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Abstract: This study discusses how financial economic theory and its quantitative tools can be applied
to create socioeconomic indices and develop a financial market for the so-called “socioeconomic
well-being indices”. In this study, we quantify socioeconomic well-being by assigning a dollar value
to the well-being factors of selected countries; this is analogous to how the Dow 30 encapsulates
the financial health of the US market. While environmental, social, and governance (ESG) financial
markets address socioeconomic issues, our focus is broader, encompassing national citizens’ well-
being. The dollar-denominated socioeconomic indices for each country can be viewed as financial
assets that can serve as risky assets for constructing a global index, which, in turn, serves as a “market
of well-being socioeconomic index”. This novel global index of well-being, paralleling the Dow Jones
Industrial Average (DJIA), provides a comprehensive representation of the world’s socioeconomic
status. Through advanced financial econometrics and dynamic asset pricing methodologies, we
evaluate the potential for significant downturns in both the socioeconomic well-being indices of
individual countries and the aggregate global index. This innovative approach allows us to engineer
financial instruments akin to portfolio insurance, such as index puts, designed to hedge against these
downturn risks. Our findings propose a financial market model for well-being indices, encouraging
the financial industry to adopt and trade these indices as mechanisms to manage and hedge against
downturn risks in well-being.

Keywords: socioeconomic well-being indices; dynamic asset pricing theory; world development
socioeconomic indicators; global dollar socioeconomic well-being index; gross domestic product;
financial econometric modeling

1. Introduction

A country’s policymakers require a measure of the magnitude of their economic
output to evaluate the impact of economic policies on growth. Since 1934, the gross national
product (GNP), proposed by Simon Kuznets, has served as the primary metric in the US
and other developed countries, encompassing all final transactions of goods and services.
In 1991, the gross domestic product (GDP), a similar measure, took the spotlight. However,
the GNP/GDP faced criticism for focusing solely on aggregate economic wealth, neglecting
individual citizens’ economic welfare and well-being. Leaders of major countries, like
then-President of France Nicolas Sarkozy in 2008, recognized these limitations, leading to
the identification of diverse sources of well-being beyond economic indicators that could
be used to assess not just economic performance but also social progress.1

The IMF’s report discusses income, consumption, and wealth distribution indicators
for categorizing well-being and economic welfare (Quiros-Romero and Reinsdorf 2020).
Ahmad and Qureshi (2021) highlight the need for an index measuring citizen well-being,
allowing policymakers to benchmark their performance. This approach is exemplified by
the United Nations Development Programme’s Human Development Index (HDI), which
evaluates various dimensions of human development beyond economic growth (Sagar and

J. Risk Financial Manag. 2024, 17, 35. https://doi.org/10.3390/jrfm17010035 https://www.mdpi.com/journal/jrfm

https://doi.org/10.3390/jrfm17010035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://orcid.org/0000-0003-0536-0040
https://orcid.org/0000-0003-3683-2194
https://orcid.org/0000-0002-0869-4399
https://doi.org/10.3390/jrfm17010035
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm17010035?type=check_update&version=1


J. Risk Financial Manag. 2024, 17, 35 2 of 19

Najam 1998). The HDI represents achievements in health, knowledge, and living standards.
The OECD has also pioneered economic indicators to comprehensively assess economic
and social progress, such as the “Better Life Index”, which reflects a country’s current
socioeconomic status based on factors like housing, income, education, and governance
(OECD 2023).

Trindade et al. (2020) developed a socioeconomic well-being index using the historical
mood of the US population, issuing marketable financial contracts like options and futures
through financial econometric modeling and dynamic asset pricing theory. These indices
offer early warnings for policymakers and private agents regarding potential mood-related
market downturns. However, a country’s well-being is not solely dependent on the public
mood or political factors; it should also encompass the role of the business community.

Our study develops a conceptual framework for encapsulating socioeconomic well-
being; it is comparable to the way the Dow 30 indices encapsulate the industrial and
financial vitality of corporations in the US. In this paper, we take a global view of a nation’s
well-being, applying dynamic asset pricing theory and integrating financial economic
theory to assess and manage the risks associated with socioeconomic indices, expanding
on prior work on environment, society, and governance (ESG) and socially responsible
investing (Matos 2020).

Our strategy involves establishing a financial market for socioeconomic well-being in-
dices, treating them as risky financial assets, and assigning dollar values by normalizing these
assets between 0 and 100; this is akin to ESG scores. We construct socioeconomic well-being
indices for nine countries: the US, Australia, Brazil, China, Germany, India, Japan, South
Africa, and the UK. Incorporating eight key world development indicators—the Gini index,
unemployment, life expectancy at birth, gross national income, inflation rate, population, and
foreign direct investment from the World Bank (IBRD 2022)—we create dollar-denominated in-
dices, utilizing a country’s GDP to determine their financial value. These dollar-denominated
indices are derived to measure and assign a tangible monetary value to the well-being factor,
establishing a precedent in the financial analysis of social metrics.

We establish a market for dollar-denominated socioeconomic well-being indices, a
global index akin to the Dow Jones Industrial Average (DJIA), treating them as risky financial
assets. Our global index provides an equally weighted market index, with each country’s
dollar-denominated socioeconomic well-being index considered a risky asset within this
composite index. Leveraging these indices from developed countries, we conduct opti-
mization analyses to derive efficient frontiers. We analyze the stability and risks associated
with the socioeconomic well-being indices of individual nations and the global composite
index by employing financial econometrics and dynamic asset pricing theory. We delve
into the likelihood and potential impact of sharp downturns in these indices, which reflect
broader socioeconomic challenges and trends.

By integrating financial theory with well-being metrics, we create a platform for
financial instruments analogous to those used for hedging against market volatility, such
as portfolio insurance. These instruments, such as index puts, are designed to mitigate the
risk of downturns in the indices of well-being for countries and the global index alike. This
concept opens up a new market for securities that protect against declines in social welfare,
much like how traditional financial instruments protect against economic downturns. For
financial markets, this represents an expansion of tradable assets to include indices that
represent human and social capital. For policymakers and social scientists, it offers a new
lens through which to view the economic implications of social policies and changes. For
the global community, it emphasizes the importance of socioeconomic factors as integral
elements of a nation’s wealth and prosperity.

Our analysis applies portfolio theory, complying with Basel II Accord requirements,
and employs various risk–return measures. This paper discusses the development of a
market where these socioeconomic well-being indices are traded as derivatives, providing
a hedging mechanism against the socioeconomic risks faced by countries. The financial
instruments that we propose are similar in nature to index puts, which allow investors to
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insure their portfolios against declines. We anticipate that institutional investors will trade
these assets similarly to other derivatives. For instance, a US equity portfolio manager
forecasting a decline in the US dollar-denominated socioeconomic well-being index may
opt for portfolio insurance instruments or short positions in the index. In the context of
our socioeconomic well-being indices, these instruments would serve to protect against
downturns in a nation’s socioeconomic conditions. The availability of such instruments
could also facilitate a more proactive approach to social investment and policymaking,
encouraging a forward-looking stance on well-being.

