
Citation: Acharya, Durga. 2024.

Comparative Analysis of Stock Bubble

in S&P 500 Individual Stocks: A Study

Using SADF and GSADF Models.

Journal of Risk and Financial

Management 17: 59. https://

doi.org/10.3390/jrfm17020059

Academic Editors: Martin Angerer

and Thanasis Stengo

Received: 27 September 2023

Revised: 20 January 2024

Accepted: 29 January 2024

Published: 5 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

Comparative Analysis of Stock Bubble in S&P 500 Individual
Stocks: A Study Using SADF and GSADF Models
Durga Acharya

College of Business, Westcliff University, Irvine, CA 92614, USA; d.acharya135@westcliff.edu

Abstract: Stock bubbles are characterized by unpredictable price surges and subsequent declines,
causing significant losses for investors. This study investigates the effectiveness of the Generalized
Sup Augmented Dickey–Fuller (GSADF) test in identifying mild explosive patterns and speculative
bubbles within individual S&P 500 stocks, as compared to the Sup Augmented Dickey–Fuller (SADF)
test. Utilizing real-time monitoring data, this research examines unit roots, stationarity, and the
ability to detect multiple structural breaks. The GSADF test consistently outperforms the SADF test
in rejecting the null hypothesis, demonstrating greater sensitivity and efficacy in recognizing stock
bubbles. Monte Carlo simulations address size distortions in the GSADF test, enhancing accuracy.
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1. Introduction

A stock bubble, also known as an asset or speculative bubble, garners substantial
attention from academia and practitioners. According to Karimov (2017), a stock bubble
occurs when asset prices transiently accelerate upward over and above their fundamental
or intrinsic value. This increase in prices is driven by new speculators seeking to profit
from even higher prices, rather than the fundamental value of the asset itself (French 1991).
Various factors, such as increased investor enthusiasm and speculation, media hype, analyst
recommendations, and other forms of positive sentiment, can contribute to the rapid surge
in stock prices, leading to a self-fulfilling cycle of buying and selling. Furthermore, the
formation of a stock bubble can also be influenced by low interest rates and favorable credit
conditions. These conditions make it easier for investors to access credit, which can be
invested in stocks, thereby augmenting the demand and driving up the price.

Asset price bubbles are often blamed for causing economic recessions. According to
Aliber and Kindleberger (2015), such bubbles are linked to a state of economic optimism
that can contribute to a subsequent decline in economic activity. They further suggest that
the failure of financial institutions during these bubbles can disrupt the channels of credit,
causing a slowdown in economic recovery (p. 134).

Stock market crashes and economic recessions share a positive relationship, creating
a self-perpetuating cycle. When a stock bubble bursts, entrepreneurs’ and investors’ net
worth declines, leading to reduced credit and investment. This, in turn, lowers labor
demand, causing wage declines. Due to nominal wage rigidity, institutions may implement
minimum working hours or rationing, resulting in involuntary unemployment. The rise in
unemployment can disrupt the intertemporal allocation of resources, ultimately leading to
a recessionary phase (Biswas et al. 2020). The relationship between unemployment and
return on capital investment is contrastive, leading to a decline in the net worth of investors.
Entrepreneurs’ ability to invest depends on their net worth, and a net worth decline can
reduce future capital stock. This, in turn, exacerbates the downward pressure on labor
demand and perpetuates a self-reinforcing cycle, which continues until the capital stock
falls sufficiently to reach a bubble-less steady-state equilibrium (Biswas et al. 2020). The
complex interplay of these factors underscores the potential consequences of asset price
bubbles and their harmful effects on economic stability.
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Retail investors who engage in stock trading during a speculative bubble face the peril
of substantial financial losses when the bubble eventually bursts, resulting in a precipitous
decline in stock prices (Emmons and Noeth 2012). This risk is particularly pronounced for
individual investors who may lack the requisite expertise to conduct thorough evaluations
of stock fundamentals and accurately assess the risks inherent in bubble-related investments.
Furthermore, investing in a stock bubble can result in opportunity costs for individual
investors, as they may become overly focused on the stock market, neglecting other asset
classes, such as bonds or real estate. This oversight can hinder their ability to diversify their
investment portfolio and explore alternative investment avenue options.

Due to the nature of it, stock prices often exhibit rapid and unpredictable fluctuations.
When prices surge significantly beyond their actual value, resembling a bubble, this can
typically be recognized and studied retrospectively after a price decline occurs. In such
instances, both institutional and individual investors may experience substantial wealth
losses over the different asset classes they hold (Brunnermeier and Oehmke 2012).

Furthermore, when investors hold unrealistic expectations of perpetual demand and
profitability in a specific stock, it fosters irrational exuberance, driving the price far above
its intrinsic value and the company’s actual potential. Positive sentiment about a stock’s
future profitability can lead to its current price exceeding its fundamental value. When
this disparity arises, it suggests the presence of a stock bubble (Shiller 2000; Stiglitz 1990).
Unfortunately, retail investors, often unaware of these dynamics, may incur substantial
losses when the bubble inevitably bursts.

