. We can use any other outlier detection method,
and we choose a simple one, the Tukey method. In the second stage, we apply the MLP
neural network where part of the detected outliers are fed into the network in the training
dataset along with the input variables to train the MLP algorithm. The input variables to
the algorithm are the economic variables, mainly Inflation, Repo, and Loil. The choice of
these variables is justified by the Engle and Granger Cointegration test in Section 4.1.2,
which shows evidence of correlations between these time series variables and the stock
returns, and also confirmed with the multiple regression model, as given in Section 4.1.3.
The MLP algorithm is expected to classify whether an output data point from the Saudi
stock market returns is classified as an outlier or not. Then, the performance of the MLP is
assessed utilizing established metrics for binary classification. These metrics include the FP
rate, FN rate, F-measure, MCC, ACC, and ROC.

3. Multi-Layer Perceptron

The MLP is one of the widely used artificial neural networks and is applied in pattern
recognition, classification, and prediction. It is classified as a Feed-Forward ANN that
has the ability to map sets of input data to output data. The MLP network processes data
unidirectionally throughout the network, where data points are first passed to the input
layer, then processed by one or more hidden layers, and then returned through the output
layer, as schematized in Figure 1. The data flow in the forward direction from input to
output layer and the neurons are trained with the backpropagation learning algorithm.
The required tasks, such as prediction and classification, are performed by the output layer.
The neurons that process the data points in each layer, except for the input layer, receive all
of the outputs from the previous layer, multiplying them by the corresponding weights,
then sum all of the resulting values, and input this sum into an activation function to create
the output of the neuron. The activation function, in each training iteration, will always
progress forward and never revisit neurons they have encountered before, see Zell et al.
(1998). Furthermore, by using feed forward neural networks, it is assumed that all input
data instances are independent.

The MLP is composed of neurons called perceptions. The perceptron receives features
as input (X = (X1, X2, X3)), and each of these features is associated with a weight. Input
features must be numeric and are passed as input to compute the weighted sum, as follows:

S(x) =
n

∑
i=1

wijXi.

where wij is the weight connecting neuron i to neuron j over two consecutive layers. The
weighted summation is then passed as input to activation function f , which will produce
the output of the perceptron. The activation function used in the hidden layer is the
sigmoid/logistic function:

f (x) =
1

1 + e−x

In the output layer, we use the softmax activation function as we have binary classification.
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3.1. Learning Parameters

Connections among neurons are associated with a set of weights (wij) and network
learning occurs by adjusting these weights in a specific manner. The backpropagation
algorithm is the most commonly used learning algorithm, which consists of a forward pass
and a backward pass. The backpropagation algorithm enables the MLP to update all of its
weights by minimizing output error E

(
wij

)
in the chain rule, as given by Equation (2). In

the backward pass, the error term is calculated by finding the difference between the actual
response of the network and the desired response. The weights are adjusted by making the
actual response of the network to be as close as possible to the desired response, and they
are updated according to the general rule:

wij(t + 1) = wij(t)− ϵ
∂E

(
wij

)
∂wij

∣∣∣∣∣
wij=wij(t)

(1)

∂E
(
wij

)
∂wij

=
∂E

(
wij

)
∂Si

.
∂Si

∂neti
.
∂neti

∂wij
(2)

where wij is the weight from neuron j to neuron i, Si is the output, neti is the weighted sum
of the inputs of neuron i, and t is the iteration index. This can be achieved by the gradient
descent algorithm, which make use of learning rate ϵ to decide the step length toward
the minimum for each iteration. A very small learning rate requires more training time,
while a larger learning rate can produce larger weight changes on each epoch, which might
cause the network to learn faster. But a larger learning rate can also lead to oscillations
that prevent the error from reaching its minimum. Ideally, one would prefer to choose
the largest possible learning rate without triggering oscillations. One method that has
been proposed in the literature by Riedmiller and Braun (1993) is to slightly modify the
backpropagation algorithm by introducing momentum term µ, as given by Equation (4) in
Agahian and Akan (2022):

