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Abstract: This paper investigates the dynamic relationship between cryptocurrency uncertainty
indices and the movements in returns and volatility across spectrum of financial assets, comprising
cryptocurrencies, precious metals, green bonds, and soft commodities. It employs a Time-Varying
Parameter Vector Autoregressive (TVP-VAR) connectedness approach; the analysis covers both the
entire sample period spanning August 2015 to 31 December 2021 and the distinct phase of COVID-19
pandemic. The findings of the study reveal the interconnectedness of returns within these asset
classes during the COVID-19 pandemic. In this context, cryptocurrency uncertainty indices emerge
as influential transmitters of shocks to other financial asset categories and it significantly escalates
throughout the crisis period. Additionally, the outcomes of the study imply that during times of
heightened uncertainty, exemplified by events such as the COVID-19 pandemic, the feasibility of
portfolio diversification for investors might be constrained. Consequently, the amplified linkages
between financial assets through both forward and backward connections could potentially compro-
mise financial stability. This research sheds light on the impact of cryptocurrency uncertainty on the
broader financial market, particularly during periods of crisis. The findings have implications for
investors and policymakers, emphasizing the need for a comprehensive understanding of the inter-
connectedness of financial assets and the potential risks associated with increased interdependence.
By recognizing these dynamics, stakeholders can make informed decisions to enhance financial
stability and manage portfolio risk effectively.

Keywords: COVID-19 pandemic; dynamic connectedness; TVP-VAR model; precious metals

JEL Classification: C22; D81; G15

1. Introduction

In recent years, research related to cryptocurrency investment has generated significant
debate within the financial sphere. As these digital assets are continuing to grow and
gain recognition, comprehending their dynamics and influence on the broader financial
landscape is important. Compounding this complexity, the advent of the COVID-19
pandemic and Russia–Ukraine conflict has introduced an additional layer of uncertainty
into global financial markets. This study aims to investigate into the interplay between
cryptocurrency uncertainty indices and the dynamic movement of returns and volatility
in various financial assets during the COVID-19 crisis. Through this paper, we attempt to
examine the interdependence among cryptocurrency uncertainty indices, precious metals,
green bonds, and soft commodities. Our aim is to investigate the transmission channels and
potential spillover effects during times of heightened uncertainty. The findings derived from
this study will contribute to the existing literature by fostering a deeper comprehension
of the interconnectedness inherent in financial assets. Furthermore, these findings will
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provide insights to investors, policymakers, and financial institutions with tools to manage
risks and keep financial stability.

The volatility in financial markets is an important factor that plays a significant role
in economics, serving as a pivotal risk indicator. A nuanced understanding of the drivers
behind volatility across various financial assets holds great importance for stakeholders
including academics, investors, regulators, and speculators. This understanding helps
in assessing the potential risks that could undermine the stability of the financial sys-
tem. Stakeholders closely monitor the propagation of both volatility and returns across
diverse assets and markets. Although the correlation between returns and volatility has
been extensively examined across different financial markets in the existing literature, the
spillover effects of cryptocurrencies and their uncertainty on other financial assets have
received limited scholarly attention within academia and the financiers. Therefore, there is
a need to explore the linkages and interdependencies between cryptocurrency uncertainty
indices and the volatility of other financial assets. By doing so, we can foster a deeper
comprehension of the intricate dynamics at play within these markets.

The cryptocurrency uncertainty indices play a vital role in enabling investors to gauge
uncertainty within the cryptocurrency market, an aspect not fully captured by conven-
tional uncertainty measures such as economic policy uncertainty (Al-Yahyaee et al. 2019;
Antonakakis et al. 2013; Demir et al. 2018), VIX volatility index (Alqahtani and Chevallier
2020; Fakhfekh et al. 2021), Investor Attention Index (Smales 2022), and Twitter Economic
Uncertainty index (El Khoury and Alshater 2022; Gök et al. 2022). These indices often fall
short in accurately reflecting the surge in uncertainty within the cryptocurrency market,
a pivotal determinant of asset returns. Notably, heightened uncertainty within the cryp-
tocurrency market directly influences investor returns (Bashir and Kumar 2023). Thus,
cryptocurrency uncertainty indices act as instruments that highlight the shift in the cryp-
tocurrency market in response to various events, such as COVID-19 pandemic (Khan et al.
2023). This research sheds light on the impact of cryptocurrency uncertainty on the broader
financial market, particularly during periods of crisis. The findings have implications for
investors and policymakers, emphasizing the need for a comprehensive understanding
of the interconnectedness of financial assets and the potential risks associated with in-
creased interdependence. By recognizing these dynamics, stakeholders can make informed
decisions to enhance financial stability and manage portfolio risk effectively.