Detecting and managing stock bubbles is challenging due to their unpredictability
(Focardi and Fabozzi 2014). Investors struggle to accurately estimate peak prices and
bubble duration, often remaining invested and continuing to invest despite overvaluation.
Unfortunately, once a stock enters a bubble zone, investors are unable to divest themselves
of it before it collapses, leaving them exposed to significant financial losses. The lack of
understanding of stock bubble formation and dynamics poses risks to both retail and hedge
fund investors, potentially favoring short-term gains over long-term strategies.

The bursting of a stock bubble erodes investor confidence and trust in the stock
market as a secure investment. Investors purchasing stocks at inflated prices often face
significant declines, causing frustration and mistrust. For instance, retirees, reliant on
stocks for retirement income, may suffer financial insecurity if a significant portion of their
portfolio depreciates during a bubble, lacking the capacity for recovery through additional
investments or employment.

Researchers have made significant attempts to develop the econometric technique
to detect the indication of the existence of bubbles. The study of equity market bubbles,
particularly in the United States, has garnered significant interest. However, existing
methodologies for detecting bubbles are still insufficient in providing definitive evidence
for the bubble hypothesis. During the earlier phase, Shiller (1981) examined stock price
volatility and its relationship to dividend fluctuations. He found that stock prices exhibited
excessive volatility due to the introduction of new information about future dividends.
Shiller argued that this high volatility could not be solely attributed to dividend changes,
even when accounting for uncertainty in dividend growth. His research provided evidence
that stock prices moved excessively, suggesting market inefficiencies and potential bubbles
(Shiller 1981).

West (1984) utilized Shiller’s data to detect stock market bubbles using a three-step
test based on the Euler equation and AR representation. In a separate study, West (1987)
employed a specification test to confirm the presence of a stock market bubble by linking
dividend patterns to equilibrium stock prices. However, Camerer (1989) questioned West’s
use of a constant discount rate and suggested further investigation into discount rate
predictability.

Diba and Grossman (1988) examined the presence of an explosive rational bubble
in stock prices, using a model that considered market fundamentals as a combination of
unobservable variables, including the present value of anticipated dividends at a constant
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discount rate. Their study found that stock prices and dividends were non-stationary
before differencing but became stationary after the first differencing. However, they did
not find evidence of cointegration between them, leading to the conclusion that there was
no support for the existence of an explosive rational bubble in stock prices. They argued
that if a bubble were to exist in the current market, it would have always existed, and once
a bubble reaches zero, it cannot reappear.

Furthermore, Evans (1991) challenged the theory proposed by Diba and Grossman by
introducing a novel model for periodically collapsible bubbles. Evans’s model suggests
that real stock price bubbles cannot have negative values and that, contrary to Diba and
Grossman’s argument, if a bubble were to reach zero, it could re-emerge. Similarly, Froot
and Obstfeld (1991) contributed significantly to the bubble theory with an intrinsic bubble
model that refines the concept of the rational bubble. Their model distinguishes between
exogenous fundamental determinants of asset prices and extraneous variables, which can
influence the self-fulfilling expectations process of the bubble.

As far as time series-based models are concerned, time series-based analysis is a
common approach for studying speculative bubbles in financial markets, but empirical
findings have lacked consistency. Numerous formal methods exist to assess data stationar-
ity, with the Dickey–Fuller test (Dickey and Fuller 1979) being a prominent one. This test
is noteworthy as it allows for the examination of non-stationarity, akin to detecting unit
roots. Many studies have utilized the Dickey–Fuller test to identify speculative bubbles,
and this summary provides an overview of these investigations. Craine (1993) introduced
a time-series model and employed the standard augmented Dickey–Fuller (ADF) test to
evaluate the stationarity of the log dividend–price ratio using S&P 500 data from 1876
to 1988.

Cuñado et al. (2005) analyzed the NASDAQ stock market index from 1994 to 2003 for
a rational bubble using fractional methodology. They found mixed results: no bubble with
monthly data but evidence for a bubble with daily and weekly data. Similarly, Koustas
and Serletis (2005) used the ARFIMA method to study the S&P 500 log dividend yield.
Their results supported the presence of a rational bubble in stock prices, rejecting the null
hypothesis of no bubble.

Phillips and Yu (2011) proposed a novel approach to detecting explosive bubbles using
sequential unit root tests. Their method, called the sup augmented Dickey–Fuller (SADF)
test, is designed to identify the start and end dates of a single explosive bubble and is
considered superior to existing bubble detection tests. This approach builds upon previous
work by Diba and Grossman (1988) who suggested that no bubbles exist in the S&P 500.
Phillips and Yu (2011) introduced a new recursive regression methodology that overcomes
this limitation and provides consistent dating of bubble origination and collapse.

However, the SADF test may have reduced statistical power and yield inconsistent re-
sults when dealing with multiple bubble formations and collapses in the sample period. To
address this limitation, Phillips et al. (2015a) introduced an extension called the generalized
sup ADF (GSADF) method. This approach uses a recursive backward regression technique
to precisely identify bubble origination and termination dates while accounting for multiple
exuberance and collapse episodes. The GSADF method represents an improvement over
the earlier approach, providing more robust and reliable bubble identification within the
sample period.