∆wij(t) = ϵ
∂E

∂wij
(t) + µ ∆wij(t − 1) (3)

The momentum term decides how much the previous weight value affects the current
weight update. The addition of the momentum term enables less oscillation in areas where
the gradient values are similar in many directions. However, despite the fact that this
parameter makes the learning process stable, in practice it has been shown that the optimal
choice of this parameter is equally problem-dependent as the learning rate. Most neural
network software programs provide default values for the learning rate and momentum
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that typically work well. Initial learning rates in the literature are found to vary widely
from 0.1 to 0.9.

3.2. Resilient Propagation (Rprop)

In an attempt to find better learning parameters, appropriate adaptive weight updates
have been proposed. One of the most efficient is the resilient backpropagation algorithm
(Rprop) introduced as new learning scheme by Werbos (1989), which performs a direct
adaptation of the weight step based on local gradient information. The Rprop was proposed
to overcome the inherent disadvantages of pure gradient descent, and it is a direct adaptive
method for faster backpropagation learning. The Rprop introduces an individual update
value for each weight (∆ij), which increases or decreases at each iteration when multiplied
by asymmetric factor η+ or η− according to the sign of the gradient with respect to wij
between two iterations, as stated by the following learning rule:

∆(t)
ij =


η+ ∗ ∆(t−1)

ij , i f ∂E(t−1)

∂ωij
∗ ∂E(t)

∂ωij
> 0

η− ∗ ∆(t−1)
ij , i f ∂E(t−1)

∂ωij
∗ ∂E(t)

∂ωij
< 0

∆(t−1)
ij , else


where 0 < η− < 1 < η+, wij is the weight from neuron j to neuron i, and E(t) is the tth

derivative of an arbitrary error function.
Hence, every time the partial derivative of error E with respect to weight ωij changes

it sign, this indicates that the last update was too big and the algorithm has jumped over a
local minimum, and update value ∆ij is decreased by factor η−. If the derivative retains its
sign, the update value is slightly increased in order to accelerate convergence. A complete
illustration of the Rprop algorithm is given by Riedmiller and Braun (1993).

3.3. Evaluation Measures

Choosing the right metric is crucial in evaluating neural network models. Various
metrics are proposed in different applications. They are used to monitor and measure
the performance of a model, and in our case, there are metrics available to evaluate our
classification model. We use tenfold cross-validation, which is a standard way to measure
the performance of the learning scheme on a particular dataset. The performance of the
classifier is evaluated by using several metrics introduced and discussed in Metz (1978),
Zell et al. (1998), Mas (2018), Powers (2020), and Bakhshande et al. (2022). They are labelled
as follows, where (TP) indicates the number of true positives, (FP) is the number of false
positives, (TN) is the number of true negatives, and (FN) is the number of false negatives.
We also consider the following performance metrics as defined in McClelland et al. (1986),
Metz (1978), and Powers (2020):

- Recall, also called sensitivity, is the true positive rate (TP rate) or the probability of
detection. This metric computes the proportion of actual positives that are correctly
identified as such and is given by the formula:

Recall =
TP

TP + FN

- Specificity is also referred to as the true negative rate (TN rate). It computes the pro-
portion of actual negatives that are correctly identified as such, as given in the formula:

Specificity =
TN

TN + FP

- Precision is the positive predictive value, computed by the formula:

Precision =
TP

TP + FP
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- False positive rate (FPrate), also referred to as type I error, is given in the formula:

FPrate =
FP

FP + TN
= 1 − TNrate

- False negative rate (FNrate), also referred to as type II error, is given in the formula:

FNrate =
FN

FN + TP
= 1 − TPrate

- The F-measure, also called the F-score, is the harmonic mean of precision and sensitiv-
ity and is given by the formula:

F − measure = 2 ∗ Precision ∗ Sensitivity
Precision + Sensitivity

with the worst value = 0 and the best value = 1.

