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Abstract: Measure-valued differentiation (MVD) is a relatively new method for computing Monte
Carlo sensitivities, relying on a decomposition of the derivative of transition densities of the un-
derlying process into a linear combination of probability measures. In computing the sensitivities,
additional paths are generated for each constituent distribution and the payoffs from these paths
are combined to produce sample estimates. The method generally produces sensitivity estimates
with lower variance than the finite difference and likelihood ratio methods, and can be applied to
discontinuous payoffs in contrast to the pathwise differentiation method. However, these benefits
come at the expense of an additional computational burden. In this paper, we propose an alternative
approach, called the absolute measure-valued differentiation (AMVD) method, which expresses
the derivative of the transition density at each simulation step as a single density rather than a
linear combination. It is computationally more efficient than the MVD method and can result in
sensitivity estimates with lower variance. Analytic and numerical examples are provided to compare
the variance in the sensitivity estimates of the AMVD method against alternative methods.

Keywords: measure-valued differentiation; sensitivities; Greeks; Monte Carlo simulation

JEL Classification: D52; D81; G11

1. Introduction

Sensitivities play a key role in the assessment and the management of risks associated
with financial derivatives and must be computed along with prices as part of sound risk
management practice. Given that it is not possible to compute the sensitivities let alone the
prices of many financial derivatives analytically, they are usually computed numerically,
with Monte Carlo simulation being the most widely used technique. The associated
sensitivities are then computed by finite difference, pathwise differentiation, or likelihood
ratio methods, each with its own set of limitations. In particular, the finite difference method
is biased and sensitivity estimates have relatively large variances, the pathwise derivative
method cannot be applied to products with discontinuous payoffs such as digitals, and the
likelihood ratio method can be subject to unbounded variance when the associated score
function is not absolutely continuous with respect to the sensitivity parameter. For a
detailed discussion of these methods and their limitations, refer to Glasserman (2004),
chapter 7.

There has been extensive work on regularizing the pathwise method to enable it to
work with discontinuities. Such work tends either to involve differentiating the discon-
tinuity directly, which yields a delta distribution, or to utilize smoothing to avoid this
differentiation. Joshi and Kainth (2004), Rott and Fries (2005), and Brace (2007) explore the
explicit integration of the delta distribution, which requires at least one extra simulation
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that must be handcrafted to the payoff. Liu and Hong (2011) and Lyuu and Teng (2011) re-
duce the degree of handcrafting by employing kernel smoothing and importance sampling,
respectively. Chan and Joshi (2015) modify the simulation scheme as a function of the per-
turbation variable so that the pathwise payoff, as a function of perturbation size, is smooth.
It is then possible to apply the pathwise method at the cost of gaining a small likelihood
ratio term. All these methods have the drawback that the methodology is adapted to the
singularities of the payoff. This renders them much harder to implement generically than
the likelihood ratio and pathwise methods.

Despite their importance, there is a relative absence of new techniques for computing
Monte Carlo sensitivities, and recent advances have focused instead on improving the com-
putational efficiency of existing techniques. For example, Capriotti and Giles (2018) apply
adjoint algorithmic differentiation to speed up pathwise sensitivity calculations, while Xi-
ang and Wang (2022) apply low discrepancy sequences to achieve variance reduction for
American option sensitivities.

A notable exception is the measure-valued differentiation (MVD) method considered,
for example, in Heidergott et al. (2008) and Pflug and Thoma (2016). The MVD method
does not differentiate the payoff and so discontinuities do not cause difficulties, and it has
been shown to produce sensitivity estimates with lower variance than those computed
using the finite difference and the likelihood ratio (LR) methods. It is also generic in the
sense that it is not adapted to the payoff in any way, and so the same paths can be used to
compute the sensitivities of many derivatives on the same underlying framework. In the
MVD approach, the derivative of the transition density is recognized as a signed measure
and decomposed as the difference of two proper measures. The simulation at each step
is then branched according to the two constituent measures to produce multiple MVD
paths. Sensitivity estimates from these branched paths are then recombined to produce
one MVD sensitivity sample. It is shown that this approach generally results in sensitivity
estimates with lower variance than alternative methods, albeit at the expense of a greater
computational burden due to the branching of the paths. Further variance reduction is
possible by coupling, or correlating, each pair of the branched paths.

In this paper, we introduce an alternative to the MVD method, called the absolute
measure-valued differentiation (AMVD) method, which decomposes the density derivative as
the product of its sign and its absolute value. This method shares many of the properties
of the MVD method, such as the ability to handle discontinuous payoffs, but instead of
initiating two additional paths at each simulation step of the original path, it initiates only
one additional subpath. It is found that the AMVD method gives vega estimates with lower
variance than the MVD method for vanilla and digital calls in the Black–Scholes model.
Moreover, the AMVD vega estimates have lower variance than the pathwise differentiation
method in certain situations, such as the case of short-dated deep in-the-money vanilla calls.
A consideration of vegas for the more exotic double-barrier options revealed that the relative
performances of the LR, MVD, and AMVD methods depend, in general, on the positions of
the barriers and the way each method distributes densities relative to the barriers.

Applying the AMVD method requires the generation of nonstandard random vari-
ates,1 and for the examples considered in this paper, we provide a highly efficient imple-
mentation of the inverse transform method for this purpose using Newton’s method with
a careful selection of the initial point. The time taken to generate each vega subpath for
the AMVD method is approximately equal to the time taken to generate the correspond-
ing MVD method using the efficient generation of the double-sided Boltzmann–Maxwell
distribution introduced in Heidergott et al. (2008).

The remainder of the paper is structured as follows: the measure-valued differentiation
method is briefly reviewed in Section 2, and the absolute measure-valued differentiation
method is presented in Section 3. This is followed by Section 4 in which the notation and
key identities for the remainder of the paper are presented. Sensitivities for vanilla calls and
digital calls are computed analytically in Sections 5 and 6, respectively. A more complex
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example of the double knock-out barrier option is investigated numerically in Section 7,
and the paper concludes with Section 8.

2. Brief Review of Measure-Valued Differentiation

In this section, we provide a heuristic overview of the MVD method and refer the
interested reader to Heidergott et al. (2008) and Pflug and Thoma (2016) for the details.

Let X be an R-valued random variable, and let φ(x; θ) be the probability density
function of X with θ as one of its parameters. Then, given a payoff, f : R→ R, associated
with a financial derivative on X, the likelihood ratio (LR) sensitivity with respect to the
parameter θ is given by

∆θ( f ) =
∫
R

f (x)
∂φ(x; θ)

∂θ
dx (1)

ignoring discounting. At this point, the likelihood ratio method rewrites the above expres-
sion as

∆LR
θ ( f ) =

∫
R

∂ ln φ(x; θ)

∂θ
f (x) · φ(x; θ) dx, (2)

and computes the sensitivity as the expectation of the modified payoff obtained by scaling
f (x) by the score function ∂ ln φ(x; θ)/∂θ.

Now, suppose ϕ(x) = ∂φ(x; θ)/∂θ is a signed measure on R, and that it decomposes
as the difference

ϕ(x) = ϕ1(x)− ϕ2(x), (3)

where ϕ1 and ϕ2 are proper measures on R. Then, under the MVD method, the sensitivity
with respect to θ is computed as the difference

∆MVD
θ ( f ) = µ(ϕ1)

∫
R

f (x)
ϕ1(x)
µ(ϕ1)

dx− µ(ϕ2)
∫
R

f (x)
ϕ2(x)
µ(ϕ2)

dx, (4)

where µ(ϕi) =
∫
R ϕi(x) dx > 0. The two summands are computed separately, although they

may be coupled to reduce the total variance. It should be noted that ϕ̄i(x) = ϕi(x)/µ(ϕi),
for 1 ≤ i ≤ 2, are probability measures on R, and so the decomposition in (4) provides the
basis for a numerical approximation of the sensitivity using, for example, a Monte Carlo
simulation in which the integrals in (4) are computed numerically using random draws
from the distributions determined by ϕ̄i(x).