Nonetheless, the role of cryptocurrencies in the global financial system is increasing
every day as this is an important investment asset for most retail and institutional investors.
The total market capitalization of cryptocurrencies surpassed USD 1.29T in May 2022. Bitcoin
leads the market with a market capitalization of USD 577B and 44% share of the cryptocur-
rency market. In recent times, Bitcoin’s dominance has fallen with the rise in stable coins
(Ghabri et al. 2022; Kristoufek 2021; Wang et al. 2020), asset-backed cryptocurrencies (Aloui
et al. 2021; Jalan et al. 2021; Yousaf and Yarovaya 2022a), decentralized finance assets (DeFi)
(Yousaf et al. 2022; Yousaf and Yarovaya 2022b), and non-fungible tokens (NFTs) (Aharon
and Demir 2021; Yousaf and Yarovaya 2022b). Cryptocurrencies exhibited higher volatility
in the global COVID-19 crisis, which also affected the cryptocurrency market. The World
Health Organization (WHO) declared COVID-19 as global pandemic on 11 March 2020; after
this announcement, the Bitcoin price was $3953 on 11 March, and it sharply rose during the
pandemic as retail and institutional investors shifted their investments from equity markets
to cryptocurrencies and other non-traditional financial assets due to the safe-haven role of
cryptocurrencies (Bouri et al. 2020; Corbet et al. 2020b; Rubbaniy et al. 2021a).

The cryptocurrency market is highly volatile; many investors want to invest in the
market in the hope of getting higher returns during financial turmoil. During turbulent
periods, regulators, policymakers, and investors are interested in observing the return
and volatility spillovers for: firstly, decisions about portfolio diversification; and secondly,
implementing policies for financial stability. These issues are relevant to the COVID-19
pandemic, when the unemployment rate increased, halting economic activities as economic
uncertainty results in financial chaos that disturbed the portfolio asset allocations and
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reduced financial stability. The COVID-19 pandemic hugely disrupted financial markets
and affected all economy sectors, which ultimately triggered the global recession. With
the increase in systematic risk during the COVID-19 outbreak, market participants were
interested in obtaining information about volatility transmission among various financial
assets for portfolio diversification. Investors re-balanced their portfolios during the financial
turmoil by switching from risky to safe-haven assets (Bouri et al. 2021b; Choudhry et al.
2015; Ha and Dai 2022; Khan et al. 2023; Ghouse et al. 2023).

The existing literature largely ignored the interaction of cryptocurrencies and their
interaction with other relatively safe traditional financial assets. The COVID-19 pandemic
also changed the co-movements between cryptocurrencies and traditional assets. Hence,
this study focuses on uncovering the drivers of cryptocurrencies and traditional asset
return and volatility spillovers as information transmission among financial markets is
extensively studied (Bação et al. 2018; Forbes and Rigobon 2002; Kurka 2019). Existing
studies also discussed the connectedness of financial assets during the financial crisis.
The important works of Diebold and Yilmaz (2009, 2012, 2014) developed a quantitative
measure of dynamic connectedness based on forecast error variance decomposition using
VAR models. We try to contribute to the relevant literature by investigating dynamic
connectedness of different assets and cryptocurrency uncertainty indices. Specifically, we
are interested in examining the dynamic connectedness during the COVID-19 shock by
considering its time-varying structure. Thus, we try to answer the following questions:
What role has the COVID-19 pandemic played in exhibiting the return and cryptocurrency
uncertainty connectedness of different financial assets? Are the asset returns time-varying
in nature? Do the cryptocurrency uncertainty indices explain the return and volatility
connectedness among financial assets?

We used indices for cryptocurrencies, precious metals, green bonds, and soft com-
modities and cryptocurrency uncertainty to apply the time-varying parameter vector
auto-regressions (TVP-VAR) dynamic connectedness approach to answer the above re-
search questions. To the best of our knowledge, this is the first study of its kind on the
dynamic connectedness of returns and volatility of different assets during a financial crisis
(Adekoya and Oliyide 2021; Bouri et al. 2021a; Corbet et al. 2020a; Kamal and Hassan
2022; So et al. 2020). This paper also investigates the response of financial assets to the
COVID-19 pandemic by extending published studies conducted in different financial mar-
kets (Adekoya and Oliyide 2021; Baig et al. 2020; Le et al. 2021b; Rubbaniy et al. 2021b). The
usage of the TVP-VAR approach by Antonakakis et al. (2020) overcomes the shortcomings
(e.g., outlier sensitivity, short time, rolling window size) of the original connectedness
approach by Diebold and Yilmaz (2009, 2012, 2014). The TVP-VAR approach also serves to
measure cross-asset connectedness in the network.