- Matthews correlation coefficient (MCC) is a measure of the quality of the binary
classification and is given by the formula:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

It ranges between −1 and +1, and it reaches −1 for perfect misclassification and +1
for perfect classification.

- Accuracy (ACC) is the measure of the proportion of correct predictions among the
total number of cases examined, as shown in the formula:

ACC =
TP + TN

P + N
=

TP + TN
TP + TN + FP + FN

where P and N are the total cases labeled as positive and negative, respectively.

- The area under the ROC curve (AUC). The ROC is a popular graphical performance
measure for binary classifiers. The ROC curve is plotted with TPrate against FPrate,
where TPrate is on the y-axis and FPrate is on the x-axis. The higher the AUC, the
better the model is at predicting 0 classes as 0 and 1 classes as 1.

- The kappa-like statistic is discussed in Zell et al. (1998). In the traditional 2 × 2
confusion matrix employed in machine learning to evaluate the accuracy of binary
classifications, the Cohen’s Kappa formula can be written as follows:

k =
2 ∗ (TP ∗ TN − FN ∗ FP)

(TP + FP) ∗ (FP + TN) + (TP + FN) ∗ (FN + TN)

If the original values show great similarity with the expected values, then k = 1. If
there is no similarity, then k = 0.

4. Results
4.1. Data Description

The dataset is made up of four time series variables all of the same size (2026 obser-
vations) collected from the stock market (Tadawul) in Saudi Arabia. The data frequency
was daily over the period Oct 2011 to Dec 2019. The observations were collected on a
daily basis and no data were collected on Saudi bank holidays, see Rashedi et al. (2021).
Table 1 gives the descriptive statistics of this dataset. We believe that the macroeconomic
variables Inflation, Repo, and Loil are nonstationary time series that have strong effects on
the stock returns.
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Table 1. Descriptive statistics of the dataset from the Saudi stock market.

Measurements Stock Prices Inflation Repo Loil

Size 2026 2026 2026 2026

Mean 7736.387 0.016 0.696 4.299

Std. dev. 1156.632 0.02 0.28 0.354

Minimum 5416.47 −0.032 0.127 3.328
Maximum 11149.36 0.053 4.549 4.838

4.1.1. Correlations

Table 2 gives the correlations between these variables, which is a measure of the degree
of mutual association between two or more variables. The values in Table 2 show that
the closed prices are correlated with all other variables and they move together over time,
which raises a question about their long-run relationship. In order to test this long-run
relationship, we use the cointegration test to check for the existence of such a relationship.

Table 2. The correlations between the independent and dependent variables.

Variables Closed Prices Inflation Repo Loil

Closed prices 1

Inflation −0.732 1

Repo −0.251 0.061 1

Loil −0.556 0.501 0.327 1

4.1.2. Engle and Granger Cointegration Test

The Engle Granger test is a test for cointegration used to find a possible correlation
between two or more nonstationary time series in the long term. The test is based on the
idea that if variables are cointegrated, then the residual of the cointegrating regression
should be stationary. The test compares the null hypothesis of no cointegration against the
alternative of cointegration using static regression. Without going into more details, we use
this test to analyze the relationship between the closed prices and all of the other variables.
In the first step of the test, we make use of the residuals and check for the existence of unit
roots. If the time series are cointegrated, the residuals would be almost stationary. In the
second step, the Error Correction Model is estimated assuming the following data and
equation, see Engle and Granger (1987):

∆Yt = c + ∑i=1 βi ∗ ∆Yt−i + ∑i=1 αi ∗ ∆Xt−i + ϕ ∗ ECTt−1 + εt (4)

where Yt is the dependent variable (stock close price), Xt is an independent variable,
∆Yt = Yt − Yt−1, ECT is the Error Correction, and εt is the error term assumed to be the
standard Gaussian distribution. βi and αi are the regression parameters; and ϕ is the
adjustment coefficient, which must be negative. For illustration, by setting Yt = Stock Price
and Xt = Inflation, we obtain the corresponding Equation (4):