The above description of the MVD method applies to path-independent European
derivatives. For the more general case, suppose that a Monte Carlo simulation, with simu-
lation times 0 = t0 < t1 < · · · < tn = T, is used to value a given derivative with expiry
T. If the underlying process is assumed to be Markovian, then the probability density of a
simulated path is given by the product

φ(x0, x1, . . . , xn; θ) =
n

∏
i=1

φi(xi | xi−1; θ), (5)

where φi(xi | xi−1; θ) is the transition density from the ti−1 to ti conditional starting from
xi−1 at ti−1. For notational convenience, write φ(x; θ) = φ(x0, x1, . . . , xn; θ), φi(xi; θ) =
φi(xi | xi−1; θ), and define

∂i,θφ(x; θ) = φ1(x1; θ) · · · φi−1(xi−1; θ)
∂φi(xi; θ)

∂θ
φi+1(xi+1; θ) · · · φn(xn; θ) (6)
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The likelihood ratio sensitivity of a general payoff, f (x) = f (x0, x1, x2, . . . , xn), with respect
to the parameter, θ, is then given by

∆LR
θ ( f ) =

n

∑
i=1

∫
Rn

f (x) ∂i,θφ(x; θ) dx. (7)

Once again, if it is assumed that the derivatives

ϕi(xi) =
∂φi(xi, θ)

∂θ
(8)

are signed measures on R, and decompose as differences

ϕi(xi) = ϕi,1(xi)− ϕi,2(xi), (9)

where ϕi,j(x) are proper measures, then the MVD estimate of the sensitivity is given by

∆MVD
θ ( f ) =

n

∑
i=1

∫
Rn

f (x) ∂MVD
i,θ φ(x; θ) dx, (10)

where ∂MVD
i,θ φ(x; θ) is obtained from ∂i,θ(x; θ) by substituting the derivative term,

∂φi(xi; θ)/∂θ, in (6) with its decomposition

∂φi(xi; θ)

∂θ
= µ(ϕi,1)

ϕi,1(xi)

µ(ϕi,1)
− µ(ϕi,2)

ϕi,2(xi)

µ(ϕi,2)
, (11)

where µ(ϕi,j) =
∫
R ϕi,j(xi) dxi.

The implementation of the MVD method begins with the simulation, in the usual
manner, of the underlying asset price path. Then, for each 1 ≤ i ≤ n, the i-th step is
branched into two by drawing from distributions corresponding to the probability densities,
ϕ̄i,j(x) = ϕi,j(x)/µ(ϕi,j), for 1 ≤ j ≤ 2. The remaining steps in the two branched paths
are then resimulated by drawing from the original distributions, φj(xj; θ) for i + 1 ≤ j ≤ n.
Thus, the full MVD method generates a set of 2n paths for each regular path and is conse-
quently more computationally intensive than, for example, the likelihood ratio method.2

In Pflug and Thoma (2016), less computationally demanding approximations to the full
MVD method are proposed in which branching is performed only in a small subset of the
simulation steps.

3. Absolute Measure-Valued Differentiation

An important factor taken into consideration when deciding on the form of the decom-
position of the transition density in (9) is the additional computation burden associated
with the need to generate random variates from the component distributions. The decom-
position chosen in Heidergott et al. (2008) and Pflug and Thoma (2016) is due, at least in
part, to ensuring that one of the components coincides with the distribution already used in
generating the underlying process. The remaining factor, however, will generally be from a
different distribution.

The main motivation behind the absolute measure-valued differentiation (AMVD) method
is improve the computational efficiency of the MVD method by requiring the introduction
of only one additional distribution and branching off only one path at each simulation
step, while retaining the key features of the MVD method, viz., not requiring the payoff
derivative, and producing sensitivity estimates with low variances. Using the notation
from the previous section, the AMVD estimate for the sensitivity of a payoff f with respect
to the parameter θ is defined by



J. Risk Financial Manag. 2023, 16, 509 5 of 24

∆AMVD
θ ( f ) =

n

∑
i=1

∫
Rn

f (x)ε(ϕi(xi))µ(|ϕi|)
∂MVD
|i|,θ φ(x; θ)

µ(|ϕi|)
dx, (12)

where ε(ϕi(xi)) = 1{ϕi(xi)≥0} − 1{ϕi(xi)<0}, µ(|ϕi|) =
∫
R |ϕi(xi)| dxi, and

∂MVD
|i|,θ φ(x; θ) = φ1(x1; θ) · · · φi−1(xi−1; θ)|ϕi(xi)|φi+1(xi+1; θ) · · · φn(xn; θ). (13)

It follows from ε(ϕi(xi))|ϕi(xi)| = ϕi(xi) that ∆AMVD
θ ( f ) is an unbiased estimator for ∆θ( f ).

Moreover, although the AMVD method introduces what appears to be a problematic term,
viz., ε(ϕi(xi)), since ε(ϕi(xi)) = ±1, and these terms are squared when computing the
associated variance, they do not adversely affect the AMVD variance.

4. Notation, Model, and Useful Identities

In situations where it applies, the pathwise differentiation (PW) method usually gives
sensitivity estimates with lower variances than other methods, and it was shown in Pflug
and Thoma (2016) that the MVD sensitivities have lower variance than the corresponding
finite difference estimates. In subsequent sections, we will compare the variances of sensi-
tivity estimates computed using the LR, MVD, AMVD, and PW methods. Although the
analysis could be performed for any sensitivity and with any underlying model, we will
focus on delta and vega under the Black and Scholes (1973) model. This allows us to obtain,
analytically, the variances of deltas and vegas for vanillas and digitals, and avoid the
consideration of more complex models that do not contribute, in any substantial way, to the
analysis of the relative performance of the various approaches for computing sensitivities.

4.1. Black–Scholes Delta and Vega

Let r be the risk-free rate, St the price of the underlying asset at time t, and σ the
asset volatility. Moreover, let 0 = t0 < t1 < · · · < Tn = T be the sequence of Monte Carlo
simulation times, and, for notational convenience, define

Si = Sti , xi = ln Si, and ∆j = tj+1 − tj, (14)

where 0 ≤ i ≤ n and 0 ≤ j ≤ n− 1. The Euler–Maruyama discretization scheme for the
Black–Scholes model

xi+1 = xi +

(
r− 1

2
σ2
)

∆i + σ
√

∆i ξi (15)

is unbiased, where ξi ∼ N (0, 1) is a normally distributed random variable. If we define

µi(σ) =

(
r− 1

2
σ2
)

∆i−1 and ςi(σ) = σ
√

∆i−1, (16)

for 1 ≤ i ≤ n, then the transition density, φi(xi; σ), is given by

φi(xi; σ) =
1

ςi(σ)
√

2π
exp

[
− (xi − xi−1 − µi(σ))

2

2ς2
i (σ)

]
, (17)

so that xi ∼ N
(

xi−1 + µi(σ), ς2
i (σ)

)
. Straight-forward calculations give

ϕ1(xi; S0) =
∂φ1(x1; S0)

∂S0
=

1
S0ς1(σ)

ξ1φ(ξ1), (18)

ϕi(xi; S0) = 0, 2 ≤ i ≤ n, (19)

ϕi(xi; σ) =
∂φi(xi; σ)

∂σ
=

1
σ

(
ξ2

i − ςiξi − 1
)

φ(ξi), 1 ≤ i ≤ n, (20)



J. Risk Financial Manag. 2023, 16, 509 6 of 24

where ξi is the standard normal random variate in (15) and φ(·) is the standard normal
density. The decompositions chosen for the MVD method in Pflug and Thoma (2016) are

ϕMVD
1 (xi; S0) =

1
S0ς1(σ)

ξ1φ(ξ1)1{ξ1≥0} −
1

S0ς1(σ)
(−ξ1)φ(ξ1)1{ξ1≤0}, (21)

ϕMVD
i (xi; σ) =

1
σ

ξ2
i φ(ξi)−

ςi(σ)

σ
ξiφ(ξi)1{ξi≥0} +

ςi(σ)

σ
(−ξi)φ(ξi)1{ξi≤0} −

1
σ

φ(ξi), (22)

where 2 ≤ i ≤ n. Both terms in (21) correspond to the density of the Rayleigh distribu-
tion, while in (22), the first term corresponds to the double-sided Maxwell–Boltzmann
distribution, the second and third terms correspond to the Rayleigh distribution, and the
last term is the standard normal density. Note that the linear terms in (18) and (20) were
decomposed into two Rayleigh density terms since they define signed measures rather than
proper measures on R. The decompositions that will be used in the AMVD method are