Furthermore, existing studies have discussed the role of various uncertainty indices in
shaping the dynamics of cryptocurrency returns and volatility. These different measures of
uncertainty encompass the economic policy uncertainty index (Elsayed et al. 2022a; Foglia
and Dai 2021; Yen and Cheng 2021), Twitter-based uncertainty index (Aharon et al. 2022;
Wu et al. 2021), and the economic and political uncertainty (Colon et al. 2021; Kyriazis 2021)
and cryptocurrency uncertainty indices (Elsayed et al. 2022b; Lucey et al. 2022).

In a recent study, Yousaf and Goodell (2023) investigated the central banks’ digital cur-
rencies (CDBC), cryptocurrency policy uncertainty index as well as digital payments stocks
by using the dynamic connectedness approach. Their findings highlight the transmission
of shocks from UCRY policy and price to digital payment stocks. Moreover, they identified
the limited interconnectedness between cryptocurrency uncertainty indices and digital
payment stocks, indicating their potential hedging tools against cryptocurrency market
volatility. Yan et al. (2022) investigated the impact of cryptocurrency uncertainties on sus-
tainable and traditional mutual fund and found that traditional mutual funds’ investments
are influenced by uncertainty in the cryptocurrencies market.

Wei et al. (2023) delved into safe-haven properties of cryptocurrencies and forecasting
ability of cryptocurrency uncertainty indices for volatility in precious metals. Employ-
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ing the GARCH-MIDAS approach, their results show that the forecasting prowess of
cryptocurrency uncertainty indices in the precious metals market.

In our contribution to the field, we leverage novel cryptocurrency uncertainty indices
in conjunction with various asset classes—namely cryptocurrencies, precious metals, green
bonds, and soft commodities. Furthermore, we extend the work initiated by Elsayed et al.
(2022b) on dynamic connectedness between gold, cryptocurrency index and cryptocurrency
uncertainty indices. Our findings show the higher returns and volatility connectedness
in the overall sample and during the COVID-19 pandemic, and most financial assets are
net receivers of shocks. The patterns of return and volatility spillover changed during
the pandemic for most financial assets. Overall, our findings suggest that cryptocurrency
uncertainty indices and transmitters of shocks extend to other financial assets. The COVID-
19 pandemic resulted in a spike of risk in financial markets and the magnitude of dynamic
connectedness increased during the first wave of COVID-19 which is like the finding of
Bhatti and Ghouse (2023). Hence, risk-averse equity market investors can minimize such
risks by investing in less-connected assets to diversify portfolios. The remainder of the
study is as follows. Section 2 presents the relevant literature review. In Section 3, we
describe the methodology and data. In Section 4, we show the findings of the study. Finally,
Section 5 concludes the study.

2. Literature Review

Studies have discussed the return and volatility transmission across financial assets
using different methods, for instance Granger causality (Adekoya and Oliyide 2021; Al-
bulescu et al. 2019; Zhang and Broadstock 2020) and dynamic conditional correlation
(Abuzayed and Al-Fayoumi 2021; Hassan et al. 2019). However, the existing literature high-
lights the usefulness of connectedness of financial assets using the dynamic connectedness
approach (Shahzad et al. 2021a, 2021b). The higher inter-connectedness among financial
assets indicates greater market risk, and investors minimize their risks by investing in
weakly connected financial assets. The higher market risk in the network explains the
instability of the financial markets. Dynamic return connectedness is used to identify the
isolated assets so that these assets function as hedge or safe haven against the risk of other
financial assets.

The literature on return and volatility connectedness among different financial assets,
such as equity, bonds, and commodities, are scarce. Some authors studied the link between
commodities, currency, and equity markets. For instance, Kang et al. (2017) studied the
price transmission among crude oil, agricultural commodities and precious metals using
the DECO-GARCH model. They detected an increase in spillover impacts during the
financial crisis. Lundgren et al. (2018) also tested the connectedness and causality by using
equities, currencies, oil, and US treasury bonds, as well as different proxies of uncertainty
(EU and US EPU and VIX) using data from 2004–2016, and they found the uncertainty
proxies were net transmitters of shocks during the financial crisis.

Mensi et al. (2017) investigated the spillovers between gold, Dow Jones, conventional,
Islamic, technology, financial, and telecommunications sector and sustainable indices.
These authors found that gold, energy, technology and telecom sectors and receivers of
shocks and Dow Jones indices contribute to risk spillovers. Yoon et al. (2019) investigated
dynamic and static returns connectedness among equity, bond, commodity, and currency
markets. They identified the Shanghai stock exchange, Nikkei 225, and KOSPI are receivers
of spillover shocks. Kumar et al. (2019) investigated volatility and correlation between
stock prices, natural gas, and oil in India via the VARMA-DCC GARCH models. Their
findings highlights highest short-term spillovers between oil and natural gas. Iglesias-Casal
et al. (2020) discussed the volatility spillovers and diversification potential of oil, gold and
clean energy indices in Brazil by using BEKK and A-DCC models. They emphasized gold’s
higher diversification potential and optimal portfolio weights.
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A recent study by Mensi et al. (2020) explored the risk spillovers between energy
futures and precious metals, noting increased volatility spillovers during the financial crisis.
They observed that gold and oil transmit volatility to other financial assets.