The purpose of this study is to identify the presence of mildly explosive patterns and
bubbles in individual stocks that are listed in the S&P 500 stock. This study aims to use
real-time monitoring information on selected stocks to evaluate their behavior when they
have a bubble component. This will involve identifying the beginning and end periods of
the speculative bubble in the stock. To achieve this, this study intends to apply the sup
augmented Dickey–Fuller unit root test (SADF) and generalized sup augmented Dickey–
Fuller unit root test (GSADF), which were introduced by Phillips and Yu (2011) and Phillips
et al. (2015a), respectively, for individual stocks.
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2. Data and Methodology

This section provides a comprehensive overview of the sampling methodology, data
collection, and analytical technologies adopted to execute this study.

2.1. Data and Sample

This quantitative study examines stock growth within the S&P 500 index by applying
specific selection criteria. Stocks meeting the criteria include those with at least a 10% price
increase on any trading day during the five-year and one-quarter period from 1 January
2018 to 31 March 2023. Such stocks are deemed to potentially exhibit explosive behavior.

Additionally, this study addresses the impact of trading volumes on stock prices.
Low-volume stocks, characterized by limited liquidity due to fewer buyers and sellers, are
subject to greater price volatility. To mitigate this effect, this study selects stocks with a
minimum of one million trades per day, emphasizing higher liquidity and price stability.
This approach aims to avoid distortions caused by low-volume stocks and focuses on
identifying persistent price bubbles. The chosen five-year and one-quarter time frame
provides insight into multiple market cycles, aiding in the detection of bubble patterns and
trends. Daily data analysis is crucial as it allows for the identification of subtle trends and
patterns that may be missed in weekly or monthly data.

A Python script was used to screen S&P 500 stocks, downloading data and identifying
those meeting criteria (10% price change, ≥1 million daily trades). This approach identifies
potential bubble candidates. Similarly, R software (R 4.3.2 binary for macOS 11), known
for its user-friendliness, employs the “exuber” package to analyze structural breaks and
explosive behavior, as demonstrated in prior studies (Pavlidis et al. 2019), and is being
used to obtain the explosiveness of the selected samples.

2.2. Methodology

This study employed two methods to detect the explosive pattern in the individual
stock: the supremum augmented Dickey–Fuller (SADF) test proposed by Phillips and Yu
(2011) and the generalized supremum augmented Dickey–Fuller (GSADF) test proposed
by Phillips et al. (2015a).

2.2.1. SADF Approach

The study by Phillips and Yu (2011) introduced a novel method that is capable of
detecting the periodic collapsing bubbles identified in the work of Evans (1991). The
researchers conducted extensive simulation studies and developed a right-tail Dickey–
Fuller test, which can identify the originating and collapsing dates of a bubble with greater
power than the cointegration methodology. The testing procedure involves the use of a sup
augmented Dickey–Fuller (SADF) method to identify the presence of explosive behavior in
stock prices. Specifically, for each time series (x1), the ADF test for a unit root against the
alternative of an explosive root (right-tailed) is employed. The autoregressive specification
of yt is estimated by the least square method as shown below.

yt = µ + δyt−1 + ∑k
i=1 ϕj △ yt−i + εt, (1)

where yt is a logarithm; k is the transient lag order; △yt−i with i = 1, . . ., k are lagged first
differences of the series included to accommodate the serial correlation, εt ∼ I ID

(
0, δ2

r1,r2

)
;

and µ, δ, and ϕj are the regression coefficient with i = 1, . . ., k. The objective is to test the
unit-root null hypothesis H0 : δ = 1 versus the right-tailed alternative of explosiveness,
H1 : δ > 1. The above equation is employed repeatedly using a subset of the sample data
with one additional observation at each pass in the forward recursive regression. The
SADF test uses a rolling window approach to test for the presence of a unit root in a time
series. At each step, a subset of the data within the rolling window is used to estimate the
autoregressive process. The SADF test then computes a test statistic based on the residuals
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of the estimated model and compares it to a critical value to determine if the null hypothesis
of a unit root can be rejected.

The number of lags in the autoregressive process can have a significant impact on
the performance of the SADF test. Too few lags can lead to underfitting, while too many
lags can lead to overfitting. To determine the optimal number of lags, forward recursive
regression is used to select the lag length that maximizes the test statistic.

Let rw be the window size of the regression. The window size rw(rw = r2 − r1) extends
from r0 to r1, where r0 is the smallest sample window width fraction and 1 is the largest
window fraction. The starting point r1 is fixed at 0, and the ending point for each sample r2
is equal to rw and changes from r0 to 1 (Phillips et al. 2015a, p. 1048). The ADF statistics for
a sample that runs from 0 to r2 is denoted by ADFr2

0 . The SADF statistic is defined as the
sup value of the ADF statistic sequence, which is

SADF(r0) = r2 ∈ [r0, 1]supADFr2
0 (2)

The Phillips and Yu (2011) SADF test statistic is defined as a sup value of the sequence
of ADFr2

0 . Under the I(1) null, the limit distribution of the SADF(r0) statistic is given by

r2 ∈ [r0, 1]sup.