Existing well-being indices lack dynamic features; they lack a time series econometric
model that can be used to forecast and trade them in financial portfolios. No research has
explored financial instruments for assessing a nation’s downturns. Thus, we establish a
market for socioeconomic indices, enabling the financial industry to engage in societal
well-being assessment and the management of potential downturns. While ESG plays a
vital role in addressing socioeconomic concerns in financial markets, our aim is broader,
encompassing a nation’s overall well-being.

During the preparation of this work, the authors utilized ChatGPT 3.5 and ChatGPT 4
for the sole purpose of enhancing the linguistic quality of our manuscript. After employing
these AI tools, the authors meticulously reviewed and edited the con-tent as needed,
thereby taking full responsibility for the content of the publication. The use of these AI
resources was strictly limited to improving the clarity and coherence of the text, given the
diverse writing styles of the four authors. At no point was AI used for any analytical input
or data analysis within the paper.

The rest of this paper unfolds as follows: in Section 2, we construct dollar-denominated
well-being indices for nine countries using a mix of indicators that reflect economic, social,
and developmental factors. Then, we normalize these indices, allowing them to be com-
pared and aggregated into a global index that offers a holistic view of the global well-being.
In Sections 3 and 4, we assess the stability and potential volatility of these indices using
dynamic asset pricing, and we present the optimal portfolio composition and efficient fron-
tier in Section 5. Section 6 introduces an option pricing model for the global socioeconomic
well-being index, and this is followed by our concluding remarks in Section 7.

2. World Development Socioeconomic Well-Being Indicators

The World Bank (2022) compiles internationally comparable statistics on global devel-
opment and poverty alleviation. This section outlines the world development indicators
used to construct our USD-denominated socioeconomic index. Our index primarily in-
corporates indicators related to income, health, labor, education, the economy, and global
connections. These include the Gini index for income distribution, total population, life
expectancy at birth, and unemployment, which measure population health, labor, and
education dynamics. The gross national income (GNI), consumer price index (CPI), and
GDP measure income, savings, prices, the terms of trade, and the economic structure.
Foreign direct investment reflects financial flows related to global connections. Further
descriptions of these world development indicators (IBRD 2022) can be found in the online
appendix. Whenever it is necessary, we compute missing data using multiple imputations
with principal component analysis (Josse et al. 2011). We modify the world development
indicators to construct the global dollar socioeconomic well-being index in Section 2.1.

2.1. Constructing a Global Dollar Socioeconomic Well-Being Index

In this subsection, we construct a global socioeconomic well-being index using the
eight world development indicators (WDIs) defined by the World Bank (Gini index, total
unemployment, life expectancy at birth, GNI per capita, consumer price index, population,
foreign direct investment (in current USD), GDP/capita) for the nine countries in our study.
Based on the data availability in IBRD (2022), we selected these nine countries from all the
continents and extracted reported data from between 1990 and 2020.
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We denote by F(k,l) the kth world development indicator (k = 1, . . ., K = 8) for the lth
country (l = 1, . . ., L = 9) for a given year such that all indicators are strictly positive; that
is, F(k,l) > 0 for all k,l so that they positively contribute to the socioeconomic well-being
index. Therefore, we transform the Gini index and unemployment indicators into the
neg. Gini index (100-Gini index) and employment (100-unemployment), respectively. The
US development indicators that positively contribute to the US socioeconomic well-being
index are shown in Figure 1a.
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In order to compare the significance of factors with respect to countries, we normalize
each country’s indicator, F(k,l), using the corresponding indicator of all the countries (F(k,l),
l = 1, . . ., L = 9) as follows:

FN(k, l) =
F(k, l)

∑L
l=1 F(k, l)

, k = 1, . . . , K, l = 1, . . . , L. (1)

We then define the socioeconomic well-being index for country l, which we denote by
WI(l), as the average of its normalized indicators, excluding the GDP:

WI(l) =
1

K − 1∑K−1
k=1 FN(k, l), l = 1, . . . , L, (2)

so that WI(l) ∈ (0,1), l = 1, . . ., L. We monetize the US dollar value of WI(l) at year t,
WIt(l), by weighting it with its corresponding GDP/capita, GDPt(l), to define a US dollar-
denominated index of socioeconomic well-being, the dollar socioeconomic well-being index
(DWI), for country l at year t, as follows:

DWIt(l) = GDPt(l)·WIt(l), t = t0 = 1990, . . . , t = 2020. (3)

This reflects the “well-being” of a resident in country l in US dollars. For instance,
Figure 1b depicts the US per capita well-being. Figure 2a highlights variations in the
well-being of different countries based on the dollar value per capita (DWI).
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To compare the well-being of an individual with that of the overall population, we
construct a global DWI by taking the average of the DWIs:

DWIt =
1
L ∑L

l=1 DWIt(l), t = t0, . . . , t30. (4)

The global DWI is shown in Figure 2b. The yearly deviations in terms of (thousands
of) USD represent the change in the DWI per person from one year to another.
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2.2. Econometric Financial Modeling of Socioeconomic Well-Being Indices

To model population well-being within a financial framework, we need to assign a US
dollar value to the well-being of each resident in a given country, treating it as an asset price.
This approach involves applying dynamic asset pricing theory to capture the financial
market dynamics of these socioeconomic well-being indices over time. The exponential
transformation of these time series is selected to mirror asset price dynamics, facilitating
the application of dynamic asset pricing theory (Duffie 2010; Schoutens 2003).

We determine the exponential transformation for each DWI, considering the years t =
t0, . . ., 2020, as follows:

f (x) = aexp(bx), a > 0, b > 0,

f
(

min
l,t

DWIt(l)
)
= 0,

f
(

max
l,t

DWIt(l)
)
= 1.

(5)

Under this optimization, we set the exponential transformation of the lowest DWI
to 0 and that of the highest DWI to 1. We assume that the “asset price” (the happiness of
the representative inhabitant) should have a minimal value of 0 and a maximal value of 1,
which represents 100%. This scale is the one used in ESG rankings (Scatigna et al. 2021).
The exponential transformation for the US DWI produces a = 0.0037 and b = 0.0001. With
all DWIs being positive, we define the log returns for the exponentially transformed DWI
and thus introduce the well-being asset pricing model for each country with respect to the
global index.
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We take the log returns of the exponentially transformed DWIs in the way that this is
done in dynamic asset pricing theory (Duffie 2010):

Rt(l) = log
f (DWIt(l))

f (DWIt−1(l))
; l = 1, . . . , 10, t = t0, . . . , t30, (6)

where f (DWIt(l)), l = 1, . . ., 9, is the exponentially transformed DWI for the lth country in
year t, and we set l = 10 for the exponentially transformed global DWI. In each country,
we model the log returns of the exponentially transformed DWI with an autoregressive
AR(1) model:

Rt(l) = ϕ0 + zt + θ1zt−1, t = t0, . . . , t30, (7)

where zt = σtϵt, and ϵt are assumed to be independent and identically distributed (iid)
innovations, while ϕ0 and θ1 are new parameters to be estimated. We model the volatility
(σt) using the best fit from among the time-varying volatility models ARCH(1), GARCH(1,1),
and EGARCH(1,1). The GARCH(1,1) model is defined as

σt =
zt
ϵt

,

σ2
t = α0 + α1z2

t−1 + β1σ2
t−1, t = t1, . . . , t30,

(8)

where ϕ0, θ1, α0, α1, and β1 are parameters to be estimated (Bollerslev 1986). The sample
innovations, ϵt, are iid random variables with zero mean and unit variance (Tsay 2005).