Bouri et al. (2021a) explored return connectedness with crude oil, equities, currencies,
and bonds during the COVID-19 pandemic using the TVP-VAR approach. They observed
changes in connectedness network’s structure and identified equity and USD indices
as shock transmitters before COVID-19, while bond indices become the volatility shock
transmitter during the outbreak.

Asl et al. (2021) analyzed volatility transmission between clean energy indices and
energy commodities using an asymmetric BEKK-MGARCH(1,1) model. They found higher
optimal weights and hedging effectiveness for clean energy indices, making them useful for
hedging equity risks in the energy sector. They concluded that investors can invest in green
assets to hedge the equity risk for stocks in energy sector. Further, Szczepanska-Przekota
(2021) explored the impact of cryptocurrencies on economic conditions of different markets,
and found that investors perceive the cryptocurrency market as more risky as compared to
equity markets.

Shahid et al. (2023) explored the interconnectedness and risk transmission across
global financial markets and assessed the portfolio diversification potential of socially
responsible investments using DCC-GARCH and VAR-GARCH models. Their findings
indicated negative correlation between traditional volatility indices and socially responsible
investment indices. They also found that implied volatility indices of silver and golds hedge
the risks against SRIs investments. Furthermore, Elsayed et al. (2022b) extended the above
research by examining the return and volatility spillovers in gold, cryptocurrency index,
and cryptocurrency price and policy uncertainty indices. They found that cryptocurrency
policy uncertainty is the transmitter of shocks to other assets while gold is the receiver of
shocks. We extend the above research by investigating the dynamic returns and volatility
spillovers among various financial assets and cryptocurrency uncertainty indices developed
by Lucey et al. (2022). The news-based uncertainty indices are relevant to cryptocurrencies
and can better predict uncertainty in the cryptocurrency market.

3. Research Methodology
3.1. The Data

To test and study the dynamic connectedness of different financial asset returns and
cryptocurrency price and policy uncertainty index constructed by Lucey et al. (2022), we
collected the weekly data of cryptocurrency uncertainty indices from the authors’ website1.
The cryptocurrency uncertainty indices were constructed using news articles related to
cryptocurrency on the Lexis Nexis database. We also gathered the daily closing price of
Bitcoin and Ethereum from the Coin Market Cap website2. The closing price data for
precious metals (gold, silver, platinum), S&P green bonds, and S&P GSCI soft commodities
index were downloaded from the DataStream database provided by Thomson Reuters3.
The final sample includes data from 7 August 2015 to 31 December 2021.

In the next step, we converted the daily closing prices of financial assets into log
returns that were further converted into weekly returns to estimate dynamic returns and
volatility connectedness at a weekly frequency. The dynamic connectedness requires that all
series follow non-stationary unit root test processes. Hence, for implementing the dynamic
connectedness approach, we transformed the data using the first log-difference of series:
yit = log(xit) − log(xit − 1). The selected financial assets are relatively stable during the
period of extreme volatility (Le et al. 2021b; Mo et al. 2022; Su et al. 2022; Umar et al. 2021)
and essential for the stability of financial markets due to their volatility to other markets.
Hence, it would be interesting to study the connection between these financial assets with
cryptocurrency uncertainty. In addition, well, our dataset includes data for the period of the
COVID-19 pandemic, which is useful to observe the returns and volatility connectedness
during it. We offer a snapshot of the data in the following Table 1, which includes the
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descriptive statistics of cryptocurrency indices, cryptocurrencies, precious metals, green
bonds, and soft commodities indices.

Table 1. Descriptive Statistics of Sample.

Panel A: Descriptive Statistics Full Sample (7 August 2015 to 31 December 2021).