ϕAMVD
1 (xi; S0) =

1
S0ς1(σ)

|ξ1φ(ξ1)|φ(ξ1), (23)

ϕAMVD
i (xi; σ) =

1
σ

ε
(

ξ2
i − ςi(σ)ξi − 1

)∣∣∣ξ2
i − ςi(σ)ξi − 1

∣∣∣φ(ξi). (24)

4.2. Notation and Identities

For any n ∈ N+, define polynomials, pn(x), by p0(x) = 1 and for n ≥ 1,

pn(x) = xn − (n− 1)xn−2. (25)

Moreover, given any polynomial, p(x), of degree n, and a ∈ R, let αi(p, a) ∈ R be the
coefficients in the decomposition

p(x + a) =
n

∑
i=0

αi(p, a)pi(x), (26)

which are welldefined and unique since {pi(x) | 0 ≤ i ≤ n} is a basis for the space of
polynomials of degree at the highest n. For the purposes of computing the sensitivity
variances, we note that

(x + a)2 = 1 ·
(

x2 − 1
)
+ 2a · x +

(
a2 + 1

)
· 1, (27)

so that

α0

(
x2, a

)
= a2 + 1, α1

(
x2, a

)
= 2a, and α2

(
x2, a

)
= 1. (28)

If for any given ζ ∈ R, we define the quadratic qζ(x), by

qζ(x) = x2 − ζx− 1, (29)

then

qζ(x + a) = 1 ·
(

x2 − 1
)
+ (2a− ζ) · x + a(a− ζ) · 1, (30)

and so

α0
(
qζ(x), a

)
= a(a− ζ), α1(qς(x), a) = 2a− ζ, and α2(qς(x), a) = 1. (31)
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Next, squaring qζ(x) gives

q2
ζ(x + a) = 1 ·

(
x4 − 3x2

)
+ 2(2a− ζ) ·

(
x3 − 2x

)
+
(

6a2 − 6ζa + ζ2 + 1
)
·
(

x2 − 1
)

+
(

4a3 − 6a2ζ + 2a
(

ζ2 + 2
)
− 2ζ

)
· x

+
(

a4 − 2ζa3 +
(

ζ2 + 4
)

a2 − 4ζa + ζ2 + 2
)
· 1,

(32)

and so α4

(
q2

ζ(x), a
)
= 1, α3

(
q2

ζ(x), a
)
= 2(2a− ζ), and

α0

(
q2

ζ(x), a
)
= a4 − 2ζa3 +

(
ζ2 + 4

)
a2 − 4ζa + ζ2 + 2, (33)

α1

(
q2

ζ(x), a
)
= 4a3 − 6a2ζ + 2a

(
ζ2 + 2

)
− 2ζ, (34)

α2

(
q2

ζ(x), a
)
= 6a2 − 6ζa + ζ2 + 1. (35)

Finally, for any i ∈ N, define

χi = (i− 1) ∨ 1 = max(i− 1, 1), (36)

and given a ∈ R, l ≤ u ∈ R, and a polynomial p(x) of degree n, define

I(p, a; l, u) = α0(p, a)[Φ(u− a)−Φ(l − a)]

+ φ(l − a)
n

∑
i=1

χiαi(p, a)(l − a)i−1

− φ(u− a)
n

∑
i=1

χiαi(p, a)(u− a)i−1.

(37)

In (37), we agree to set Φ(−∞) = φ(±∞) = 0 and Φ(∞) = 1. Note that the definition of
I(p, a; l, u) was motivated by the identity∫ u

l
eax p(x)φ(x) dx = e

1
2 a2I(p, a; l, u). (38)

It will be seen that the variances of deltas and vegas for vanilla and digital options can be
obtained analytically and expressed succinctly in terms of I(p, a; l, u).

5. Vanilla Calls

For vanilla options, it is possible to derive analytic expressions for the variances
of deltas and vegas for the LR, MVD, AMVD, and PW methods. We only provide the
details for European calls, since the corresponding calculations for puts are entirely similar.
Throughout this section, let K be the strike for a European call with expiry T, and let
ς = σ

√
T.

5.1. Vanilla Call Delta

Recall from (18) that if ∆1 = T, then the derivative of the transition density from t = 0
to t = T with respect to S0 is given by

ϕ(xT ; S0) =
∂φ(xT ; S0)

∂S0
=

1
S0ς

ξφ(ξ), (39)

where ξ ∼ N (0, 1), and for notational clarity, we have written xT = x1, ξ = ξ1 and
ϕ(xT ; S0) = ϕ1(x1; S0). The likelihood ratio estimator for the call delta is unbiased and
computed using the expression
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E
[
∆LR

S0
(c)
]
=
∫ ∞

−ξ−

e−rTξ

S0ς

(
S0e(r− 1

2 σ2)T+ςξ − K
)
· φ(ξ) dξ = Φ(ξ+),

where

ξ± =
ln(S0/K) +

(
r± 1

2 σ2
)

T

ς
. (40)

The variance of the likelihood ratio call delta is given by

V
[
∆LR

S0
(c)
]
=

eς2

ς2 I
(

x2, 2ς;−ξ−, ∞
)
− 2Ke−rT

S0ς2 I
(

x2, ς;−ξ−, ∞
)

+
K2e−2rT

S2
0ς2

I
(

x2, 0;−ξ−, ∞
)
−Φ2(ξ+).

(41)

The expected value of the MVD delta is unbiased and is computed using the expression

E
[
∆MVD

S0
(c)
]
=
∫ ∞

−ξ−

e−rT

S0ς
√

2π

[
S0e(r− 1

2 σ2)T+ςξ − K
]
· 1{ξ≥0}

√
2π ξφ(ξ) dξ

−
∫ ∞

−ξ−

e−rT

S0ς
√

2π

[
S0e(r− 1

2 σ2)T+ςξ − K
]
· 1{ξ<0}

√
2π (−ξ)φ(ξ) dξ,

where the terms are computed independently. The coefficient,
√

2π, preceding the terms
±ξφ(ξ), is introduced to ensure that the product is a probability density function. The vari-
ance of the MVD delta is given by

V
[
∆MVD

S0
(c)
]
= m(2)

S0
(c)−Φ2(ξ−), (42)

where

m(2)
S0

(c) =
eς2

√
2πς2

I(x, 2ς; 0∨−ξ−, ∞)− 2Ke−rT
√

2πS0ς2
I(x, ς; 0∨−ξ−, ∞)

+
K2e−2rT
√

2πS2
0ς2
I(x, 0; 0∨−ξ−, ∞)− eς2

√
2πς2

I(x, 2ς; 0∧−ξ−, 0)

+
2Ke−rT
√

2πS0ς2
I(x, ς; 0∧−ξ−, 0)− K2e−2rT

√
2πS2

0ς2
I(x, 0; 0∧−ξ−, 0).

(43)

The expected value of the AMVD delta is unbiased and is computed using the expression

E
[
∆AMVD

S0
(c)
]
=
∫ ∞

−ξ−
ε(ξ)

e−rT

S0ς

√
2
π

[
S0e(r− 1

2 σ2)T+ςξ − K
]
·
√

π

2
|ξ|φ(ξ)dξ,

and its variance is given by

V
[
∆AMVD

S0
(c)
]
= 2m(2)

S0
(c)−Φ2(ξ+). (44)

It should be noted that althoughV
[
∆MVD

S0
(c)
]

is approximately half the value ofV
[
∆AMVD

S0
(c)
]
,

implementing MVD using a Monte Carlo simulation would require two paths for each
sample, while the AMVD method requires only one. Finally, the expected value for the PW
delta is given by

E
[
∆PW

S0
(c)
]
=
∫ ∞

−ξ−
e−

1
2 ς2+ςξ · φ(ξ)dξ,
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with the associated variance

V
[
∆PW

S0
(c)
]
= eς2I(1, 2ς;−ξ−, ∞)−Φ2(ξ+) = eς2

Φ(ξ+ + ς)−Φ2(ξ+). (45)

The ratios of variances for the vanilla call delta are shown in Figures 1 and 2. It can
be seen that the AMVD method gives lower variances than the LR method, but higher
variances than the MVD method. Somewhat unexpectedly, the AMVD method results in
lower variances than the PW method for short-dated deep in-the-money calls.