∆StockPricet = c + ∑
i=1

βi ∗ ∆StockPricet−i + ∑
i=1

αi ∗ ∆Inflationt−i +ϕ∗ECTt−1 + εt

Rejection of the null hypothesis would mean that the independent variables are
causing the dependent variable. Table 3 summarizes the output of the Engle and Granger
test, which indicates that, at a significance level of 5%, the independent variables are
cointegrated with the dependent variable. This supports the evidence that the dependent
variable closed prices is strongly affected by the movement of the independent variables
Inflation, Repo, and Loil. Therefore, these variables must be included in the study.



J. Risk Financial Manag. 2024, 17, 69 8 of 13

Table 3. Engle and Granger Causality test.

Variables Estimate Std.Error t-Stat (ϕ) p-Value R-Squared Causality Detection

Inflation −0.88575 0.02925 −30.286 <2 × 10−16 0.4331 Causality

Repo −0.89178 0.02930 −30.436 <2.2 × 10−16 0.4348 Causality

Loil −0.88806 0.02927 −30.343 <2 × 10−16 0.4338 Causality

4.1.3. Multiple Regression Model

Another statistical method that can be used to analyze the relationship between the
closed prices and the other independent variables is multiple regression. The aim of this
analysis is to use the independent variables to predict the value of the dependent variable.
The weights or parameters are the relative contribution of each independent variable to the
overall prediction, as defined by the following equation:

Yi = α + ∑n
i=1 βiXi + εi (5)

where Yi is the i-th observation of the logarithm of the dependent variable closed prices, and
Xi, i = 1, 2, . . . , n are the independent variables. α and βi, i = 1, 2, . . . , n are the regression
parameters, and εi is an unobserved error variable.

Table 4 shows the effect of the independent variables on the logarithm of the closed
prices using the Ordinary Least Square method (OLS). The results show that the indepen-
dent variables have significant negative effects on the closed prices at a significance level
less than 1%.

Table 4. Regression parameter estimates of model (4) using the OLS.

Dependent
Variable

Independent
Variables

OLS

Estimate Std.Error T-Stat

Intercept 9.5017 0.0278 341.4130 ***

Ln(Closed
prices) Inflation −4.4809 0.1185 −37.8010 ***

Repo −0.0683 0.0077 −8.8990 ***

Loil −0.1020 0.0070 −14.5850 ***

R-square/Adjusted
R-square 0.6203/0.6197

F-stat. 1102 ***
Signif. codes: *** 0.01, ** 0.05, * 0.1.

The R-square and adjusted R-square values are 62.03% and 61.97%, respectively. Hence,
the multiple regression model once again supports our claim that the variables Inflation,
Repo, and Loil have direct causal effects on the closed prices.

4.2. Outlier Detection
4.2.1. Tukey Method

In this study, we use the Tukey method as the simple traditional method to provide
input to the MLP algorithm. We use the upper and lower fences that are built on the
Interquartile Range (IQR), which is the difference between the third quartile (Q3) and
the first quartile (Q1), thus IQR = Q3 − Q1. Outliers are defined as observations that lie
outside the interval [Q1 − 3IQR, Q3 + 3IQR], whereas observations that fall 1.5 times the
interquartile range away from the first and third quartiles, [Q1 − 1.5IQR, Q3 + 1.5IQR] are
regarded as suspected outliers.