∫ r2
0

∼
w(r)d

∼
w(r)

(
∫ r2

0
∼
w(r)2dr)

1
2

(3)

where
∼
w is a demeaned Wiener process (Brownian motion). Whenever SADF(r0) ex-

ceeds the corresponding right-tailed critical value from its limit distribution, the unit root
hypothesis is rejected in favor of mildly explosive behavior.

r̂e = r2 ∈ [r0, 1]in f
{

r2 : ADFr2 > cvad f
r2

}
(4)

r̂ f = r2 ∈ [r̂e, 1]in f
{

r2 : ADFr2 < cvad f
r2

}
(5)

The SADF test statistic cannot locate the beginning and end date of the bubble. In
order to identify the beginning and collapse date, a recursive test statistic ADFr versus the
right-tailed critical value (cvad f

r2 ) needs to be compared. If re is the beginning date and r f is
the collapse date, the estimate of these dates can be constructed as below.

2.2.2. Generalized Supremum Augmented Dickey–Fuller (GSADF) Test

Phillips et al. (2015a) proposed a novel approach to enhance the detection capability
of multiple stock-price bubbles through a recursive (right-tailed) unit root test called
the generalized SADF (GSADF) test. The GSADF test is built on the same principles as
the SADF test but employs more subsamples for estimation than the SADF(r0) test by
allowing greater flexibility in the selection of starting points for subsamples (r1). This
added degree of flexibility in the estimation window of the GSADF test leads to increased
statistical power, enabling it to identify multiple and periodically collapsing episodes of
explosiveness, whereas the SADF test is limited to identifying only a single episode.

Phillips et al. (2015a) derive the asymptotic null distribution of the SADF and
GSADF tests’ statistics on the basis of the prototypical model with a weak (local to zero)
intercept form.

H0 : yt = dT−η + yt−1 + εt, εt ∼ i.i.d(0, σ2) (6)

where d is a constant, T is the sample size, and the parameter η is a localizing coefficient
that controls the magnitude of the intercept and drift as T → ∞. By solving the equation,
yt = d t

tn + ∑t
j=1 ε j + y0, showing the deterministic drift d t

tn . When η > 0, the drift is
small relative to a linear trend; when η > 1/2, the drift is small relative to the martingale
component of yt; and when η < 1/2, the standardized output T−1/2yt acts asymptotically
like a Brownian motion with drift.
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The alternative hypothesis for the mildly explosive process is

H1 : yt = δTYt−1 + εt, (7)

where δT = 1 + cT−θ with c > 0 and θ ∈ (0, 1). Under null I(1), the limit distribution of the
GSADF statistic is given by

r1 ∈ [0, r2 − r0], r2 ∈ [r0, 1]sup


1
2 rw

[
w(r2)

2 − w(r1)
2 − rw

]
−
∫ r2

r1
w(r)dr[w(r2)− w(r1)]

r
1
2
w

{
rw

∫ r2
r1

w(r)2dr −
[∫ r2

r1
w(r)dr

]2
} 1

2

 (8)

where rw = r2 − r1 is the size of the expanding window. Whenever GSADF(r0) exceeds the
corresponding right-tailed critical value from its limit distribution, the unit root hypothesis
is rejected in favor of mildly explosive behavior.

The GSADF statistic’s limit distribution in the above equation is equivalent to the
scenario where the regression model incorporates an intercept, and the null hypothesis
is a random walk or a unit root process without drift. The standard limit distribution
of the ADF statistic is a special case of (8) with r1 = 0 and r2 = rw = 1. In contrast, the
limit distribution of the single recursive SADF statistic is a further specific with r1 = 0, and
r2 = rw =∈ [r0, 1].

The distribution of the asymptotic GSADF test depends on the choice of the smallest
window size, denoted as r0. In practical applications, r0 must be carefully selected based
on the total number of observations, T. If T is relatively small, it is important to set r0 to a
large enough value to ensure adequate initial estimation. Conversely, if T is large, r0 can be
set to a smaller value to maximize the ability to detect an early explosive episode.

However, it is important to note that the theoretical framework for break-test method-
ology requires r0 to be bounded away from zero as T approaches infinity. To address this,
extensive simulations and recommendations for a rule for selecting r0 based on a lower
bound of 1% of the full sample and a convenient functional form of r0 = 0.01 + 1.8/

√
T are

applied (Phillips et al. 2015b).

3. Characteristics of the Data

This research utilized data from Yahoo Finance, focusing on Standard & Poor’s 500
(S&P 500) companies from January 2018 to March 2023. The S&P 500 is a critical stock
market index monitoring 500 major publicly traded U.S. companies and covers about 80%
of the total U.S. equity market. Analyzing stocks across diverse sectors within the S&P
500 index offers a robust framework for garnering insightful perspectives on the dynamics
of stock price fluctuations in varied market conditions. The research has opted for US-
based stocks over other international counterparts due to the facile accessibility of data for
comprehensive data collection.