2

6

90

100

110

120
K 0.05

2.0

T
0

0.5

90

100

110

120
K 0.05

2.0

T

Figure 1. On the left, there is the ratio V[∆LR
S0

(c)]
/
V[∆AMVD

S0
(c)] and, on the right, there is the ratio

V[∆MVD
S0

(c)]
/
V[∆AMVD

S0
(c)].

0

2.5

90

100

110

120
K 0.05

2.0

T

90 100 110 120

K

0

1

2

3

4

Figure 2. On the left, there is the ratio V[∆PW
S0

(c)]
/
V[∆AMVD

S0
(c)]. On the right, there are

variance ratios at T = 0.1. The solid curve is V[∆LR
S0

(c)]
/
V[∆AMVD

S0
(c)], the dashed curve is

V[∆MVD
S0

(c)]
/
V[∆AMVD

S0
(c)], and the dotted curve is V[∆PW

S0
(c)]

/
V[∆AMVD

S0
(c)].

5.2. Vanilla Call Vega

The derivative of the transition density, φ(xT ; σ), with respect to σ is given by

ϕ(xT ; σ) =
∂φ(xT ; σ)

∂σ
=

1
σ

(
ξ2 − ςξ − 1

)
φ(ξ), (46)

where ς = σ
√

T is as defined previously. The likelihood ratio vega for the vanilla call is
unbiased and is given by

E
[
∆LR

σ (c)
]
=
∫ ∞

−ξ−

e−rT

σ

[
S0e(r− 1

2 σ2)T+σ
√

Tξ − K
](

ξ2 − ςξ − 1
)
· φ(ξ) dξ,



J. Risk Financial Manag. 2023, 16, 509 10 of 24

so that E
[
∆LR

σ

]
= S0φ(ξ+)

√
T. The associated variance is

V
[
∆LR

σ (c)
]
=

eς2
S2

0
σ2 I

(
q2

ς(x), 2ς;−ξ−, ∞
)
− 2e−rTKS0

σ2 I
(

q2
ς(x), ς;−ξ−, ∞

)
+

e−2rTK2

σ2 I
(

q2
ς(x), 0;−ξ−, ∞

)
− S2

0φ2(ξ+)T.

(47)

The MVD vanilla call vega is unbiased and is computed using the decomposition

E
[
∆MVD

σ (c)
]
=
∫ ∞

−ξ−

e−rT

σ

[
S0e(r− 1

2 σ2)T+σ
√

Tξ − K
]
· ξ2φ(ξ) dξ

−
∫ ∞

0∨−ξ−

e−rTς

σ
√

2π

[
S0e(r− 1

2 σ2)T+σ
√

Tξ − K
]
·
√

2π ξφ(ξ) dξ

+
∫ 0

0∧−ξ−

e−rTς

σ
√

2π

[
S0e(r− 1

2 σ2)T+σ
√

Tξ − K
]
·
√

2π (−ξ)φ(ξ) dξ

−
∫ ∞

−ξ−

e−rT

σ

[
S0e(r− 1

2 σ2)T+σ
√

Tξ − K
]
· φ(ξ) dξ,

where it is assumed that the components are uncoupled. It should be noted that the first
and last terms are coupled in Heidergott et al. (2008) and Pflug and Thoma (2016) to reduce
the resulting variance. The variance associated with the uncoupled MVD vanilla call vega is

V
[
∆MVD

σ (c)
]
=

eς2
S2

0
σ2

[
I
(

x2, 2ς;−ξ−, ∞
)
+ I(1, 2ς;−ξ−, ∞)

]
− 2e−rTKS0

σ2

[
I
(

x2, ς;−ξ−, ∞
)
+ I(1, ς;−ξ−, ∞)

]
+

e−2rTK2

σ2

[
I
(

x2, 0;−ξ−, ∞
)
+ I(1, 0;−ξ−, ∞)

]
+

eς2
S2

0T√
2π

[I(x, 2ς; 0∨−ξ−, ∞)− I(x, 2ς; 0∧−ξ−, 0)]

− 2e−rTKS0T√
2π

[I(x, ς; 0∨−ξ−, ∞)− I(x, ς; 0∧−ξ−, 0)]

+
e−2rTK2T√

2π
[I(x, 0; 0∨−ξ−, ∞)− I(x, 0; 0∧−ξ−, 0)]

− S2
0φ2(ξ+)T.

(48)

The AMVD vanilla call vega is computed using the expression

E
[
∆AMVD

σ (c)
]
=
∫ ∞

−ξ−
ε(qς(x))

e−rTης

σ

[
S0e(r− 1

2 σ2)T+ςξ − K
]
· 1

ης
|qς(ξ)|φ(ξ) dξ,

where

ης = I(qς, 0;−∞, ς−)− I(qς, 0; ς−, ς+) + I(qς, 0; ς+, ∞), (49)

ς± =
1
2

ς±
√

1 +
1
4

ς2, (50)

and the associated variance is
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V
[
∆AMVD

σ (c)
]
=

eς2
S2

0ης

σ2 [I(q(x), 2ς; ς+ ∨−ξ−, ∞)

− I(q(x), 2ς; (ς− ∨−ξ−) ∧ ς+, ς+)

+I(q(x), 2ς; ς− ∧−ξ−, ς−)]

−
2e−rTKS0ης

σ2 [I(q(x), ς; ς+ ∨−ξ−, ∞)

− I(q(x), ς; (ς− ∨−ξ−) ∧ ς+, ς+)

+I(q(x), ς; ς− ∧−ξ−, ς−)]

+
e−2rTK2ης

σ2 [I(q(x), 0; ς+ ∨−ξ−, ∞)

− I(q(x), 0; (ς− ∨−ξ−) ∧ ς+, ς+)

+I(q(x), 0; ς− ∧−ξ−, ς−)]

− S2
0φ2(ξ+)T.

(51)

Finally, the pathwise vega for the vanilla call is given by

E
[
∆PW

σ (c)
]
=
∫ ∞

−ξ−

(
−σT +

√
Tξ
)

S0e−
1
2 ς2+ςξ φ(ξ) dξ,

with the associated variance

V
[
∆PW

σ (c)
]
= eς2

S2
0T
[
I
(

x2, 2ς;−ξ−, ∞
)
− 2ς I(x, 2ς;−ξ−, ∞)

+ς2I(1, 2ς;−ξ−, ∞)
]
− S2

0φ2(ξ+)T.
(52)

The ratios of variances for vanilla call vegas are shown in Figures 3 and 4. As was the
case with the deltas, the AMVD method gives lower variances than the LR method, but,
in contrast to the deltas, it also produces lower variances than the MVD method. The AMVD
method also produces lower variances than the PW method for in-the-money calls.

2

20

90

100

110

120
K 0.05

2.0

T
1.1

1.8

90

100

110

120
K 0.05

2.0

T

Figure 3. On the left, there is the ratio V[∆LR
σ (c)]

/
V[∆AMVD

σ (c)] and, on the right, there is the ratio
V[∆PW

σ (c)]
/
V[∆AMVD

σ (c)].
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Figure 4. On the left, there is the ratio V[∆PW
σ (c)]

/
V[∆AMVD

σ (c)]. On the right, there are
variance ratios at T = 0.1. The solid curve is V[∆LR

σ (c)]
/
V[∆AMVD

σ (c)], the dashed curve is
V[∆MVD

σ (c)]
/
V[∆AMVD

σ (c)], and the dotted curve is V[∆PW
σ (c)]

/
V[∆AMVD

σ (c)].

6. Digital Calls

In this section, we compute the LR, MVD, and AMVD variances for the digital call
deltas and vegas. Once again, we only provide details for digital calls; let K be the strike
for a digital call with expiry T.