We model the log returns Rt(l) in Equation (7) using the following univariate models
with standard normal iid innovations (Hamilton 2020; Tsay 2005):

• Model 1: AR(1)-ARCH(1);
• Model 2: AR(1)-GARCH(1,1);
• Model 3: AR(1)-EGARCH(1,1).

We compare the performances of the three models based on the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC), as shown in Table 1. For
each country, we select the model that results in the lowest AIC and BIC among the
estimated models (Models 1, 2, and 3). For example, Model 1 outperforms the other
models in modeling the log returns of the US DWI. Combining the simulated sample
innovations of each country, we get a 10-dimensional sample of 30 observations. We employ
S = 10,000 scenarios for innovations based on a fitted 10-dimensional normal-inverse
Gaussian (NIG) distribution, which is in the domain of attraction of a 10-dimensional
multivariate Gaussian distribution (Øigård et al. 2004). By passing from normal to NIG
innovations, we preserve the asymptotic unbiasedness of the parameters in the marginal
time series models (Equation (8)). To assess the confidence bound for these parameters, we
would need bootstrapping methods that are beyond the scope of this paper. Next, using the
estimated parameters in Models 1, 2, and 3 for each of the 10 marginal (one-dimensional)
time series, we generate S = 10,000 Monte Carlo scenarios of the innovations2 for the log
returns in the year 2021 ((Rt31(1;s), . . ., Rt31(10;s)), s = 1, . . ., S). As a result, we obtain S
scenarios for the log returns of the 10 indices for the year 2021. As the innovations are
models with an NIG distribution, which captures the tail dependencies of the indices, our
overall forecast of the socioeconomic market for 2021 exhibits all the “stylized facts” of a
financial market (see Taylor 2011; Cont 2001).

We use the simulated scenarios and the estimated parameters of the estimated uni-
variate time series model (AR(1)-ARCH(1) or AR(1)-GARCH(1,1) or AR(1)-EGARCH(1,1))
to forecast S dynamic log returns for each DWI for 2021 (R2021). For example, the estimated
model for the US DWI log returns is an AR(1)-EGARCH(1,1) (with multivariate NIG sample
innovations) model with the following parameters:

Rt(l) = 0.09 + zt − 0.13zt−1,
σt =

zt
ϵt

,
σ2

t = −2.97 + 0.95z2
t−1 − 0.93σ2

t−1, t = t0, . . . , t30,
(9)
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where the ϵt are iid random normal innovations.

Table 1. Estimated dynamic model comparison for the log returns of DWIs in Equation (6) based
on the AIC and BIC (Model 1: AR(1)-ARCH(1), Model 2: AR(1)-GARCH(1,1), Model 3: AR(1)-
EGARCH(1,1)).

Country Model 1 AIC Model 2 Model 3 Model 1 BIC Model 2 Model 3

US 2.4627 2.5209 2.5960 2.6495 2.7544 2.8498
Australia 1.5981 0.8630 0.5255 1.7849 1.0965 0.8058

Brazil 1.6695 1.7362 1.4492 1.8563 1.9697 1.7294
China 1.8168 1.4721 1.4353 1.0037 1.7056 1.7156

Germany 2.2366 2.3033 2.1957 2.4235 2.5368 2.4760
India 0.9228 0.9895 0.5342 1.1097 1.2230 0.8144
Japan 2.7870 2.8536 2.4123 2.9738 3.0872 2.6926

SA 2.1488 2.2155 2.1473 2.3357 2.4490 2.4276
UK 2.5711 2.6378 2.4302 2.7580 2.8713 2.7105

Global
DWI 2.4346 2.5013 2.4220 2.6214 2.7348 2.7022

Then, we simulate S dynamic log returns for 2021, which we use as the dynamic
asset prices for the US. In summary, we simulate dynamic log returns (for the year 2021,
t31 = 2021) for each country by estimating econometric models for their historical log
returns (between 2000 and 2020). The joint dependence of the log returns of all indices
is determined by a multivariate NIG distribution on the sample innovations. Using the
historical and dynamic econometric models of the indices as time series, we provide an
asset valuation risk analysis. Note that historical time series analyses cannot be used
for dynamic asset pricing, particularly for option pricing. Our econometric models are
designed to be consistent with dynamic asset pricing theory, allowing the valuation of
the indices as financial assets and the pricing of financial contracts, particularly insurance
instruments, on the socioeconomic well-being indices.

3. Measuring the Tail Risk of Socioeconomic Well-Being Indices

In this section, we assess the DWI’s performance using economic factors linked to
adverse changes in each country’s index, specifically evaluating its response to adverse
events using the eight world development indicators. The Ljung–Box3 test indicates serial
correlation and dependence in historical log returns. Our analysis emphasizes capturing
linear and nonlinear return dependencies through dynamic log returns, which yield sta-
tionary time series. Initially, we fit multivariate NIG models to each country’s dynamic log
returns (iid standardized innovations). Subsequently, we generate 10,000 scenarios from
the multivariate NIG for scenario analysis and systemic risk measure computation.

To assess the tail risk, we calculate three systemic risk measures derived from the value
at risk (VaR) (Philippe 2001). We calculate the VaR at the quantile levels of
(1 − α)100%, with α = 0.05 and α = 0.01. For a given α-quantile level (0 < α < 1), VaRα is
defined as follows:

VaRα(X) = −inf{xϵR|FX(x) > α}, 0 < α < 1, (10)

where FX(x) is the cumulative distribution function of the log return X.
Tobias and Brunnermeier (2016) proposed a ∆-conditional value at risk (CoVaR) mea-

sure, which in our setting represents the log return of a DWI; it shows how the VaR of the
financial system changes when a financial institution experiences distress relative to its
median state. We use the conditional value at risk (CVaR) (Rockafellar and Uryasev 2000)
to find the tail risk in the log returns of the DWI, denoted by X, at the α levels (1 − α)100%
= 95% and (1 − α)100% = 99%, as follows:

CVaRα(X) =
1
α

∫ α

0
VaRγ(X)dγ. (11)
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If X has a probability density, then the CVaR coincides with the expected tail loss (ETL)
or expected shortfall (ES) as follows (Rachev et al. 2008):

CVaRα(X) = −E(X|X ≤ −VaRα(X)). (12)