The time frame is considered sufficient to capture a significant number of bubbles in
individual stocks. This particular timeframe was chosen as it is well-suited to the goal of the
study, which is to test individual stocks for bubbles. It is noteworthy that individual stocks
are characterized by relatively shorter bubble episodes compared to the overall market,
and thus, the inclusion of long-term price history is deemed unnecessary. Moreover, the
chosen timeframe encompasses a diverse range of market conditions, including periods of
economic growth and recession. For instance, the ongoing COVID-19 pandemic led to a
recession in 2019, which is also covered within this timeframe.

In this study, a probability sampling method was employed, which involved the
selection of individual stocks that demonstrated price increases exceeding 10% on any
given trading day during the five-year and one-quarter period, and maintained a minimum
daily trading volume of one million shares. A Python code is used to automate this selection
process, resulting in a sample size of 104 companies for further analysis and distribution
across sectors, presented in Figure 1.
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Figure 1. Sectors with the number of companies.

Figure 1 illustrates the distribution of companies across various industry sectors. The
Technology sector boasts the largest number of companies (19), followed by the Financial
Services sector (16) and the Energy sector (15). Conversely, the Real Estate, Basic Materials,
and Utilities sectors each comprise only one, four, and six companies, respectively.

Table 1 categorizes companies into three trading volume groups: Low Volume (13 com-
panies, lowest 25%), Medium Volume (67 companies, middle 50%), and High Volume
(24 companies, top 25%).

Table 1. Number of companies by trading volume groups.

Group Number of Companies

Low Volume 13
Medium Volume 67

High Volume 24

Market capitalization, another crucial metric, is the total value of a company’s out-
standing shares, calculated by multiplying outstanding shares by the market price as of
31 March 2023.

Table 2 displays the distribution of companies by market capitalization as of 31 March
2023, organized into distinct segments. The largest segment comprises 20 mega-cap compa-
nies with market values exceeding USD 200 billion. Following this, 82 large-cap companies
are noted with market values ranging from USD 10 billion to USD 200 billion. There are
only two companies in the mid-cap segment, possessing market values between USD
2 billion and USD 10 billion, while the small-cap segments contain no listed companies.
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Table 2. Number of companies by market capital.

Group Number of Companies

Mega-cap companies 20
Large-cap companies 82
Mid-cap companies 2

Small-cap companies 0

Since this research examined 104 stocks, and due to the limited space availability, it
showcases the top and bottom ten companies, selected based on their highest percentage
change in stock prices during the sample periods. Importantly, even the companies with
the lowest percentage increases in this segment still adhered to this study’s requirement of
a minimum 10% increase in stock prices.

Table 3 presents data on ten companies’ stock prices, highlighting their minimum
and maximum price points, highest percentage changes, and corresponding dates. These
companies are the top ten performers in terms of percentage increase during the sample
period, with stock prices ranging from USD 3.80 to USD 9.04 (minimum) and USD 22.25 to
USD 76.45 (maximum), and percentage changes ranging from 29.46% to 74.59%.

Table 3. Top ten companies by highest growth.

Stock Minimum Price Maximum Price Highest Daily
Jump (%)

Date of Highest
Change

PCG 3.8 48.96 74.593 23 January 2019
AAL 9.04 56.989 41.097 3 June 2020
CCL 6.38 66.218 39.291 6 November 2020

BBWI 7.184 76.459 39.04 23 March 2020
EQT 4.835 49.957 37.32 12 March 2020
OXY 8.764 75.595 33.698 4 June 2020

MGM 7.133 50.35 33.115 23 March 2020
HST 8.7 20.426 30.029 6 November 2020
FCX 5.149 50.851 29.685 23 March 2020
APA 3.854 50.293 29.466 23 March 2020

Note. The data were collected by the author in May 2023.

Table 4 showcases the ten lowest-performing stocks within a larger group of growth
stocks. These stocks had the highest single-day percentage increases in stock prices, but
their gains were comparatively smaller than those of other stocks in the growth sample. For
instance, Altria Group, Inc. (MO), Richmond, VA, USA had a 10.02% increase on 13 March
2020, marking its highest single-day percentage gain during the chosen period, but it was
the lowest among the listed stocks. Notably, eight of these ten companies experienced their
highest daily percentage returns in 2020, while one achieved its highest return in 2019,
and another in 2021. Figure 2 below shows the number of stocks with their highest price
increase each year between 2018 and 2023.

Figure 2 illustrates the evolution in the number of stocks experiencing their highest
single-day percentage growth from 2018 to 2023. There is a notable increase in such
occurrences over the selected period. In 2018, only three stocks exhibited this level of
growth, which expanded to seven in 2019 and surged to eighty-six in 2020. However, the
data for 2021 and 2022 show a decline in the number of stocks with this level of growth. In
2021, only three stocks matched the 2018 count, and in 2022, there were just four. By 2023,
this trend further decreased to only one stock.
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Table 4. Lowest ten companies by lowest growth.