Variables UCRY_Policy UCRY
Price Bitcoin Ethereum Gold Silver Platinum SP Green

Bonds
SP GSCI

Softs

Mean 0.000 0.000 0.024 0.058 0.001 0.003 0.003 0.000 0.001
Variance 0.000 0.000 0.002 0.018 0.000 0.000 0.000 0.000 0.000
Skewness 8.081 *** 6.617 *** 4.795 *** 5.461 *** 4.930 *** 13.001 *** 10.276 *** 9.971 *** 4.146 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ex.Kurtosis 76.285 *** 53.141 *** 29.936 *** 37.572 *** 36.607 *** 193.579 *** 120.734 *** 114.121 *** 28.471 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JB 84,622.361
***

41,738.229
***

13,751.343
***

21,305.339
***

20,002.199
***

530,908.103
***

208,736.085
***

186,779.394
***

12,237.996
***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ERS −5.437 *** −4.707 *** −6.351 *** −0.871 −6.624 *** −5.640 *** −6.281 *** −4.318 *** −4.953 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q(10) 91.739 *** 126.632 *** 45.933 *** 63.807 *** 52.338 *** 52.491 *** 89.844 *** 124.134 *** 22.726 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q2(10) 15.345 *** 8.362 3.844 35.637 *** 13.855 *** 12.043 ** 65.188 *** 70.642 *** 7.058

−0.005 −0.146 −0.69 0 −0.01 −0.026 0 0 −0.248

Panel B: Descriptive Statistics Full Sample COVID-19 (1 January 2020 to 31 December 2021)

Mean 0.000 0.000 0.022 0.041 0.001 0.005 0.005 0.000 0.002
Variance 0.000 0.000 0.002 0.006 0.000 0.000 0.000 0.000 0.000
Skewness 4.606 *** 3.574 *** 7.074 *** 4.594 *** 4.417 *** 7.727 *** 5.964 *** 6.089 *** 3.909 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ex.Kurtosis 23.186 *** 14.875 *** 59.241 *** 26.666 *** 26.720 *** 64.121 *** 38.122 *** 38.670 *** 20.649 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JB 2697.329 *** 1180.259 *** 16,075.460
*** 3447.105 *** 3432.009 *** 18,851.366

*** 6914.146 *** 7122.527 *** 2112.400 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ERS −3.596 *** −2.898 *** −3.750 *** −3.743 *** −3.391 *** −4.079 *** −3.402 *** −4.030 *** −3.774 ***

−0.001 −0.005 0.000 0.000 −0.001 0.0000 −0.001 0.000 0.000
Q (10) 17.926 *** 19.297 *** 10.909 ** 11.869 ** 25.382 *** 16.323 *** 26.846 *** 42.238 *** 13.134 **

−0.001 −0.001 −0.045 −0.028 0 −0.003 0.000 0.000 −0.015
Q2 (10) 4.088 1.439 0.644 2.008 5.521 3.597 19.948 *** 21.665 *** 2.264

−0.651 −0.977 −0.998 −0.937 −0.43 −0.73 0.000 0.000 −0.912

Notes: The symbols ***, ** indicate significance at the 1%, 5% levels; the D’Agostino (1970) skewness test,
Anscombe and Glynn (1983) kurtosis test, Jarque and Bera (1980) normality test, Elliott et al. (1996) ERS unit-root
test, Q (10) & Q2(10), and Fisher and Gallagher (2012) weighted portmanteau tests are applied to the dataset.

Table 1 panel A includes the descriptive statistics of the whole sample (7 August 2015,
to 31 December 2021) and panel B includes the data covering the COVID-19 pandemic
(1 January 2020 to 31 December 2021). In panel A of Table 1, the full sample results show
that average returns are positive for most of the series. From the selected financial assets,
Bitcoin provides higher returns with a value of 0.058 and, unit-root test processes during the
COVID-19 pandemic, gold, silver, platinum, and S&P GSCI soft commodities are increased.
Gold returns remain stable in the overall sample during the COVID-19 pandemic. The
returns of cryptocurrencies are reduced during the crisis with the average values of Bitcoin
and Ethereum being 0.024 and 0.058, respectively, in the overall sample compared to
average values of 0.022 and 0.041 during COVID-19. Overall, the weekly returns of these
financial assets are not negative and provide better returns to investors in cryptocurrencies
and commodities markets in the presence of cryptocurrencies uncertainty.

The difference between Bitcoin and Ethereum is higher in the full sample and during
COVID-19, which shows that cryptocurrencies are riskier than precious metals, green
bonds, and soft commodities. Further, the positive and significant rightward skewed
returns series show that the mean is higher than median in different financial assets used
in this study. The kurtosis and Jarque–Bera normality tests confirm that all returns series
have fat tails and follow the leptokurtic distribution. Results support the non-normality of
the data in line with Jarque and Bera (1980), in which they show that all financial assets
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are not normally distributed. The stationarity is tested utilizing the Elliott et al. (1996) ERS
unit root test, which shows that all returns series are significant and stationary at the 1%
level of significance. Finally, we also checked the goodness-of-fit of financial time series
using the Fisher and Gallagher (2012) weighted portmanteau test that is significant at 1%
in most cases. It shows the autocorrelation between returns and squared returns is useful
for examining the interconnectedness of these financial assets using the TVP-VAR dynamic
connectedness approach.