By switching from the VaR to the CVaR, the latter measure being a coherent risk
measure,4 we may take into account episodes of more severe distress, back-test (Acerbi
and Szekely 2014) the CVaR, and enhance its monotonicity concerning the dependence
parameter. Girardi and Ergun (2013) improved the method for identifying whether a
financial institution is considered to be in financial distress, from being exactly at its
VaRα(X) (X = −VaRα(X)) to being less than or equal to its VaRα(X) (X ≤ −VaRα(X)). Here,
we refer to Y as the global DWI log returns and X as the log returns of the indices for each
country in the alternative CoVaR defined in terms of the copulas in Mainik and Schaanning
(2014). The CoVaR at the level of α, CoVaRα (or ξα), is defined as

ξα = CoVaRα = −F−1
Y|X≤F−1

X (α)
(α) = −VaRα(Y|X ≤ −VaRα(X)), (13)

where FY and FX denote the cumulative distributions of Y and X, respectively, and FY|X is
the cumulative conditional distribution of Y given X. An extension of CoVaR, the condi-
tional expected shortfall (CoES) for DWI log returns (Mainik and Schaanning 2014) at a
level α, is given by

CoESα = −E(Y|Y ≤ −ξα, X ≤ −VaRα(X)). (14)

The conditional expected tail loss (CoETL) is the average of the DWI losses when the
DWI and the country indices’ extreme indicators are in distress (Biglova et al. 2014). The
CoETL quantifies the portfolio downside risk in the presence of systemic risk. We define
the CoETL at a level α as follows:

CoETLα = −E(Y|Y ≤ −VaRα(Y), X ≤ −VaRα(X)). (15)

We assess the portfolio market risk by computing systemic risk measures (VaR, CoVaR,
CoES, and CoETL) for the joint densities of the global DWI and individual country DWIs,
as presented in Table 2. These values gauge the impact of a significant increase in each coun-
try’s DWI on the global DWI. We choose confidence levels of 95% and 99% for statistical
comparisons and disastrous loss calculations. The first column displays empirical corre-
lation coefficients (Pearson’s R), revealing no linear relationship between Germany and
the DWI. Strong positive linear relationships exist between the DWI and the US and Japan.
Conversely, China, Brazil, and South Africa (SA) exhibit robust negative relationships with
the DWI, accompanied by low Pearson’s R values that indicate weak relationships.

Columns 2 and 3 in Table 2 present each country’s DWI VaR measures, which represent
the maximum losses at the 95% and 99% confidence levels. These losses have 5% and 1%
chances of surpassing the VaR threshold, respectively. Notably, the US experiences the
maximum loss at the 99% confidence level for both dynamic and historical log returns. At
the 95% confidence level, the highest loss is observed in the US (2.88) for dynamic data,
while the UK records the highest loss (3.13) in historical data.

We measure the average loss beyond the 5% and 1% confidence levels using CVaR,
which represents the expected loss in each country’s worst 1% and 5% scenarios. Notably,
the US registers the maximum average losses at both the 95% and 99% confidence levels.
The CoES and CoETL assess how a significant decrease in each country’s DWI affects the
global DWI. For instance, at the 5% stress level, the CoES signifies the expected return on
the DWI in the top 5% of each country’s index. Remarkably, CoES5% and CoETL5% across
all countries are quite similar, suggesting comparable impacts of a drastic DWI increase
in each country on the global DWI. However, in the most severe scenario (1%), where the
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stress on the US DWI has the greatest influence on the global DWI, Australia exhibits the
lowest impact on the global DWI for dynamic log returns.

In summary, Table 2 presents the market risk based on left-tail systemic risk measures
for the global DWI concerning each country’s DWI at varying stress levels (5% and 1%).
These insights can aid investors in evaluating the global DWI market risk and optimizing
their portfolios in the global financial market of socioeconomic well-being indices.

Table 2. Comparison of Pearson’s R and left-tail systemic risk measures (VaR, CoVaR, CoES, and
CoETL) of the joint densities of the global DWI and DWI of each country at different stress levels for
dynamic and historical log returns.

Dynamic Log Return Left-Tail Risk Measures

Country Pearson’s R VaR %95 VaR %99 CVaR %95 CVaR %99 CoES %95 CoES %99 CoETL %95 CoETL %99

US 0.55 2.88 2.55 3.56 3.66 0.43 0.61 1.54 2.65
Australia −0.25 0.52 0.39 0.52 0.66 0.47 0.65 0.31 0.53

Brazil −0.63 0.96 0.52 0.70 1.24 0.47 0.65 0.59 0.96
China −0.76 0.76 0.40 0.62 1.08 0.47 0.65 0.36 0.76

Germany 0.00 1.31 0.39 0.58 1.70 0.46 0.63 0.55 1.22
India −0.41 2.11 1.10 1.39 2.89 0.47 0.65 1.06 2.12
Japan 0.40 0.60 0.26 0.47 0.75 0.45 0.63 0.28 0.58

SA −0.58 1.53 0.84 1.11 2.00 0.47 0.65 0.89 1.54
UK 0.24 0.67 0.37 0.47 0.80 0.45 0.64 0.43 0.66

Historical log return left-tail risk measures

US 0.79 2.74 4.87 4.30 5.66 1.85 3.83 1.16 4.70
Australia −0.65 1.81 3.14 2.91 3.46 2.44 3.97 1.93 3.15

Brazil −0.79 1.81 3.47 3.19 3.86 2.44 3.97 1.97 3.49
China −0.82 2.09 3.73 3.36 4.23 2.44 3.97 2.18 3.75

Germany 0.04 2.35 2.80 2.67 2.97 2.44 3.97 2.35 2.80
India −0.72 1.42 2.64 2.34 3.05 2.44 3.97 1.47 2.65
Japan 0.57 2.77 2.85 2.83 2.87 2.44 3.97 2.54 2.85

SA −0.77 2.28 3.69 3.42 4.06 2.44 3.97 2.39 3.70
UK −0.06 3.13 4.57 4.24 5.02 2.09 3.97 2.70 4.37

4. Regression and Jensen’s Alphas of the Socioeconomic Well-Being Indices with
Respect to the Global Socioeconomic Well-Being Index

This section describes the estimation of the relationships between a country’s DWI and
the global DWI. We use a regression analysis to capture the pairwise linear dependences
between each DWI and the global DWI as follows:

Yl = al + blY + el , (16)

where Yl and Y are the log returns of the exponentially transformed DWI of country l and
the global index, respectively. The terms al, bl, and el denote the intercept, gradient, and
random error corresponding to the regression line, respectively.

The ordinary least squares (OLS) method is typically used to estimate the parameters
al and bl when the errors follow a normal distribution. However, this assumption breaks
down when there are outliers and highly influential observations. Robust regression (RR)
addresses this issue by iteratively reweighting least squares to assign optimal weights to
each data point (Hu et al. 2021; Knez and Ready 1997). OLS is suitable for short-term
predictions, as it excludes outliers, while RR is preferred for longer-term forecasts.