Stock Minimum Price Maximum Price Highest Daily
Jump (%)

Date of Highest
Daily Jump

MO 24.18 52.071 10.022 12 March 2020
T 14.22 22.601 10.022 12 March 2020

PM 50.949 104.741 10.035 12 March 2020
MDT 67.067 128.55 10.189 23 March 2020

GOOG 48.811 150.709 10.449 25 July 2019
PFE 23.971 58.154 10.855 4 November 2021
CVS 46.248 107.334 10.899 16 March 2020
ABT 51.583 137.81 10.936 23 March 2020

MDLZ 33.605 69.985 11.281 23 March 2020
IBM 76.9 146.742 11.301 23 March 2020

Note. Author’s own calculation.
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4. Results and Discussion

To determine the smallest window size (r0) for the GSADF test, it is crucial to consider
the total number of observations (T). For practical purposes, a rule of thumb, based on
research by Phillips et al. (2015a), recommends setting r0 to a lower bound of 1% of the full
sample using the formula r0 = 0.01 + 1.8/

√
T.

In our study with 1320 observations spanning from 1 January 2018 to 31 March 2023
(1320 trading days), we followed this recommendation, resulting in an r0 value of 0.06.
This corresponds to a minimum moving window of 6% or a minimum window size of
78 observations. The test began with the first r0 observations in the time series.

Regarding bubble duration, Phillips et al. (2015b) found that it should exceed a
parameter δ log (T), which grows proportionally with the dataset’s size. For our dataset
covering 1320 days, the optimal minimum duration for bubble identification is 7 days.
Table 5 below shows some of the dominant variables for the test.
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Table 5. Dependent variables for recursive test.

Variable Value

Number of Observations 1320
Minimum Window Size 78

Minimum Duration 7
Optimum Lag 12

For the optimal lag size, the Akaike Information Criterion (AIC) method was used.
Importantly, the optimal lag size for each of the 104 stocks, each with 1320 observations,
was determined to be 12.

4.1. Effectiveness of GSADF Test

This study aims to assess the GSADF test’s effectiveness in identifying explosive
patterns, which are sudden and substantial price movements in individual stocks. By
applying the GSADF test to a dataset of individual stock prices, the research evaluates its
reliability in detecting these patterns.

The GSADF test calculates a test statistic measuring the maximum deviation of the
time series from a unit root process across various possible breakpoints. Specifically, for
each time series, the GSADF test analyzes overlapping windows of 78 observations with a
lag size of 12. If the test statistic surpasses the critical value, the null hypothesis of a unit
root is rejected.

In simpler terms, rejecting the null hypothesis in the GSADF test implies that the time
series has undergone significant structural changes or breaks. In this context, it suggests
that current stock prices may not be sustainable. Table 6 presents the results of the ADF,
SADF, and GSADF tests’ statistics for the selected stocks.

Table 6. The test statistics of ADF, SADF, and GSADF tests.

Stock ADF SADF GSADF

AAL −2.943 −0.693 2.684 *
AAPL −0.708 3.051 * 3.080 *
ABBV 0.035 * 2.053 * 2.929 *
ABT −1.682 0.855 1.944
AIG −1.941 0.354 4.449 *

AMAT −0.759 3.058 * 3.074 *
AMD −1.373 2.780 * 2.801 *

AMZN −1.732 1.657 * 2.035
APA −1.998 −0.625 1.707
ATVI −1.437 0.074 2.266

Note. Table 6 demonstrates the test statistics of the first ten companies. * Denotes the rejection of the null
hypothesis at a 95% significance level.

Table 6 provides test statistics for various methodologies applied to the initial ten
companies. Nonetheless, a direct comparison of the test statistics alone is inadequate
without considering the corresponding critical values for each of the stocks. To address this,
this study employed a Monte Carlo simulation approach to generate these critical values
for comparison. The Monte Carlo simulation technique involves generating numerous
random time series with statistical properties resembling the original data. These simulated
time series are then employed to estimate the distribution of the test statistic under the null
hypothesis of a unit root, indicating that the time series data are non-stationary.

To establish critical values for the GSADF test applied to 104 stocks, I initially estimated
model parameters, as displayed in Table 6. The Monte Carlo simulation is used to generate
numerous synthetic time series mimicking the statistical properties of the chosen time series.
For each synthetic series, I computed and documented GSADF test statistics. Subsequently,
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I derived critical values for the GSADF test at a 95 percent significance level from the
distribution of these simulated test statistics.

The critical values for the ADF, SADF, and GSADF tests at different significance levels
(90%, 95%, and 99%) were obtained through the Monte Carlo simulation and are presented
in Table 7.

Table 7. The critical value of Monte Carlo simulation of ADF, SADF, and GSADF.

Significance Level ADF SADF GSADF

90 −0.420 1.302 2.157
95 −0.077 1.543 2.387
99 0.513 2.157 2.813

Datestamp Result

Identifying the start and end dates of explosive behavior in stock prices depends on
the minimum duration of exuberance. In this context, an origin date is established when the
time series of recursive test statistics GSADFr, characterized by r values within the range of
[r0, 1], surpasses the critical value associated with those statistics. Similarly, a termination
date is designated when the critical value of GSADFr with r values spanning [r0, 1] exceeds
the corresponding test statistics. Phillips and Shi (2020) noted that the origination of a
bubble or crisis episode is determined as the point when the GSADF test statistic first
surpasses its critical value, while the termination date corresponds to the point when the
supremum test statistic subsequently falls below its critical value, establishing two distinct
stopping times for the episode.