6.1. Digital Call Delta

The likelihood ratio delta for the digital call is computed using the expression

E
[
∆LR

S0
(d)
]
=
∫ ∞

−ξ−

e−rTξ

S0ς
φ(ξ) dξ =

e−rT

S0ς
φ(ξ−),

and the associated variance is

V
[
∆LR

S0
(d)
]
=

e−2rT

S2
0ς2

[
I
(

x2, 0;−ξ−, ∞
)
− φ2(ξ−)

]
. (53)

The MVD delta for the digital call is computed using the expression

E
[
∆MVD

S0
(d)
]
=
∫ ∞

0∨−ξ−

e−rT

S0ς
√

2π

√
2π ξφ(ξ) dξ −

∫ 0

0∧−ξ−

e−rT

S0ς
√

2π

√
2π (−ξ)φ(ξ) dξ,

and the variance is given by

V
[
∆MVD

S0
(d)
]
=

e−2rT

S2
0ς2
√

2π
[I(x, 0; 0∨−ξ−, ∞)− I(x, 0; 0∧−ξ−, 0)

−
√

2πφ2(ξ−)
]
.

(54)

Finally, AMVD delta for the digital is given by

E
[
∆AMVD

S0
(d)
]
=
∫ ∞

−ξ−

e−rT

S0ς

√
2
π
·
√

π

2
|ξ|φ(ξ) dξ,

with the associated variance

V
[
∆AMVD

S0
(d)
]
=

e−2rT

S2
0ς2

√
2
π

[
I(x, 0; 0∨−ξ−, ∞)− I(x, 0; 0∧−ξ−, 0)−

√
π

2
φ2(ξ−)

]
.

We note that the PW method cannot be applied for digital options.
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The ratios of variances for digital call delta are shown in Figure 5. The AMVD method
gives lower variances than the LR method, particularly for short-dated deep in-the-money
digitals. The MVD method gives lower variances than the AMVD method, most noticeably
for at-the-money digitals.
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Figure 5. On the left, there is the ratio V[∆LR
S0

(d)]
/
V[∆AMVD

S0
(d)] and, on the right, there is the ratio

V[∆MVD
S0

(d)]
/
V[∆AMVD

S0
(d)].

6.2. Digital Call Vega

The likelihood ratio vega for the digital call is computed using the expression

E
[
∆LR

σ (d)
]
=
∫ ∞

−ξ−

e−rT

σ
qς(ξ) · φ(ξ) dξ =

e−rTξ+
σ

φ(ξ−),

and the associated variance is

V
[
∆LR

σ (d)
]
=

e−2rT

σ2

[
I
(

q2
ς(x), 0;−ξ−, ∞

)
− ξ2

+φ2(ξ−)
]
. (55)

The MVD vega for the digital call is computed using the expression

E
[
∆MVD

σ (d)
]
=
∫ ∞

−ξ−

e−rT

σ
· ξ2φ(ξ) dξ −

∫ ∞

0∨−ξ−

e−rT

σ
√

2π
·
√

2π ξφ(ξ) dξ

+
∫ 0

0∧−ξ−

e−rT

σ
√

2π
·
√

2π (−ξ)φ(ξ) dξ −
∫ ∞

−ξ−

e−rT

σ
· φ(ξ) dξ,

and the associated variance is given by

V
[
∆MVD

σ (d)
]
=

e−2rT

σ2

[
I
(

x2, 0;−ξ−, ∞
)
+ I(1, 0;−ξ−, ∞)− ξ2

+φ2(ξ−)
]

+
e−2rT

σ2
√

2π
[I(x, 0; 0∨−ξ−, ∞)− I(x, 0; 0∧−ξ−, 0)].

(56)

Finally, the AMVD vega for the digital call is computed using the expression

E
[
∆AMVD

σ (d)
]
=
∫ ∞

−ξ−

e−rTης

σ
· 1

ης
|qς(ξ)|φ(ξ) dξ,

with the associated variance
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V
[
∆AMVD

σ (d)
]
=

e−2rTης

σ2

[
I(q(x), 0; ς+ ∨−ξ−, ∞)

− I(q(x), 0; (ς− ∨−ξ−) ∧ ς+, ς+)

+I(q(x), 0; ς− ∧−ξ−, ς−)−
ξ2
+

ης
φ2(ξ−)

]
.

(57)

The ratios of variances for digital calls are shown in Figure 6, where it can be seen that
the AMVD method gives lower variance than both the LR and the MVD methods.
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Figure 6. On the left, there is the ratio V[∆LR
σ (d)]

/
V[∆AMVD

σ (d)] and, on the right, there is the ratio
V[∆MVD

σ (d)]
/
V[∆AMVD

σ (d)].

7. Double-Barrier Option

In this section, we consider the delta and vega for a double-barrier option that knocks
out if the closing price of the underlying asset lies outside the range, ]BL, BU [, on at least
three days prior to expiry, where BL < BU , and pays the constant rebate R = 100 otherwise.
We take S0 = 100, T = 0.25, σ = 0.20, and subdivide the interval [0, 25] into 90 equal
subintervals. This is the example considered in Chan and Joshi (2015) Subsection 5.3.

7.1. Generation of Non-Normal Random Variates

In order to implement the AMVD method, and the MVD method for comparison
purposes, we need to generate random variates from the Rayleigh distribution, the double-
sided Maxwell–Boltzmann distribution, and the distributions corresponding to the absolute
value densities appearing in (23) and (24).

7.1.1. Rayleigh Random Variate

The standard Rayleigh distribution is defined for x ≥ 0 and has the probability
density function

φR(x) = xe−
1
2 x2

, (58)

and the cumulative density function

ΦR(x) = 1− e−
1
2 x2

. (59)

Since the inverse of the cumulative density function is given by

Φ−1
R (x) =

√
−2 ln(1− x) (60)
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for x ∈ [0, 1[, a variate from the Rayleigh distribution can be generated using the follow-
ing algorithm:

R1. Generate a uniform variate u ∈ [0, 1[.
R2. Set x = Φ−1

R (u) =
√
−2 ln(1− u), which is then a Rayleigh random variate.

7.1.2. Double-Sided Maxwell–Boltzmann Random Variate

The standard Maxwell–Boltzmann distribution is defined for x ≥ 0 and has probability
density function

φMB(x) =

√
2
π

x2e−
1
2 x2

. (61)

An algorithm for generating variates from the Maxwell–Boltzmann distribution based on
the acceptance–rejection method, and introduced in Heidergott et al. (2008), is as follows:

MB1. Generate independent uniform variates u1, u2 ∈ [0, 1[. Set w =
√
−4 ln(u1).

MB2. If u2 > 1.16582199 u1w, then go back to step MB1.3

MB3. Generate a uniform variate u3 ∈ [0, 1[, independent of u1 and u2.
MB4. If u3 < 0.5, set x = w, and set x = −w otherwise. Then, x is a double-sided

Maxwell–Boltzmann random variate.

7.1.3. Absolute Rayleigh Distribution

Consider the random variable with domain R, and the probability density function

φ|R|(x) =
1
2
|x|e−

1
2 x2

. (62)

Note that φ|R| is obtained by extending φR to R using symmetry about the vertical axis.
Hence, an algorithm for generating a variate from the absolute Rayleigh distribution is
as follows:

AR1. Generate a uniform variate u ∈]0, 1[.
AR2. Then, an absolute Rayleigh random variate, x, is given by

x =


√
−2 ln(2(1− u)), if u ≥ 1

2 ,

−
√
−2 ln(2u), if u < 1

2 .
(63)

7.1.4. Absolute Quadratic Normal (AQN) Distribution

Assume ς ∈ R+, and let qς, ης, and ς± be as defined in (29), (49), and (50), respectively.
Consider the random variable with domain R, and the probability density function

φAQN(x; ς) =
1
ης
|qς(x)|φ(x). (64)

Note that ς± are the roots of qς(x), and qς(x) < 0 for x ∈ ]ς−, ς+[. If we denote by ΦAQN
the corresponding cumulative density function, then a straight forward calculation gives

ΦAQN(x; ς) =
1
ης


(ς− x)φ(x), x ≤ ς−,
2(ς− ς−)φ(ς−) + (x− ς)φ(x), ς− < x ≤ ς+,
ης − (x− ς)φ(x), x > ς+.