The outliers are first detected in the return data using the Tukey method based on the
upper and lower fences. These computed values are respectively 0.01908 and −0.01783,
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and they are shown in Figure 2. Any return value that is outside the band delineated by
the dashed lines is regarded as an outlier.
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4.2.2. MLP Evaluation

In order to classify whether a data point from the return series is an outlier, we run the
MLP algorithm. The package used for creating the actual MLP in R is called RSNNS, which
is an R-wrapper for the Stuttgart Neural Network Simulator (SNNS), refer to Bergmeir and
Benítez Sánchez (2012). We split our dataset into 80% training (1622 observations) and 20%
testing (405 observations). As input to the MLP network, we use three input neurons, 50
hidden neurons, and set the learning function to Rprop with 0.001 for the learning function
parameter. The input neurons accept the values of the three variables Inflation, Repo, and
Loil, while the expected value of the output neuron is either 0 or 1. In the running of
the MLP model, we used the Rprop algorithm with the iterations n = 500, 1000, and 1500.
Tables 5 and 6 show the different evaluation measures, as defined in Section 3.3, to measure
the MLP performance in classifying the input data. Table 5 shows that in the 80% training
data, the TP rate increases from 94.2% with n = 500 to 95.21% with n = 1500, and the TN
rate increases from 72.22% with n = 500 to 85.71% with n = 1500. At the same time, the FP
rate decreases from 27.78% with n = 500 to 14.29% with n = 1500, and the FN rate decreases
from 5.80% with n = 500 to 4.79% with n = 1500. Table 5 also shows these numbers for the
20% data test sample. In the test data, the TP rate is around 95% for all iterations, while
the TN rate fluctuates between 28.57% and 37.50% from n = 500 to n = 1500. The FP rate
decreases from 70.0% to 62.5%, then back to 70% for n = 500, 1000, and 1500, and the FN
rate shows a slight decrease from 5.03% with n = 500 to 4.81% with n = 1500.

Table 6 summarizes the other criteria that measure the performance of the MLP. In
the 80% training sample, the performance measure criteria ACC remains slightly over
93%. The ROC area increases from 83.21% with n = 500 to 90.46% with n = 1500, the MCC
increases from 28.16 to 47.58%, and similarly, the F-score and Cohen’s Kappa increase
when the number of iterations increases from n = 500 to n = 1500. Table 6 also shows
the results of these measures in the 20% data test sample. In this test sample, the ACC
fluctuates around 93.0% and the ROC area shifts up to 61% and down to 55.9%. On the other
hand, the Precision and F-score remain nearly unchanged and their values are respectively
around 98% and 96%. Finally, the MCC and Cohen’s Kappa respectively shift up and down
between 13.5% and 20% and between 11.5% and17.6%.

Figure 3, plot (a) shows the weighted sum square error (SSE), with the iterative fit
error as the black line and the iterative test error as the red line. As can be seen, both lines
strongly decrease over the first few iterations, then their values stay steady around 200,
demonstrating that the algorithm quickly converges. After properly training the model, we
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make predictions and plot the regression errors in (b), where the target values are on the
x-axis and the predicted values are on the y-axis. In the optimal fit, we would have a line
through zero with a gradient of one. This optimal line is shown in black and the linear fit
to the actual data is shown in red.

Table 5. Performance measure of the MLP model using different metrics.

Iterations Sample
Matrix

TP Rate TN Rate FP Rate FN Rate
No Outliers Outliers

n = 500

Train (80%)
No outliers 1511 93

0.9420 0.7222 0.2778 0.0580
Outliers 5 13

Test (20%)
No outliers 378 20

0.9497 0.2857 0.7143 0.0503
Outliers 5 2

n = 1000

Train (80%)
No outliers 1510 76

0.9521 0.8571 0.1429 0.0479
Outliers 5 30

Test (20%)
No outliers 378 19

0.9521 0.3750 0.6250 0.0479
Outliers 5 3

n = 1500

Train (80%)
No outliers 1511 76

0.9521 0.8571 0.1429 0.0479
Outliers 5 30

Test (20%)
No outliers 376 19

0.9519 0.3000 0.7000 0.0481
Outliers 7 3

Table 6. Some statistical criteria for detecting outliers.