The data in Table 8 reveal several noteworthy observations. For example, Apple Inc.
(AAPL), Cupertino, CA, USA experienced a peak on 11 November 2019, following an
upward trend that began on 21 October 2019. This peak persisted for 29 days, concluding
on 2 December 2019. Similarly, AbbVie Inc. (ABBV), North Chicago, IL, USA reached
its highest point on 15 November 2019 after a period of upward movement starting on
8 November 2019. This peak lasted for 8 days, ending on 20 November 2019. Additionally,
American International Group Inc. (AIG), New York, NY, USA and Applied Materials Inc.
(AMAT), Santa Clara, CA, USA encountered peaks with varying durations. Table 8 also
indicates the presence of multiple episodes of bubbles within each stock, characterized by
different duration dates.

Table 8. Bubble result of the stocks based on GSADF test.

Stock Name Start Date Peak Date End Date Duration
(Days)

AAPL 21 October 2019 11 November 2019 2 December 2019 29
AAPL 26 December 2019 13 January 2020 31 January 2020 24
AAPL 3 August 2020 1 September 2020 8 September 2020 25
ABBV 8 November 2019 15 November 2019 20 November 2019 8
ABBV 15 March 2022 8 April 2022 13 April 2022 21
AIG 9 May 2019 20 May 2019 31 May 2019 15

AMAT 11 February 2021 24 February 2021 4 March 2021 14
AMAT 9 March 2021 17 March 2021 18 March 2021 7
AMAT 22 March 2021 5 April 2021 10 May 2021 34
AMAT 24 May 2021 14 June 2021 18 June 2021 18
AMAT 23 June 2021 29 June 2021 2 July 2021 7
AMD 23 August 2018 17 September 2018 28 September 2018 25
AMD 11 November 2021 29 November 2021 1 December 2021 13

Note. Table 8 presents the date stamping result of the first five stocks. Due to the limited space, only the first five
stock results are presented in Table 8.

Figure 3 shows the relationship between critical values from our Monte Carlo simula-
tion and GSADF test statistics for each of the presented stocks. The x-axis represents the
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year while the y-axis represents the GSADF test critical value. The red line is the critical
value for the specific stocks for the specific date, the blue line is the GSADF test statistics,
and the shaded region indicates where they intersect, suggesting potential bubble-like
behavior in analyzed stocks.
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Figure 4 presents the number of bubble episodes during the sampled period. It reveals
a notable increase in bubble episodes among 104 selected stocks from 2018 to 2023. In
2018 and 2019, there were 10 episodes each. However, in 2020, this number surged to
26, and in 2021, it further increased to 37. In contrast, 2022 saw a decline to 25 episodes,
and the first quarter of 2023 had only one. In total, there were 109 bubble episodes across
these stocks.

Table 9 shows the comparison of critical values obtained via SADF and GSADF
approaches for each analyzed stock. For example, the first stock, AAL, yielded test statistics
of −0.693 for SADF and 2.687 for GSADF. The critical values for this stock were 1.543
(SADF) and 2.387 (GSADF). As a result, the SADF test did not reject the null hypothesis,
while the GSADF test rejected it at a 5% significance level.

Table 9. Results of SADF and GSADF tests.

Stock SADF Result GSADF Result

AAL Cannot reject H0 Rejects H0 at the 5% significance level

AAPL Rejects H0 at the 1% significance level Rejects H0 at the 1% significance level

ABBV Rejects H0 at the 1% significance level Rejects H0 at the 1% significance level

ABT Cannot reject H0 Cannot reject H0

AIG Cannot reject H0 Rejects H0 at the 1% significance level



J. Risk Financial Manag. 2024, 17, 59 13 of 16
J. Risk Financial Manag. 2024, 17, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 4. Comparison of number of bubble episodes by year. 

Table 9 shows the comparison of critical values obtained via SADF and GSADF ap-
proaches for each analyzed stock. For example, the first stock, AAL, yielded test statistics 
of −0.693 for SADF and 2.687 for GSADF. The critical values for this stock were 1.543 
(SADF) and 2.387 (GSADF). As a result, the SADF test did not reject the null hypothesis, 
while the GSADF test rejected it at a 5% significance level. 

Table 9. Results of SADF and GSADF tests. 

Stock SADF Result GSADF Result 

AAL Cannot reject H0 
Rejects H0 at the 5% significance 
level 

AAPL Rejects H0 at the 1% significance 
level 

Rejects H0 at the 1% significance 
level 

ABBV Rejects H0 at the 1% significance 
level 

Rejects H0 at the 1% significance 
level 

ABT Cannot reject H0 Cannot reject H0 

AIG Cannot reject H0 Rejects H0 at the 1% significance 
level 

Figure 5 displays the results of both the SADF and GSADF tests for selected stocks, 
indicating whether the null hypothesis (H0) is rejected at significance levels of 1%, 5%, or 
10%. These tests assess whether there is a unit root, suggesting non-stationarity and a po-
tential stock bubble. Typically, rejection at the 1% significance level includes stocks also 
rejected at the 5% and 10% levels, while rejection at the 5% level implies rejection at the 
10% level. However, rejection at the 10% significance level does not necessarily extend to 

Figure 4. Comparison of number of bubble episodes by year.