(65)

Note that, in each of the three regions, ΦAQN(x; ς) has the form

1
ης

[α + ε(x− ς)φ(x)],
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where α ∈ R and ε = ±1. Thus, given a uniform random variate u, to compute the
corresponding variate with density φAQN(x; ς), we need to compute the root of a function
of the form

h(x) =
1
ης

[α + ε(x− ς)φ(x)]− u,

with α and ε appropriately chosen according to the value of u. For this purpose, we apply
Newton’s method noting that

h′(x) = − ε

ης

(
x2 − ςx− 1

)
φ(x) = − ε

ης
qς(x)φ(x).

Thus, given an initial point x(0), we can apply the recursion

x(i+1) = x(i) −
h
(

x(i)
)

h′
(

x(i)
) , (66)

until the desired degree of precision is achieved.
However, due to the nature of h(x), Newton’s method can be highly sensitive to

the initial point x(0). In fact, a poor initial value can result in the method failing to con-
verge to the correct root. Thus, it is crucial that the initial point is chosen carefully, and,
for this, we take inspiration from Heidergott et al. (2008) where the Weibull distribu-
tion is used in the acceptance–rejection method to generate the double-sided Maxwell–
Boltzmann distribution.

For the two regions, ]−∞, ς−] and ]ς+, ∞[, we approximate the AQN density using
Weibull distributions

φ±W(x) = ∓2β±(x− ς±)e−β±(x−ς±)
2
, (67)

with the cumulative density function

Φ±W(x) = e−β±(x−ς±)
2
. (68)

The parameters, β±, are determined by matching the variances of the approximating
Weibull distributions to the variances of the AQN variate restricted to the intervals ]−∞, ς−]
and ]ς+, ∞[, respectively. This gives

β± =
1

σ2
±

(
1− π

4

)
. (69)

where σ2
± are variances of the AQN variate restricted to ]−∞, ς−] and ]ς+, ∞[. For the

details, refer to Appendix A.
For the region [ς−, ς+], we approximate the AQN cumulative density on [ς−, ςm] and

[ςm, ς+], where ςm = 1
2 (ς− + ς+), using quadratics

q−(x) = c−(x− ς−)
2, and

q+(x) = ΦAQN(ς+; ς)−ΦAQN(ς−; ς)− c+(x− ς+)
2,

with c± determined by setting q−(ςm) = ΦAQN(ςm; ς) − ΦAQN(ς−; ς) = q+(ςm),
which gives

c− =
ΦAQN(ςm; ς)−ΦAQN(ς−; ς)

(ςm − ς−)
2 , (70)
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c+ =
ΦAQN(ς+; ς)−ΦAQN(ςm; ς)

(ςm − ς+)
2 . (71)

The objective function, h, and the initial point, x(0), for the four regions determined by the
uniform random variate u ∈]0, 1[ are shown in Table 1.

Table 1. Objective functions and the initial values for generating the AQN random variate using
Newton’s method, where u± = ΦAQN(ς±; ς).

u h(x) + u x(0)

]0, u−] 1
ης

(ς− x)φ(x) ς− −
√
− 1

β−
ln
(

u
u−

)
]
u−, 1

2 (u− + u+)
]

2
ης

(ς− ς−)φ(ς−) +
1
ης

(x− ς)φ(x) ς− +

√
u− u−

c−]
1
2 (u− + u+), u+

]
2
ης

(ς− ς−)φ(ς−) +
1
ης

(x− ς)φ(x) ς+ −
√

u+ − u
c+

]u+, 1[ 1− 1
ης

(x− ς)φ(x) ς+ +

√
− 1

β+
ln
(

1− u
1− u+

)

Using the initial values given in Table 1, Newton’s method converges within four itera-
tions in most cases. It should be noted that each Newton iteration only involves elementary
operations and one exponential, and so the method is quite computationally efficient.

7.2. Double-Barrier Vega

Vegas for the double knock-out barrier was computed using a Monte Carlo simulation
implemented in C++ with uniform random variates generated by Mersenne Twister from
the boost library.4 For each method, 100 independent valuations were performed with each
valuation using 50,000 paths for the MVD method and 100,000 paths for the LR and AMVD
methods. Standard deviations were then computed from these 100 samples. The lower and
upper barriers were set to Li = 75 + 2i and Ui = 105 + 2j for 0 ≤ i, j ≤ 10. The resulting
means and standard deviations of vegas for a subset of (Li, Ui) pairs is shown in Table 2.

Table 2. Means and standard deviations of vegas for double-barrier options with varying lower and
upper barriers using the LR, MVD, and AMVD methods.

Mean Standard Deviation
L U LR MVD AMVD LR MVD AMVD

75 105 −169.34 −167.52 −168.29 15.68 7.69 11.17
75 115 −173.85 −172.96 −171.81 19.51 6.43 13.65
75 125 −60.85 −60.17 −60.39 20.08 3.25 15.7
85 105 −292.55 −291.65 −292.08 12.04 8.6 10.75
85 115 −305.83 −306.81 −307.69 19.13 8.05 14.14
85 125 −193.72 −195.74 −195.11 21.13 6.26 13.96
95 105 −146.66 −147.24 −146.53 5.67 7.77 5.92
95 115 −316.54 −317.12 −318.45 13.47 10.15 10.38
95 125 −220.83 −219.58 −218.19 14.36 7.8 10.75

It is evident from Figure 7 that MVD vegas have the lowest standard deviations in
general for double-barrier options, followed by those of the AMVD, and then the LR
method. It is worth noting that the standard deviation in vegas for the AMVD method
is lowest, in relative terms, when the upper barrier is close to the lower barrier. In fact,
the AMVD method has the lowest standard deviation among the three methods when
(L, U) = (95, 105).
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Figure 7. Comparison of double-barrier option vega standard deviations for the LR, MVD, and
AMVD methods.

This is consistent with an observation made in previous sections that the method
giving sensitivities with the smallest variance will not only depend on the derivative being
considered but also on the details such as strikes and barrier levels, and the way each
method distributes densities relative to the strikes and barriers. The implementer should
experiment and choose the method that is most appropriate for each application.

8. Conclusions

In this paper, we introduced an alternative to the measure-valued differentiation
(MVD) method for computing Monte Carlo sensitivities, called the absolute measure-valued
differentiation (AMVD) method, which decomposes the density derivative as the product
of its sign and its absolute value. This method shares many of the properties of the MVD
method, but instead of initiating two additional paths in each simulation step of the original
path, it initiates only one additional subpath. It was shown that the AMVD method gives
vega estimates with lower variance than the MVD method for vanilla and digital calls in the
Black–Scholes model. Moreover, the AMVD vega estimates have lower variance than the
pathwise differentiation method in certain situations, such as the case of short-dated deep
in-the-money vanilla calls. A consideration of the vegas for the more exotic double-barrier
options revealed that the relative performances of the likelihood ratio, MVD, and AMVD
methods depend, in general, on the positions of the barriers, and the way each method
distributes densities relative to the barriers.

As is the case with the MVD method, applying the AMVD method requires the
generation of nonstandard random variates. For the examples considered in this paper,
we provided a highly efficient implementation of the inverse transform method for this
purpose using Newton’s method with a careful selection of the initial point.

Author Contributions: Conceptualization, M.J. and O.K.K.; methodology, M.J. and O.K.K.; software,
O.K.K.; formal analysis, M.J., O.K.K. and S.S.; writing—original draft preparation, M.J. and O.K.K.
writing—review and editing, O.K.K. and S.S. All authors have read and agreed to the published
version of the manuscript.
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Data Availability Statement: Data and software used in this article are available on reqeust from the
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Appendix A. Initial Values for Newton’s Method

For the initial point in Newton’s method to invert the AQN cumulative density
function, we approximate the cumulative density function using a Weibull density with
matching variance. For this purpose, note that the mean, µ+, and the second moment, m(2)

+ ,
for the AQN distribution over the region [x+, ∞[ are given by
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µ+ =
1

η+

∫ ∞

ς+
x
(

x2 − ςx− 1
)

φ(x) dx =
1

η+

∫ ∞

ς+

[(
x3 − 2x

)
− ς
(

x2 − 1
)
+ x− ς

]
φ(x) dx

=
1

η+

[(
ς2
+ − ςς+ + 1

)
φ(ς+)− ςΦ(−ς+)

]
,

where η+ = (ς+ − ς)φ(ς+)/ης, and

m(2)
+ =

1
η+

∫ ∞

ς+
x2
(

x2 − ςx− 1
)