The weekly log returns on financial assets and cryptocurrency uncertainty indices are
displayed in Figure 1 below. We take the natural log by following (Demir et al. 2018; Hasan
et al. 2021; Xu et al. 2023). Shown here is that prices of cryptocurrencies, precious metals,
green bonds, and soft commodities indices show a sharp reduction during the first phase
of the COVID-19 pandemic. Furthermore, the cryptocurrency policy and price uncertainty
indices rapidly increased as the COVID-19 crisis progressed.
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Notes: Figure 1 displays the weekly log returns of cryptocurrencies, precious metals, green bonds,
and soft commodities.

3.2. The Model

We investigated the impact of cryptocurrency uncertainty indices on the return and
volatility connectedness with the Time-Varying Parameter Autoregressive (TVP-VAR)
dynamic connectedness approach developed by Antonakakis et al. (2020). Their approach is
essentially an extension of Diebold and Yilmaz (2009, 2012, 2014). Selecting this econometric
method is based on existing studies for testing the dynamic connectedness among financial
markets. This method is useful when correlation among financial markets rises during
times of financial turmoil. The dynamic conditional correlation models provide biased
results during the crisis as they are based on market state and macroeconomic factors,
yet the real connectedness among markets is not affected by the financial turbulence. In
contrast, the spillover approach is based on Forecast Error Variance Decomposition (FEVD),
which originated from the Vector Autoregressive model (VAR) model and not affected by
the conditional correlation (Elsayed et al. 2022b; Elsayed and Helmi 2021; Umar et al. 2022).

The spillover approach devised by Diebold and Yilmaz (2009, 2012, 2014) is used to
obtain the information about shock in one variable to another variable based on FEVD.
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However, the spillover method has several drawbacks: first, the arbitrary selection of
rolling-window size is not useful in small samples; second, original connectedness ap-
proach by Diebold and Yilmaz (2009, 2012, 2014) is highly sensitivity to outliers and based
on normalization techniques, which may provide biased results (Caloia et al. 2019); and
third, the original dynamic connectedness approach may produce biased estimations due to
sign and rank errors. These issues are solved using the TVP-VAR dynamic connectedness
approach devised by Antonakakis et al. (2020). The window size is ideally estimated
by mean squared prediction errors based on the multivariate Kalman Filters (Koop and
Korobilis 2013, 2014). This technique is also useful for dealing with outliers, especially
during the financial crisis. The short time series, and sign and rank errors are also re-
duced in the TVP-VAR approach with scaler-based normalization of Generalized Forecast
Error Variance.

The return and volatility spillovers are discussed in existing literature using the orig-
inal dynamic connectedness approach (Diebold and Yilmaz 2009, 2012, 2014), TVP-VAR
approach (Adekoya and Oliyide 2021; Bouri et al. 2021a; Dai et al. 2022; Elsayed et al.
2022b) and extended joint connectedness based on TVP-VAR (Balcilar et al. 2021; Chen
et al. 2022). Meanwhile the TVP-VAR approach is based on auto-regressive conditional
heteroscedasticity (ARCH) process proposed by Engle (1982), and the generalized autore-
gressive conditional heteroscedasticity (GARCH) approach by Bollerslev (1986) to overcome
problems in ARCH models. Consequently, the TVP-VAR approach of Antonakakis et al.
(2020) examines the return and volatility transmission across cryptocurrencies, precious
metals, green bonds, soft commodities, and cryptocurrency uncertainty indices.

3.3. Research Methods
3.3.1. Time-Varying Parameter Vector Autoregression (TVP-VAR)

The TVP-VAR dynamic connectedness approach of Antonakakis et al. (2020) is applied
to assess the dynamic connectedness between various financial assets. The TVP-VAR model
with the lag-length of order one is selected by the Bayesian information criterion (BIC), and
we choose the rolling window of 52 weeks and weekly returns which are nth-transformed
to control the stationarity issues:

yt = Btyt−1 + εt εt ∼ N(0, Σt)
vec(Bt) = vec(Bt−1) + vt vt ∼ N(0, Rt)

(1)

where Equation (1) shows that yt, yt−1 and εt are K× 1 dimensional vector and Bt and Σt
are K× K dimensional matrices.

The symbols vec(Bt) and vt are K2 × 1 dimensional vectors, whereas Rt is a K2 × K2

dimensional matrix. All parameters (Bt) are allowed to use the TVP-VAR approach,
which is also helpful for examining the time-varying relationship and variance-covariance
matrices; Σt and Rt.