We apply RR and OLS to the log returns of each DWI and the global DWI. For instance,
we compare the regression analysis performance for the US DWI using data observed
from 1990 to 2020 (historical regression) with the data generated for 2021 using time series
modeling (dynamic regression), as discussed in Section 2.2. This involves regressing
over S = 10,000 Monte Carlo scenarios for both individual and global indices.5 Table 3
presents estimated coefficients (intercept and gradient) for the regression models, along
with goodness-of-fit measures (p-values, standard errors, and root mean square error
(RMSE)). In dynamic RR and OLS models, the estimated coefficients are quite similar to
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those in the historical models. However, dynamic regression models outperform historical
ones, exhibiting lower p-values and standard errors. Moreover, dynamic RR surpasses
dynamic OLS, with lower RMSEs and standard errors for the estimated coefficients.

Figure 3 shows the estimated regression lines for historical and dynamic data. The
historical data, which are from 1990–2020, represent the average indicator values used
in constructing the index, while the dynamic data comprise 10,000 generated scenarios
for 2021. Historical regression is ineffective due to heavy-tailed asymmetry and volatility
clustering in the data. Conversely, dynamic data conform to the normal distribution,
as discussed in Section 2.2. The dynamic model captures autoregression, asymmetric
volatilities, and heavy-tailed asymmetric copula dependence. Given increasing volatility
over time, the dynamic model is preferable due to volatility clustering.

Table 3. Regression analysis for historical and dynamic log returns in the US.

Regression Type

Data Type
RR

Coefficient p-Value Standard Error RMSE

Historical
Intercept (a) −0.026 0.705 0.070

0.381Gradient (b) 0.673 0.000 0.093

Dynamic Intercept (a) 0.275 0.000 0.007
0.489Gradient (b) 1.313 0.000 0.017

OLS

Historical
Intercept (a) −0.008 0.937 0.093

0.512Gradient (b) 0.862 0.000 0.125

Dynamic Intercept (a) 0.378 0.000 0.008
0.603Gradient (b) 1.360 0.000 0.022

Both historical and dynamic regressions for the US DWI yield upward forecasts (refer
to Figure 3). Addressing the grim state of global well-being is essential. A steeper gradient
in the dynamic regression signifies a more promising future well-being for a country. Table 4
presents estimated gradients from dynamic RR for all countries in the study. Among the
considered countries, the US boasts the highest well-being, while South Africa ranks lowest.
Detailed regression analyses for all countries are available from the authors.

Table 4. Robust regression for historical and dynamic log returns in the US. Regression lines for both
historical and dynamic data result in upward forecasts.

Country Estimated Gradient Standard Error

US 1.36 0.0174
Japan 0.11 0.0025

UK 0.07 0.0031
Germany 0.01 0.0125
Australia −0.22 0.0092

Brazil −0.77 0.0095
China −1.04 0.0087
India −1.11 0.0025

SA −1.14 0.0157

In the log return time series of the indices, negative drops are prominent, and these
downturns are effectively captured by the NIG distribution of innovations (Schlösser
2011, pp. 129–63). Hence, we employ AR(1)-ARCH(1,1) or AR(1)-EGARCH(1,1) with a
multivariate NIG distribution for option pricing, providing flexible probability distributions
that account for heavy tails and dependencies, both centrally and in the tail. Dynamic
models enable us to assess the value of insurance instruments accurately. Historical (static)
methods fall short in providing suitable pricing models for socioeconomic well-being
indices; they lack the ability to establish no-arbitrage values for insurance instruments.
Thus, we must rely on no-arbitrage asset pricing theory and implement dynamic models
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for pricing the well-being of individual countries and the global index. Therefore, we
employ dynamic predictive models to forecast future trends in the global well-being that
are country-specific and on a global scale.
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Our global index (DWI) functions as a “market index”, while the US index serves
as a “risky asset” within the socioeconomic well-being index market. Thus, we aim to
determine the “beta” in the capital asset pricing model (CAPM) (Fama and French 2004)
for the US index. If more countries are involved, we seek an analog of the Fama–French
three-factor model (Fama and French 1992, 1993) for the socioeconomic well-being index
market. Essentially, we want to identify which countries have the most significant impact
on global well-being.

Jensen’s alpha (Jensen 1968) shows the average return on a portfolio or investment
above or below the portfolio benchmark.6 We apply Jensen’s alpha to determine the
maximum possible return on each country’s DWI and the performance of each country’s
DWI compared to the global DWI.

Table 5 presents Jensen’s alpha values for each country’s DWI. The historical indices
have nonsignificant alphas that are close to zero, indicating that there is no advantage
compared to the global DWI. In contrast, the dynamic indices yield different results. South
Africa and India show positive alphas (0.5359 and 0.5306, respectively), suggesting that their
DWIs offer higher risk-adjusted returns. Japan, Germany, and the US exhibit statistically
significant negative alphas, indicating underperformance compared to the global DWI. The
UK, Australia, and China’s returns are roughly similar to the global DWI.

Table 5. Jensen’s alpha CAPM for historical and dynamic indices.

Country Historical Index Dynamic Index

Japan −0.048 −0.5247
Germany 0.0087 −0.2615

US −0.0075 −0.2264
UK 0.0232 0.1487

Australia 0.0242 0.189
China 0.0558 0.1951
Brazil 0.0198 0.4666
India 0.0894 0.5306

South Africa 0.0404 0.5359
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5. Efficient Frontier of the Markets of Countries’ Well-Being Risk Measures

In accordance with Markowitz’s (1952) method, the goal of portfolio optimization
is to identify the daily set of weights w that reduces the return risk of the portfolio (for
that day) subject to a desired expected return (rp). The targeted return value indicates the
investor’s risk tolerance: the higher the value, the more risk the investor is willing to accept.
Mean-variance and mean-CVaR optimization (Uryasev and Rockafellar 2001) have the
goal of minimizing the portfolio variance σp and the portfolio CVaR, denoted by CVaRp,α,
subject to a preferred expected return by using the variance and CVaR as the risk measure.

Consider a portfolio consisting of n risky assets with daily return values r(t) =
(r1(t), r2(t), . . . , rn(t)), with a portfolio mean and standard deviation r = (r1, r2, . . . , rn)
and (σ 1, σ2, . . . ., σn), respectively:

minimize w′σpw subject to rw = rp and ∑n
i=1 wi = 1. (17)

Because the target return varies, the best solution for (σp,rp) results in a hyperbola
curve known as the “efficient frontier” (EF), which is the region of the portfolio frontier
where the projected mean returns exceed rp. Consider a portfolio consisting of n risky assets
with daily return values rp, with the mean of the expected risk-adjusted returns denoted by
E(rp) and the risk measure denoted by V(rp). The portfolio optimization can be summarized
as follows:

min
w

(
−γE

(
rp
)
− (1 − γ)V

(
rp
))

subject to ∑n
i=1 wi = 1, (18)

where the risk-aversion parameter γ ∈ [0, 1] determines the positions along the EF, with
γ = 0 corresponding to the minimum-risk portfolio.