φ(x) dx

=
1

η+

∫ ∞

ς+

[(
x4 − 3x2

)
− ς
(

x3 − 2x
)
+ 2
(

x2 − 1
)
− 2ςx + 2

]
φ(x) dx

=
1

η+

[(
ς3
+ − ςς2

+ + 2ς+ − 2ς
)

φ(ς+) + 2Φ(−ς+)
]
,

The variance is given by σ2
+ = m(2)

+ − µ2
+, and the corresponding mean and second moment

for approximating the Weibull distribution are

µW,+ = 2β+

∫ ∞

x+
x(x− ς+)e−β+(x−ς+)

2
dx = 2β+

∫ ∞

0
(x + ς+)xe−β+x2

dx

=
∫ ∞

0
e−β+x2

dx− ς+
[
e−β+x2

]∞

0
=

1
2

√
π

β+
+ ς+,

and

m(2)
W,+ = 2β+

∫ ∞

ς+
x2(x− ς+)e−β+(x−ς+)

2
dx = 2β+

∫ ∞

0
(x + ς+)

2x e−β+x2
dx

= 2β+

∫ ∞

0

(
x3 + 2ς+x2 + ς2

+x
)

e−β+x2
dx = 2

∫ ∞

0

[(
1 + β+ς2

+

)
x + ς+

]
e−β+x2

dx

= 2ς+

∫ ∞

0
e−β+x2

dx−
(
1 + β+ς2

+

)
β

[
e−β+x2

]∞

0
=

√
π

β+
ς+ +

(
1 + β+ς2

+

)
β

.

The variance of the approximating the Weibull distribution is given by

σ2
W,+ =

√
π

β+
ς+ +

(
1

β+
+ ς2

+

)
−
[

1
2

√
π

β+
+ ς+

]2

=

√
π

β+
ς+ +

(
1

β+
+ ς2

+

)
− π

4β+
−
√

π

β+
ς+ − ς2

+ =
1

β+

(
1− π

4

)
,

and similar calculations for the region ]−∞, ς−] gives

µ− =
1

η−

∫ ς−

−∞
x
(

x2 − ςx− 1
)

φ(x) dx

=
1

η−

[(
−ς2
− + ςς− − 1

)
φ(ς−)− ςΦ(ς−)

]
,

m(2)
+ =

1
η−

∫ ς−

−∞
x2
(

x2 − ςx− 1
)

φ(x) dx

=
1

η−

[(
−ς3
− + ςς2

− − 2ς− + 2ς
)

φ(ς−) + 2Φ(ς−)
]
,

σ2
W,− =

1
β−

(
1− π

4

)
,
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where η− = (ς− ς−)φ(ς−)/ης. Equating the corresponding variances gives

β± =
1

σ2
±

(
1− π

4

)
. (A1)

Appendix B. Vanilla Call Variances

Appendix B.1. Likelihood Ratio Call Delta Variance

The second moment associated with the likelihood ratio delta for the vanilla call is
given by

m(2)
[
∆LR

S0

]
=
∫ ∞

−ξ−

[
e−rT

(
S0e(r− 1

2 σ2)T+ςξ − K
) ξ

S0ς

]2
φ(ξ) dξ

=
e−2rT

S2
0ς2

∫ ∞

−ξ−

[
S2

0e(2r−σ2)T+2ςξ − 2KS0e(r− 1
2 σ2)T+ςξ + K2

]
ξ2φ(ξ) dξ.

Computing the three terms, we obtain

mLR
S0,1 =

e−ς2

ς2

∫ ∞

−ξ−
e2ςξξ2φ(ξ) dξ =

eς2

ς2 I
(

x2, 2ς;−ξ−, ∞
)

,

mLR
S0,2 = −2Ke−(r+ 1

2 σ2)T

S0ς2

∫ ∞

−ξ−
eςξξ2φ(ξ) dξ = −2Ke−rT

S0ς2 I
(

x2, ς;−ξ−, ∞
)

,

mLR
S0,3 =

K2e−2rT

S2
0ς2

∫ ∞

−ξ−
ξ2φ(ξ) dξ =

K2e−2rT

S2
0ς2

I
(

x2, 0;−ξ−, ∞
)

.

Appendix B.2. MVD Call Delta Variance

The second moment for the MVD delta estimate is given by

m(2)
[
∆MVD

S0

]
=
∫ ∞

0∨−ξ−

[
e−rT

S0ς
√

2π

(
S0e(r− 1

2 σ2)T+ςξ − K
)]2

·
√

2π ξφ(ξ) dξ

+
∫ 0

0∧−ξ−

[
e−rT

S0ς
√

2π

(
S0e(r− 1

2 σ2)T+ςξ − K
)]2

·
√

2π (−ξ)φ(ξ) dξ.

Computing the first term, we obtain

e−2rT
√

2πS2
0ς2

∫ ∞

0∨−ξ−

[
S2

0e(2r−σ2)T+2ςξ − 2KS0e(r− 1
2 σ2)T+ςξ + K2

]
ξφ(ξ) dξ,

and the three subterms are given by

mMVD
S0,1,1 =

e−ς2

√
2πς2

∫ ∞

0∨−ξ−
e2ςξξφ(ξ) dξ =

eς2

√
2πς2

I(x, 2ς; 0∨−ξ−, ∞),

mMVD
S0,1,2 = −2Ke−(r+ 1

2 σ2)T
√

2πS0ς2

∫ ∞

0∨−ξ−
eςξξφ(ξ) dξ = − 2Ke−rT

√
2πS0ς2

I(x, ς; 0∨−ξ−, ∞),

mMVD
S0,1,3 =

K2e−2rT
√

2πS2
0ς2

∫ ∞

0∨−ξ−
ξφ(ξ)dξ =

K2e−2rT
√

2πS2
0ς2
I(x, 0; 0∨−ξ−, ∞).

Similarly, computing the second term, we obtain

e−2rT
√

2πS2
0ς2

∫ 0

0∧−ξ−

[
S2

0e(2r−σ2)T+2ςξ − 2KS0e(r− 1
2 σ2)T+ςξ + K2

]
(−ξ)φ(ξ) dξ,
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and the three subterms are given by

mMVD
S0,2,1 = − e−ς2

√
2πς2

∫ 0

0∧−ξ−
e2ςξξφ(ξ) dξ = − eς2

√
2πς2

I(x, 2ς; 0∧−ξ−, 0),

mMVD
S0,2,2 =

2Ke−(r+ 1
2 σ2)T

√
2πS0ς2

∫ 0

0∧−ξ−
eςξξφ(ξ) dξ =

2Ke−rT
√

2πS0ς2
I(x, ς; 0∧−ξ−, 0),

mMVD
S0,2,3 = − K2e−2rT

√
2πS2

0ς2

∫ 0

0∧−ξ−
ξφ(ξ)dξ =

K2e−2rT
√

2πS2
0ς2
I(x, 0; 0∧−ξ−, 0).

Appendix B.3. AMVD Call Delta Variance

The second moment for the AMVD delta estimate is given by

m(2)
[
∆AMVD

S0

]
= 2

∫ ∞

−ξ−

[
e−rT

S0ς
√

2π

(
S0e(r− 1

2 σ2)T+ςξ − K
)]2

·
√

2π|ξ|φ(ξ) dξ

= 2m(2)
[
∆MVD

S0

]
.

Appendix B.4. Likelihood Ratio Call Vega Variance

The second moment associated with the likelihood ratio vega for the vanilla call is
given by

m(2)
[
∆LR

σ

]
=

e−2rT

σ2

∫ ∞

−ξ−

[
S0e(r− 1

2 σ2)T+σ
√

Tξ − K
]2

q2(ξ)φ(ξ) dξ,

where q(x) is as defined in (30). Expanding out the first term, we obtain

m(2)
[
∆LR

σ

]
=

e−2rT

σ2

∫ ∞

−ξ−

[
S2

0e(2r−σ2)T+2ςξ − 2KS0e(r− 1
2 σ2)T+ςξ + K2

]
q2(ξ)φ(ξ) dξ.