Further, the Wold theorem is applied to transform the model to the TVP-VMA model in

yt = ∑∞
h=0 Ah,tεt−i (2)

where Equation (2) shows that A0 = IK and εt is a vector of white noise symmetric shocks
with K× K time-varying covariance matrix of E(εtε

′
t) = Σt.

Therefore, in the next step, the H-step forecast error is estimated in Equation (3);

ξt(H)= yt+H − E(yt+H | yt, yt−1, . . .)

= ∑H−1
h=0 Ah,tεt+H−h,

(3)

with forecast error covariance matrix equal to in Equation (4):

E
(
ξt(H)ξ ′t(H)

)
= Ah,tΣt A′h,t. (4)
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3.3.2. The Generalized Dynamic Connectedness Approach

The generalized dynamic connectedness approach is based on the H-step ahead of
generalized forecast error variance decomposition (GFEVD); gSOTij,t, is also applied and
it can be interpreted as the effect the shock in variable j has on variable i. This process is
explained in Equation (5) below:

ζ
gen
ij,t (H) =

E(ξ2
i,t(H))−E[ξi,t(H)−E(ξi,t(H))|εj,t+1,...,εj,t+H]

2

E(ξ2
it(H))

=
∑H−1

h=0 (e′i AhtΣtej)
2(

e′jΣtej

)
∑H−1

h=0 (e′i AhtΣt A′htei)

gSOTij,t =
ζ

gen
ij,t (H)

∑K
j=1 ζ

gen
ij,t (H)

(5)

where ei is a K × 1 zero selection vector with unity on its ith position and ζ
gen
ij,t (H) de-

notes the proportional reduction of the H-step forecast error variance of variable i due to
conditioning on future shocks of variable j.

The generalized dynamic spillover average table displays the total connectedness to
demonstrate total connectedness among financial assets from shock in one variable to the
whole network. This dynamic connectedness metric is explained in below in Equation (6):

Sgen, f rom
i←·,t = ∑K

j=1,i 6=j gSOTij,t

Sgen,to
i→0,t = ∑K

j gSOTji,t

(6)

Another measure is the net total directional connectedness of variable i, and it displays
whether variable i influences the network more than being influenced by it and it is
presented in Equation (7):

Sgen,net
i,t = Sgen,to

i→0,t − Sgen, f rom
i←·,t (7)

If Sgen,net
i,t > 0

(
Sgen,net

i,t < 0
)

, variable i is a net transmitter (receiver) of shocks which
shows that variable i is driving (driven by) the network.

The next metric is TCI is average total directional connectedness from (to) others and
we explain it in Equation (8), which is shown here:

gSOIt =
1
K ∑K

i=1 Sgen, f rom
i←,t =

1
K ∑K

i=1 Sgen,to
i→0,t , (8)

A high value of average total directional connectedness (TCI) reveals an increased
risk in the financial market and its low value highlights the low risk. This means shocks in
one variable are influenced by its future values and shocks are not transmitted from one
variable to another variables.

Finally, the dynamic connectedness approach provides information about net pairwise
spillovers relationship between two variables and it is presented in Equation (9):

Sgen,net
ij,t = gSOTgen,to

ji,t − gSOTgen, f rom
ij,t (9)

If Sgen,net
ij,t > 0

(
Sgen,net

ij,t < 0
)

, variable i has a higher impact on variable j and vice versa,
implying that variable i dominates variable j.

4. Empirical Results

In this section we present the results of the dynamic connectedness approach based
on the TVP-VAR approach.
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4.1. The Average Dynamic Connectedness

Table 2 displays the average dynamic connectedness based on the TVP-VAR approach.
The diagonal elements in Table 2 are associated with their own contribution to volatility
spillover while off-diagonal elements refer to the contribution ‘from’ or ‘to’ others. The
rows are linked with the contribution of each asset and uncertainty index to forecast error
variance of specific asset. Conversely, the columns are associated with the impact of shock
in one financial asset to all other assets separately.

Table 2. Volatility and return connectedness of cryptocurrency uncertainty indices, cryptocurrencies,
precious metals, green bonds, and soft commodities: Evidence using the TVP-VAR approach. Notes:
TVP-VAR dynamic connectedness approach results with the lag-length of order one by criterion (BIC)
with window size of 52 weeks. Panel A includes the dynamic connectedness in full sample, and we
tested the dynamic connectedness during COVID-19 in panel B.