Iterations Sample ACC ROC Area MCC Precision F-Score Cohen’s Kappa

n = 500
Train (80%) 0.9396 0.8321 0.2816 0.9967 0.9686 0.1944

Test (20%) 0.9383 0.6177 0.1354 0.9869 0.9680 0.1147

n = 1000
Train (80%) 0.9500 0.9046 0.4758 0.9967 0.9739 0.4063

Test (20%) 0.9407 0.5617 0.2008 0.9869 0.9692 0.1761

n = 1500
Train (80%) 0.9501 0.9046 0.4758 0.9967 0.9739 0.4063

Test (20%) 0.9358 0.5590 0.1725 0.9817 0.9666 0.1589

To further evaluate the network performance, we plot the ROC curves for both phases,
showing the training set in (c) and test set in (d). The ROC is a metric used to check the
quality of classifiers. For each class of a classifier, the ROC applies threshold values across
the interval [0, 1] to the outputs. The ROC curve is a plot of the TPrate against the FPrate,
where the FPrate is on the x-axis and the TPrate is on the y-axis. A perfect test would show
points in the upper-left corner, with 100 percent sensitivity and 100 percent specificity. The
more we have a top left side ROC curve, the better is the classifier and the better is the
network performance.
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5. Conclusions

The main purpose of this research work was to explore the MLP neural network algo-
rithm in detecting outlier values in the daily returns of the Saudi Stock Market (Tadawul).
The dataset under study comprised four times series variables, including the closed prices,
inflation rate, repo rate, and oil prices. In Sections 4.1.1 and 4.1.2, we showed that the closed
prices were correlated with the other variables, and the Engle Granger test for cointegration
was carried out and confirmed the long-run relationship that existed between these vari-
ables. This claim was again confirmed in Section 4.1.3, using multiple linear regression fit,
where the logarithm of the closed prices was the dependent variable. This finding showed
that the closed prices were strongly and directly affected by the remaining variables. This
suggested the need to consider all of the independent variables when searching for outliers
in the closed prices. Because we wanted to apply the MLP model to detect outliers, we first
needed to run a simple method, like the traditional Tukey method, to find these outliers
and then input them when running the MLP algorithm. In an attempt to achieve our goal,
we proposed a novel MLP model to detect and classify outlier values based on indepen-
dent variables without referring to stock return data. The performance of our MLP based
procedure was evaluated using various test criteria, such as the false positive rate (FPrate),
false negative rate (FNrate), F-measure, Matthews correlation coefficient (MCC), accuracy
(ACC), and ROC curves. The obtained results over the training sample showed that the
performance of the MLP was efficient based on these criteria and under different iteration
numbers: n = 500, 1000, and 1500. In addition, this study showed that running the MLP
with the Rprop over the test sample was capable of detecting and classifying future outlier
values in Tadawul. This study shows and demonstrates the usefulness of the MLP neural
network in detecting outliers in a multivariate dataset. It is important to note a crucial
difference between the Tukey method and the MLP method. The Tukey procedure was
only applied on the univariate data, which were the returns, while the MLP-based method
operated on the multivariate data made up of the three variables.
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We should point out that although our methodology was demonstrated on the
Tadawul dataset, it can be applied to other similar datasets within the context of binary
classification. However, this study has several limitations that should be acknowledged.
Firstly, the analysis focused on a limited set of input variables, namely inflation, repo rate,
and oil prices, for outlier detection in stock returns. There are other factors that could be
taken into account, such as economic indicators and market sentiment or global events,
which could also influence stock returns. Secondly, the dataset used in this study was
limited to a specific timeframe, potentially limiting the generalization of the findings. This
issue could be addressed in future studies when the dataset is updated. Additionally,
while the study focused on the Multi-Layer Perceptron (MLP) algorithm, comparing the
performance of other outlier detection models, such as support vector machine, random
forest, or deep learning models, would provide a more comprehensive understanding of
their effectiveness in detecting stock return outliers.
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