Computing the three terms gives

mLR
σ,1 =

e−ς2
S2

0
σ2

∫ ∞

−ξ−
e2ςξ q2(ξ)φ(ξ) dξ =

eς2
S2

0
σ2 I

(
q2, 2ς;−ξ−, ∞

)
,

mLR
σ,2 = −2e−(r+ 1

2 σ2)TKS0

σ2

∫ ∞

−ξ−
eςξq2(ξ)φ(ξ) dξ = −2e−rTKS0

σ2 I
(

q2, ς;−ξ−, ∞
)

,

mLR
σ,3 =

e−2rTK2

σ2

∫ ∞

−ξ−
q2(ξ)φ(ξ) dξ =

e−2rTK2

σ2 I
(

q2, 0;−ξ−, ∞
)

.

Appendix B.5. MVD Call Vega Variance

The second moment associated with the MVD vega is given by

m(2)
[
∆MVD

σ

]
=

e−2rT

σ2

∫ ∞

−ξ−

[
S0e(r− 1

2 σ2)T+ςξ − K
]2

ξ2φ(ξ) dξ

+
e−2rTT

2π

∫ ∞

0∨−ξ−

[
S0e(r− 1

2 σ2)T+ςξ − K
]2√

2πξφ(ξ) dξ

+
e−2rTT

2π

∫ 0

0∧−ξ−

[
S0e(r− 1

2 σ2)T+ςξ − K
]2√

2π(−ξ)φ(ξ) dξ

+
e−2rT

σ2

∫ ∞

−ξ−

[
S0e(r− 1

2 σ2)T+ςξ − K
]2

φ(ξ) dξ,

(A2)
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The four terms are as follows:

mMVD
σ,1 =

eς2
S2

0
σ2 I

(
x2, 2ς;−ξ−, ∞

)
− 2e−rTKS0

σ2 I
(

x2, ς;−ξ−, ∞
)

+
e−2rTK2

σ2 I
(

x2, 0;−ξ−, ∞
)

,

mMVD
σ,2 =

eς2
S2

0T√
2π
I(x, 2ς; 0∨−ξ−, ∞)− 2e−rTKS0T√

2π
I(x, ς; 0∨−ξ−, ∞)

+
e−2rTK2T√

2π
I(x, 0; 0∨−ξ−, ∞),

mMVD
σ,3 = −

eς2
S2

0T√
2π
I(x, 2ς; 0∧−ξ−, 0) +

2e−rTKS0T√
2π

I(x, ς; 0∧−ξ−, 0)

− e−2rTK2T√
2π

I(x, 0; 0∧−ξ−, 0),

mMVD
σ,4 =

eς2
S2

0
σ2 I(1, 2ς;−ξ−, ∞)− 2e−rTKS0

σ2 I(1, ς;−ξ−, ∞)

+
e−2rTK2

σ2 I(1, 0;−ξ−, ∞).

Appendix B.6. AMVD Call Vega Variance

The second moment associated with the AMVD vega is given by

m(2)
[
∆AMVD

σ

]
=

e−2rTης

σ2

∫ ∞

ς+∨−ξ−

[
S0e(r− 1

2 σ2)T+ςξ − K
]2

q(x)φ(x) dx

−
e−2rTης

σ2

∫ ς+

(ς−∨−ξ−)∧ς+

[
S0e(r− 1

2 σ2)T+ςξ − K
]2

q(x)φ(x) dx

+
e−2rTης

σ2

∫ ς−

ς−∧−ξ−

[
S0e(r− 1

2 σ2)T+ςξ − K
]2

q(x)φ(x) dx.

(A3)

The three terms are as follows:

mAMVD
σ,1 =

eς2
S2

0ης

σ2 I
(

q2(x), 2ς; ς+ ∨−ξ−, ∞
)
−

2e−rTKS0ης

σ2 I
(

q2(x), ς; ς+ ∨−ξ−, ∞
)

+
e−rTK2ης

σ2 I
(

q2(x), 0; ς+ ∨−ξ−, ∞
)

,

mAMVD
σ,2 = −

eς2
S2

0ης

σ2 I
(

q2(x), 2ς; (ς− ∨−ξ−) ∧ ς+, ς+
)

+
2e−rTKS0ης

σ2 I
(

q2(x), ς; (ς− ∨−ξ−) ∧ ς+, ς+
)

−
e−rTK2ης

σ2 I
(

q2(x), 0; ς− ∧−ξ−, ∞
)

,

mAMVD
σ,3 =

eς2
S2

0ης

σ2 I
(

q2(x), 2ς; ς− ∧−ξ−, ς−
)
− 2e−rTKS0ης

σ2 I
(

q2(x), ς; ς− ∧−ξ−, ς−
)

+
e−rTK2ης

σ2 I
(

q2(x), 0; ς− ∧−ξ−, ς−
)

.

Appendix C. Digital Call Variances

Appendix C.1. Likelihood Ratio Digital Call Delta Variance

The second moment associated with the likelihood ratio delta for the digital call is
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m(2)
[
∆LR

S0

]
=

1
S2

0ς2

∫ ∞

−ξ−
ξ2φ(ξ) dξ =

1
S2

0ς2
I
(

x2, 0;−ξ−, ∞
)

.

Appendix C.2. MVD Digital Call Delta Variance

The second moment associated with the MVD delta for the digital call is

m(2)
[
∆MVD

S0

]
=

1
S2

0ς2

∫ ∞

0∨−ξ−
ξφ(ξ) dξ +

1
S2

0ς2

∫ 0

0∧−ξ−
(−ξ)φ(ξ) dξ

=
1

S2
0ς2 [I(x, 0; 0∨−ξ−, ∞)− I(x, 0; 0 ∧−ξ−, 0)].

Appendix C.3. AMVD Digital Call Delta Variance

The second moment associated with the AMVD delta for the digital call is

m(2)
[
∆AMVD

S0

]
=

2
S2

0ς2

∫ ∞

−ξ−
|ξ|φ(ξ) dξ = 2m(2)

[
∆MVD

S0

]
.

Appendix C.4. Likelihood Ratio Digital Call Vega Variance

The second moment associated with the likelihood ratio vega for the digital call is

m(2)
[
∆LR

σ

]
=

1
σ2

∫ ∞

−ξ−
q2(ξ)φ(ξ) dξ =

1
σ2 I

(
q2(x), 0;−ξ−, ∞

)
.

Appendix C.5. MVD Digital Call Vega Variance

The second moment associated with the MVD delta for the digital call is

m(2)
[
∆MVD

σ

]
=

1
σ2

∫ ∞

−ξ−
ξ2φ(ξ) dξ − 1

σ2

∫ ∞

−ξ−
φ(ξ) dξ

+
1
σ2

∫ ∞

0∨−ξ−
ξφ(ξ) dξ − 1

σ2

∫ 0

0∧−ξ−
(−ξ)φ(ξ) dξ

=
1
σ2

[
I
(

x2, 0;−ξ−, ∞
)
− I(1, 0;−ξ−, ∞)

]
+

1
σ2

[
I
(

x2, 0; 0∨−ξ−, ∞
)
− I(1, 0; 0∧−ξ−, 0)

]
.

Appendix C.6. AMVD Digital Call Vega Variance

The second moment associated with the AMVD vega for the digital call is

m(2)
[
∆AMVD

S0

]
=

η

S2
0ς2

∫ ∞

ς+∨−ξ−
q(ξ)φ(ξ) dξ − η

S2
0ς2

∫ ς+

(ς−∨−ξ−)∧ς+
q(ξ)φ(ξ) dξ

+
η

S2
0ς2

∫ ς−

ς−∧−ξ−
q(ξ)φ(ξ) dξ

=
η

S2
0ς2

[
I(q(x), 0; ς+ ∨−ξ−, ∞)− I(q(x), 0; (ς− ∨−ξ−) ∧ ς+, ς+)

]
+

η

S2
0ς2
I(q(x), 0; ς− ∧−ξ−, ς−).

Notes
1 This is also the case for the MVD method.
2 It should be noted, however, that this higher computational burden is partially offset by the MVD sensitivity estimates having

lower variance.
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3 We note that the inequality involving u2 in Heidergott et al. (2008) is in the opposite direction, which is most likely a typographi-
cal error.

4 Refer to www.boost.org. Accessed 3 June 2022.
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