For each country’s DWI index, the optimization applied to the ensemble of the target
returns produces an EF by considering the variance, CVaRp,0.05, and CVaRp,0.01 risk mea-
sures to contrast the effects of the central risk and tail risk on optimization and since the
standard deviation is not a coherent risk measure. The DWI dynamic and historical indices
referred to in Section 2.1 are used to illustrate the EFs of each country.

Figures 4 and 5a,b plot the EFs computed for the US dynamic and historical DWIs.
The mean variance risk measure was used to generate efficient borders for the US dynamic
and historical DWIs. We used the set of equally spaced values γ = 0, 0.01, . . ., 0.99 to plot
each EF. Historical EFs are short since we have only 30 historical data points. We expect a
long EF for simulated data. The standard deviation increased in the dynamic EF from 0.05
to 0.80 and in the same frontier for historical data from 0.08 to 0.34. The growth in E(rp)
for the dynamic and historical DWIs is consistent with the same observation; however, the
increases are less evident for the EF.
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Figure 6a,b reproduce Figure 4 for the tail risk measures CVaRp,0.05 and CVaRp,0.01.
There are overall qualitative similarities in the behaviors of the CVaR EFs compared to the
mean-variance EFs. While the EFs change “smoothly” and are convex, the variation in the
behavior of the EFs is more pronounced under the CVaR risk measures compared to the
mean-variance EF.

In Figures 7 and 8, we show the optimal portfolio weights on the EFs of the mean-
variance and CVaR optimizations. For CVaR historical portfolio EFs, India and China’s
weights increase with increasing standard deviation, emphasizing that these countries are
at high risk, along with the US. Conversely, the dynamic portfolio EFs highlight that Brazil,
China, and India show higher standard deviation levels. Additionally, the UK and South
Africa become focal points at high CVaR risk levels, suggesting their safety in the event of a
significant increase in the DWIs.

J. Risk Financial Manag. 2024, 17, x FOR PEER REVIEW 13 of 20 
 

 

behavior of the EFs is more pronounced under the CVaR risk measures compared to the 
mean-variance EF. 

In Figures 7 and 8, we show the optimal portfolio weights on the EFs of the mean-
variance and CVaR optimizations. For CVaR historical portfolio EFs, India and China’s 
weights increase with increasing standard deviation, emphasizing that these countries are 
at high risk, along with the US. Conversely, the dynamic portfolio EFs highlight that Bra-
zil, China, and India show higher standard deviation levels. Additionally, the UK and 
South Africa become focal points at high CVaR risk levels, suggesting their safety in the 
event of a significant increase in the DWIs. 

 
Figure 4. Markowitz efficient frontier. 

(a) (b) 

Figure 5. Markowitz efficient frontier: (a) historical indices and (b) dynamic indices. 

 
(a) (b) 

Figure 6. Conditional value−at−risk portfolio optimization: (a) CVaRp,0.05 and (b) CVaRp,0.01 EFs. 

Figure 5. Markowitz efficient frontier: (a) historical indices and (b) dynamic indices.

J. Risk Financial Manag. 2024, 17, x FOR PEER REVIEW 13 of 20 
 

 

behavior of the EFs is more pronounced under the CVaR risk measures compared to the 
mean-variance EF. 

In Figures 7 and 8, we show the optimal portfolio weights on the EFs of the mean-
variance and CVaR optimizations. For CVaR historical portfolio EFs, India and China’s 
weights increase with increasing standard deviation, emphasizing that these countries are 
at high risk, along with the US. Conversely, the dynamic portfolio EFs highlight that Bra-
zil, China, and India show higher standard deviation levels. Additionally, the UK and 
South Africa become focal points at high CVaR risk levels, suggesting their safety in the 
event of a significant increase in the DWIs. 

 
Figure 4. Markowitz efficient frontier. 

(a) (b) 

Figure 5. Markowitz efficient frontier: (a) historical indices and (b) dynamic indices. 

 
(a) (b) 

Figure 6. Conditional value−at−risk portfolio optimization: (a) CVaRp,0.05 and (b) CVaRp,0.01 EFs. Figure 6. Conditional value-at-risk portfolio optimization: (a) CVaRp,0.05 and (b) CVaRp,0.01 EFs.

J. Risk Financial Manag. 2024, 17, x FOR PEER REVIEW 14 of 20 
 

 

  
(a) (b) 

Figure 7. Variation of the weight composition of the Markowitz optimal portfolios along each effi-
cient frontier (as a function of standard deviation): (a) historical portfolio and (b) dynamic portfolio. 

  
(a) (b) 

Figure 8. Variation of the weight composition of the CVaRp,α optimal portfolios along each efficient 
frontier (as a function of α): (a) historical portfolio and (b) dynamic portfolio. 

Efficient Frontier and Risk Measures of the Market for Countries with High GDPs 
Economic rankings have evolved over time, and the nominal GDP/capita is a key 

metric for assessing national wealth. It is intriguing to examine the portfolio of socioeco-
nomic well-being indices for the countries with the largest GDPs and compare them to the 
portfolios of all countries. As of 2022, the top four nations by nominal GDP were the US 
(USD 20.89 trillion), China (USD 14.72 trillion), Japan (USD 5.06 trillion), and Germany 
(USD 3.85 trillion), according to recent World Bank data. In this section, we analyze the 
portfolios of high-GDP countries; this is akin to the previous section focusing on the top 
four GDP nations. We employ optimization to create EFs, considering the variance, CVaRp 
at 0.05, and CVaRp at 0.01 risk measures to assess the effects of central and tail risk on 
optimization. We also introduce dynamic indices, as explained in Section 2.1, for these 
four countries, utilizing these new indices to illustrate their respective EFs. 

Figure 9a,b display the EFs for the largest-GDP countries, comparing them to the EFs 
for all countries using mean-variance risk measures for both historical and dynamic DWI 
portfolios. The historical EF is relatively short due to limited historical data (30 data 
points), while the simulated data are expected to produce a longer EF. In the high-GDP 
countries’ historical EF, the standard deviation increased from 0.16 to 0.55, and for all 
countries, it increased from 0.07 to 0.34. Interestingly, the growth in E(𝑟 ) for the DWI of 
all countries is higher than it is for high-GDP countries at the same risk level. This suggests 
that investing in high-GDP countries’ DWI carries a higher risk for the same expected 
return compared to investing in the DWI from all countries. Qualitatively, the dynamic 
EFs for all countries and high-GDP countries exhibit similar behaviors, but the historical 
EFs for high-GDP countries display smoother, convex changes, while all countries’ EFs 
show more pronounced fluctuations. 

Figure 10a,b reproduce Figure 9 for the tail risk measures CVaRp,0.05 and CVaRp,0.01. 
The behaviors of the CVaR’s EFs of the DWI for countries with high GDPs and those for 
all countries are comparable. Again, it can be seen that the risk of investing in the DWI for 
all countries is less than the risk for countries with high GDPs at the same expected return. 
The variation in the behavior of the EFs is more pronounced under the CVaRp,0.01 risk measure. 