Figure 5 displays the results of both the SADF and GSADF tests for selected stocks,
indicating whether the null hypothesis (H0) is rejected at significance levels of 1%, 5%,
or 10%. These tests assess whether there is a unit root, suggesting non-stationarity and a
potential stock bubble. Typically, rejection at the 1% significance level includes stocks also
rejected at the 5% and 10% levels, while rejection at the 5% level implies rejection at the
10% level. However, rejection at the 10% significance level does not necessarily extend to
stocks rejected at the 1% and 5% levels. To maintain clarity in comparisons, this test does
not aggregate stocks rejected at other significance levels.

In the “Cannot reject H0” category, 71 stocks were identified as non-rejecting using
the SADF test, and 38 stocks using the GSADF test. This implies that the statistical tests
failed to reject the null hypothesis at any significance level. It suggests the possibility of a
unit root and non-stationarity in these stocks. These stocks do not exhibit characteristics
associated with a stock bubble.

Furthermore, in the “Rejects H0 at the 1% significance level” category, 16 stocks were
identified as rejecting the null hypothesis using the SADF test, while 34 stocks did so using
the GSADF test. This indicates that these stocks provide strong statistical evidence against
the presence of a stock bubble at the 1% significance level. Both tests strongly suggest that
these stocks are unlikely to have a stock bubble and display characteristics of stationarity.

Moving to the “Rejects H0 at the 5% significance level” category, eight stocks were
identified by the SADF test and fourteen stocks by the GSADF test as rejecting the null
hypothesis at the 5% significance level. This implies a reduced likelihood of a stock bubble
in these stocks. The results from both tests indicate that these stocks exhibit characteristics
consistent with stationarity.

Finally, in the “Rejects H0 at the 10% significance level” category, nine stocks were
identified using the SADF test and eighteen stocks using the GSADF test as rejecting the
null hypothesis at the 10% significance level. These stocks provide evidence against a
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stock bubble, though with a slightly lower level of confidence compared to the 1% and 5%
significance levels.
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In summary, the analysis of the outcomes reveals that the generalized supremum
augmented Dickey–Fuller (GSADF) test is notably effective in detecting explosive patterns
in individual stocks, as evidenced by its consistently higher rejection rates of the null
hypothesis at various significance levels compared to the SADF test. Specifically, the
GSADF test outperforms the SADF test by rejecting the null hypothesis for 34 stocks at
the 1% level, 18 stocks at the 5% level, and 14 stocks at the 10% level, indicating a superior
ability to identify potential stock bubbles. Conversely, the SADF test exhibits lower rejection
rates, implying reduced sensitivity to identifying stationarity and a potentially higher risk
of overlooking stock bubble occurrences. The findings strongly support the GSADF test as
a more robust approach for detecting stock bubbles in individual stocks.

5. Conclusions

This study assessed the GSADF test’s effectiveness in identifying explosive patterns in
individual stocks by assessing unit roots and stationarity. The GSADF test, which examines
overlapping stock price data windows for deviations from a unit root process, consistently
outperformed the SADF test in rejecting the null hypothesis. It detected explosive patterns
in 34 stocks at a 1% significance level, compared to 16 stocks for the SADF test. Overall, the
GSADF test demonstrated greater sensitivity and effectiveness in identifying stock bubbles,
while the SADF test had lower sensitivity in this regard.

Several reasons account for the GSADF test’s superiority over the SADF test. Firstly,
the SADF test assumes a single structural break, limiting its usefulness when multiple
structural breaks or regime shifts are present. In contrast, the GSADF test is designed
to handle such scenarios more effectively, making it better at detecting and quantifying
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multiple structural breaks. Additionally, the SADF test can suffer from size distortions,
causing the actual significance level to deviate from the desired level. This issue is addressed
by the GSADF test through the use of Monte Carlo simulations, which accurately estimate
significance levels, reducing size distortions and enhancing test accuracy.

While this research employs a robust econometric method endorsed by institutions
like the Federal Reserve Bank of Dallas, its focus on individual stocks limits generalizabil-
ity. The customization of bubble detection for specific stocks restricts systemic insights.
Additionally, this study’s reliance on historical daily stock data over five years excludes
consideration of broader economic factors. The findings are time-dependent, and this study
does not explore various contributors to bubble formation. Consequently, its applicability
is constrained to the defined temporal and stock-specific parameters, cautioning against
broader extrapolation or future predictions.

Since this research focuses on analyzing selected stocks’ closing prices through time
series data, it suggests potential avenues for future research, including exploring online
learning and adaptive models for dynamic market conditions. Cross-market dynamics
analysis examining interconnections among different asset classes could yield insights into
bubble occurrences. Further research could explore international spillovers and contagion
effects by analyzing transmission mechanisms for stock bubbles across markets and regions,
considering factors like cross-border capital flows and information dissemination.
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