Figure 7. Variation of the weight composition of the Markowitz optimal portfolios along each efficient
frontier (as a function of standard deviation): (a) historical portfolio and (b) dynamic portfolio.



J. Risk Financial Manag. 2024, 17, 35 14 of 19

J. Risk Financial Manag. 2024, 17, x FOR PEER REVIEW 14 of 20 
 

 

  
(a) (b) 

Figure 7. Variation of the weight composition of the Markowitz optimal portfolios along each effi-
cient frontier (as a function of standard deviation): (a) historical portfolio and (b) dynamic portfolio. 

  
(a) (b) 

Figure 8. Variation of the weight composition of the CVaRp,α optimal portfolios along each efficient 
frontier (as a function of α): (a) historical portfolio and (b) dynamic portfolio. 

Efficient Frontier and Risk Measures of the Market for Countries with High GDPs 
Economic rankings have evolved over time, and the nominal GDP/capita is a key 

metric for assessing national wealth. It is intriguing to examine the portfolio of socioeco-
nomic well-being indices for the countries with the largest GDPs and compare them to the 
portfolios of all countries. As of 2022, the top four nations by nominal GDP were the US 
(USD 20.89 trillion), China (USD 14.72 trillion), Japan (USD 5.06 trillion), and Germany 
(USD 3.85 trillion), according to recent World Bank data. In this section, we analyze the 
portfolios of high-GDP countries; this is akin to the previous section focusing on the top 
four GDP nations. We employ optimization to create EFs, considering the variance, CVaRp 
at 0.05, and CVaRp at 0.01 risk measures to assess the effects of central and tail risk on 
optimization. We also introduce dynamic indices, as explained in Section 2.1, for these 
four countries, utilizing these new indices to illustrate their respective EFs. 

Figure 9a,b display the EFs for the largest-GDP countries, comparing them to the EFs 
for all countries using mean-variance risk measures for both historical and dynamic DWI 
portfolios. The historical EF is relatively short due to limited historical data (30 data 
points), while the simulated data are expected to produce a longer EF. In the high-GDP 
countries’ historical EF, the standard deviation increased from 0.16 to 0.55, and for all 
countries, it increased from 0.07 to 0.34. Interestingly, the growth in E(𝑟 ) for the DWI of 
all countries is higher than it is for high-GDP countries at the same risk level. This suggests 
that investing in high-GDP countries’ DWI carries a higher risk for the same expected 
return compared to investing in the DWI from all countries. Qualitatively, the dynamic 
EFs for all countries and high-GDP countries exhibit similar behaviors, but the historical 
EFs for high-GDP countries display smoother, convex changes, while all countries’ EFs 
show more pronounced fluctuations. 

Figure 10a,b reproduce Figure 9 for the tail risk measures CVaRp,0.05 and CVaRp,0.01. 
The behaviors of the CVaR’s EFs of the DWI for countries with high GDPs and those for 
all countries are comparable. Again, it can be seen that the risk of investing in the DWI for 
all countries is less than the risk for countries with high GDPs at the same expected return. 
The variation in the behavior of the EFs is more pronounced under the CVaRp,0.01 risk measure. 

Figure 8. Variation of the weight composition of the CVaRp,α optimal portfolios along each efficient
frontier (as a function of α): (a) historical portfolio and (b) dynamic portfolio.

Efficient Frontier and Risk Measures of the Market for Countries with High GDPs

Economic rankings have evolved over time, and the nominal GDP/capita is a key
metric for assessing national wealth. It is intriguing to examine the portfolio of socioeco-
nomic well-being indices for the countries with the largest GDPs and compare them to the
portfolios of all countries. As of 2022, the top four nations by nominal GDP were the US
(USD 20.89 trillion), China (USD 14.72 trillion), Japan (USD 5.06 trillion), and Germany
(USD 3.85 trillion), according to recent World Bank data. In this section, we analyze the
portfolios of high-GDP countries; this is akin to the previous section focusing on the top
four GDP nations. We employ optimization to create EFs, considering the variance, CVaRp
at 0.05, and CVaRp at 0.01 risk measures to assess the effects of central and tail risk on
optimization. We also introduce dynamic indices, as explained in Section 2.1, for these four
countries, utilizing these new indices to illustrate their respective EFs.

Figure 9a,b display the EFs for the largest-GDP countries, comparing them to the
EFs for all countries using mean-variance risk measures for both historical and dynamic
DWI portfolios. The historical EF is relatively short due to limited historical data (30 data
points), while the simulated data are expected to produce a longer EF. In the high-GDP
countries’ historical EF, the standard deviation increased from 0.16 to 0.55, and for all
countries, it increased from 0.07 to 0.34. Interestingly, the growth in E(rp) for the DWI of all
countries is higher than it is for high-GDP countries at the same risk level. This suggests
that investing in high-GDP countries’ DWI carries a higher risk for the same expected
return compared to investing in the DWI from all countries. Qualitatively, the dynamic EFs
for all countries and high-GDP countries exhibit similar behaviors, but the historical EFs
for high-GDP countries display smoother, convex changes, while all countries’ EFs show
more pronounced fluctuations.
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Figure 10a,b reproduce Figure 9 for the tail risk measures CVaRp,0.05 and CVaRp,0.01.
The behaviors of the CVaR’s EFs of the DWI for countries with high GDPs and those for
all countries are comparable. Again, it can be seen that the risk of investing in the DWI
for all countries is less than the risk for countries with high GDPs at the same expected
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return. The variation in the behavior of the EFs is more pronounced under the CVaRp,0.01
risk measure.
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6. Pricing Options on Socioeconomic Well-Being Indices

In this section, we construct a financial model for pricing DWI options. Traditional
methods like the Black–Scholes–Merton model, binomial option pricing, trinomial trees,
Monte Carlo simulations, and finite difference models have been used to calculate option
prices (Hull 2017; Duffie 2010). However, due to the presence of heteroskedasticity and
heavy-tailed distributions in DWI returns, we avoid using the Black–Scholes–Merton
model for DWI options. Instead, we rely on a discrete stochastic volatility-based model,
specifically Duan’s (1995) discrete-time GARCH approach with NIG innovations. This
dynamic model provides an accurate pricing performance in a volatility-based framework.
We provide DWI option prices, catering to institutional investors seeking to incorporate
an additional socioeconomic dimension into their risk-adjusted portfolios and addressing
potential mispricing events.7

In the standard GARCH(1,1) model, Blaesild (1981) defines Rt for a given Ft−1, as
distributed on a real-world probability space (P), as follows:

R_t ∼ NIG(λ,
α√
at

,
β√
at

, δ
√

at , r′t + mt + µ
√

at ), mt = λ0
√

at − 1
2

at . (19)

Gerber and Shiu (1994) describe the traditional approach to determining an equivalent
martingale measure to obtain a constant option price. According to these authors, the
Esscher transformation is the conventional method for deriving an equivalent martingale
measure to obtain a constant option price. Since the moment-generating function of the
NIG distribution has an exponential form, the probability density of Rt is transformed into
the risk-neutral probability density using the Esscher transform.

Chorro et al. (2012) discovered that Rt for a given Ft−1 is distributed on the risk-neutral
probability (Q) using the Esscher transformation as follows:

R_t ∼ NIG(λ,
α√
at

,
β√
at

+ θt, δ
√

at , r′t + mt + µ
√

at ), (20)

where θt is the solution to MGF (1 + θt) = MGF (θt) ert ′ , and MGF is the conditional moment-
generating function of Rt+1 given Ft.

Using Monte Carlo simulations, we construct future values of the DWI to price its call
and put options as follows:

1. Fit GARCH(1,1) with NIG innovations to Rt and forecast a2
1 by setting t = 1;

2. Repeat steps (a)–(d) for t = 3, 4, . . ., T, where T is the time to maturity of the DWI call
option from t = 2:

(a) Estimate the model parameter θt using MGF(1 + θt) = MGF(θt) ert′ , where
MGF is the conditional moment-generating function of Rt+1 given Ft on P;
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(b) Find an equivalent distribution function for ϵt on Q;
(c) Generate the value of ϵt+1 under the assumption ϵt ∼ NIG(λ, α, β,

√
at θt +

δ, µ) on Q;
(d) Compute the values of Rt+1 and at+1 using a GARCH(1,1) model with NIG

innovations.

3. Generate future values of Rt for t = 1, . . ., T on Q, where T is the time to maturity.
Recursively, future values of the DWI are obtained as follows:

DWIt = exp(Rt) · DWIt−1. (21)

4. Repeat steps 2 and 3 10,000 (N) times to simulate N paths to compute future values of
the DWI.

Then, for a specific strike price K, the approximate future values of the DWI at time t
are the average of the DWIs, and this price is used to determine the price of the call option
(Ĉ and P̂, respectively):

Ĉ(t, T, K) =
1
N

e−r′t(T−t)∑N
i=1 max(DWI(i)T − K, 0), (22)

P̂(t, T, K) = (t, T, K) =
1
N

e−r′t(T−t)∑N
i=1 max(K − DWI(i)T , 0) (23)

Call option pricing (Ĉ) can help investors in planning to purchase our socioeconomic
well-being indices at a predetermined strike price within a predetermined time frame (time
to maturity).

Figure 11a shows call and option prices for the DWI, depending on the moneyness
(S/K) and time to maturity (T). As the strike price rises, DWI call option prices slightly
decrease, while an increase in the maturity time signifies a rise in DWI prices, reflecting
increased population happiness within the financial market context. In Figure 11b, we
display selling prices for index shares, explaining the relationship between put option prices
(P̂), the strike price (K), and the time to maturity (T). Put option prices are lower than call
options with the same moneyness and maturity time, but they increase with higher strike
prices, suggesting a potential linear relationship. The implied volatility, a reliable indicator
of future volatility, is shown in Figure 12 for the DWI; it was constructed using the market
values of call option contracts as proxies for upcoming event expectations. The implied
volatility is determined based on the time to maturity (T) and moneyness (M = S/K). During
intense market stress, an inverted volatility “grin” may appear on the observed volatility
surface, with the highest implied volatilities corresponding to increasing moneyness.

Implied volatilities are higher for lower-strike-price options than for higher-strike-
price options due to the downward-sloping volatility skew. As the maturity approaches
16 years, the implied volatilities tend to stabilize. These option prices are better suited for
hedging than speculation, serving a role akin to that of portfolio insurance.
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7. Discussion and Conclusions

We introduced incorporating the well-being of the entire country into risk-return
profiles for institutional investors. We then established a financial market for the socioeco-
nomic well-being indices of nine countries, integrating eight world development indicators.
This model enables the financial industry to assess, manage, and hedge against potential
adverse index movements globally. We introduced a novel financial market framework
for these indices, fostering active financial sector engagement in national well-being. Our
approach involves risk assessment using dynamic asset pricing theory and the creation
of hedging instruments, empowering institutional investors to trade these indices and
establish insurance funds against adverse movements. This provides a new market for
securities that protect against declines in social welfare, much like how traditional financial
instruments protect against economic downturns.

While ESG financial markets address socioeconomic issues, our focus is broader,
encompassing national citizens’ well-being. We have offered option prices on these indices
as insurance instruments against future index downturns. These findings help in estimating
the funds required to enhance global well-being, utilizing financial contracts for insurance
against index declines. Developing an early-warning system for global socioeconomic
index downturns requires additional data. Our indices are not tradable, but introducing
exchange-traded funds (ETFs) would involve replicating their dynamics with fixed-income
portfolios through asset liability management. For instance, an ETF replicating the US DWI
could use put options as insurance instruments if the US DWI declined in 2024, ensuring
that investors receive the put value on the ETF mirroring the US DWI.

Based on the data availability in IBRD (2022), we considered only using data from
the US, Australia, Brazil, China, Germany, India, Japan, South Africa, and the UK as
representative countries from all the continents, and extracted reported data from between
1990 and 2020. Since this provides a complete data set, missing data imputation is minimal,
which minimizes the statistical error due to missing data imputation.

Our proposed method for constructing indices of socioeconomic well-being is not
limited to the nine countries discussed in this paper. A similar portfolio analysis will be
performed for various regions in the world based on geographical and economic criteria.
This allows for addressing the following problems: which individual or group of countries
contribute to the world’s wellbeing? And to what degree? We will extend these financial
management principles to construct a financial market of socioeconomic well-being for
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the organization of the petroleum exporting countries (OPEC) by developing the OPEC
DWI. Then, we will check the contribution of each OPEC country to the OPEC DWI and
determine what would be the effect if a country leaves or joins OPEC. We believe these
findings will help the financial industry, which works with world organizations, to address
the potential socioeconomic issues related to the well-being of these societies.
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Notes
1 The study, “Report by the Commission on the Measurement of Economic Performance and Social Progress”, was led by Joseph

Stiglitz, Amartya Sen, and Jean-Paul Fitoussi (see Stiglitz et al. 2009).
2 The Basel II Accord requires 10,000 scenarios in the generation of future portfolio returns to properly assess the tail risk portfolio

of returns (Orgeldinger 2006; Jacobson et al. 2005).
3 For the Ljung-Box test, please refer to Ljung and Box (1978).
4 Regarding the CVaR as a coherent risk measure, please refer to Acerbi and Tasche (2002).
5 The historical regression assumes iid dependent variables. However, our econometric analysis shows that the dependent variables

form a time series with characteristics quite different from white noise. The log returns of the socioeconomic well-being indices
display heavy-tailed marginal distributions and volatility clustering. Thus, it is essential to employ a time series forecast, as
demonstrated above, and conduct OLS and RR regressions on a sample of S = 10,000 Monte Carlo iid scenarios.

6 In real financial markets, Jensen’s alpha is generally nonzero, as they often operate in a pre-equilibrium state with price
fluctuations (Soros 2015).

7 For more information about discrete stochastic volatility-based models, refer to, for example, Duan (1995), Barone-Adesi et al.
(2008), and Chorro et al. (2012).
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