Panel A: Average Dynamic Connectedness Table (Full Sample)

Variables UCRY
Policy

UCRY
Price Bitcoin Ethereum Gold Silver Platinum

S&P
Green
Bonds

SP GSCI
Softs FROM

UCRY Policy 43.02 47.18 1.41 0.25 0.78 2.65 2.07 1.86 0.79 56.98
UCRY Price 35.59 58.18 0.7 0.15 0.47 1.77 1.47 1.05 0.62 41.82

Bitcoin 8.35 14.55 44.24 4.25 2.82 6.47 5.69 10.06 3.55 55.76
Ethereum 5.13 6.93 5.29 58.93 7.18 6.2 2.75 5.37 2.23 41.07

Gold 7.02 10.05 3.89 6.49 40.23 10.14 9.25 11.49 1.45 59.77
Silver 7.76 10.84 4.66 4.7 7.73 37.94 17.02 7.12 2.23 62.06

Platinum 15.51 25.9 3.75 1.44 5.17 12.5 27.82 6.31 1.6 72.18
S&P Green

Bonds 6.9 9.7 7.44 1.52 3.07 5.64 5.72 54.98 5.04 45.02

SP GSCI Softs 7.82 13.37 4.54 2.61 1.41 4.24 9.29 12.99 43.74 56.26
TO 94.07 138.52 31.66 21.4 28.63 49.6 53.26 56.25 17.51 490.91

Inc.Own 137.09 196.7 75.9 80.33 68.87 87.54 81.08 111.23 61.26 cTCI/TCI
NET 37.09 96.7 −24.1 −19.67 −31.13 −12.46 −18.92 11.23 −38.74 61.36/54.55
NPT 7 8 3 1 1 4 5 6 1

Panel B: COVID-19 Pandemic (1 January 2020 to 31 December 2021)

Variables UCRY
Policy

UCRY
Price Bitcoin Ethereum Gold Silver Platinum

S&P
Green
Bonds

SP GSCI
Softs FROM

UCRY Policy 47.47 35.4 0.88 3.03 1.62 0.91 3.61 2.62 4.44 52.53
UCRY Price 39.24 45.01 0.92 2.76 1.11 0.91 3.82 2.4 3.85 54.99

Bitcoin 5.4 6.18 18 11.6 4.5 12.28 14.38 24.81 2.85 82
Ethereum 4.6 5.41 10.45 29.06 4.19 11.65 9.57 22.61 2.46 70.94

Gold 4.05 2.5 5.12 7.32 24.81 15.83 16.42 21.19 2.76 75.19
Silver 2.28 3.19 7.78 9.06 8.91 19.39 21.61 25.52 2.26 80.61

Platinum 2.18 2.37 6.2 9.52 7.49 16.11 31.48 21.27 3.37 68.52
S&P Green

Bonds 3.1 2.35 2.35 2.71 1.79 4.19 9.11 68.63 5.78 31.37

SP GSCI Softs 12.46 12.94 3.53 3.05 1.74 1.63 9.2 8.27 47.19 52.81
TO 73.3 70.34 37.24 49.04 31.36 63.52 87.71 128.69 27.77 568.97

Inc.Own 120.77 115.35 55.24 78.1 56.16 82.91 119.2 197.31 74.95 cTCI/TCI
NET 20.77 15.35 −44.76 −21.9 −43.84 −17.09 19.2 97.31 −25.05 71.12/63.22
NPT 7 5 2 3 0 3 7 7 2

The findings of the dynamic connectedness network of weekly returns of cryptocur-
rencies, precious metals, green bonds, soft commodities, and cryptocurrency uncertainty
indices display higher internal connectedness with an average total connectedness in-
dex (TCI) value of 54.55%. The value of TCI within the dynamic connectedness network
explains the higher interconnectedness of these financial assets and cryptocurrency uncer-
tainty indices. The cryptocurrency price uncertainty index transmits the shocks to other
assets in the network with a forecast error variance value of 138.52%.

Similarly, during the COVID-19 pandemic, the TCI value is 63.22%, which is higher
than full sample results. Moreover, during the pandemic, green bonds with a value of
128.69% transmit the shock to other assets and uncertainty indices. The connectedness is
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increased during the COVID-19 pandemic. The increase in TCI during COVID-19 pandemic
suggest that volatility spillover and transmission of risk increase during financial turmoil.
These findings are consistent with previous research (Akhtaruzzaman et al. 2021; Boubaker
et al. 2016; Bouri et al. 2021b; Costa et al. 2022), as they also find that total connectedness is
increased during crisis times.

Overall, these findings strongly suggest that the selected financial assets are closely
connected, and shocks are transmitted from cryptocurrency uncertainty indices to other
financial assets. Hence, risk-averse investors should take these findings into account for
investing in these financial assets, and they can diversify their portfolios by investing in
assets with low interconnectedness. Investors should consider cryptocurrency uncertainty
before investing in these financial assets, especially during the COVID-19 pandemic.

4.2. The Dynamic Total Connectedness

It is important to note that, in Table 2, results about dynamic connectedness across time
are not included. Moreover, we cannot see the connectedness during the Global Financial
Crisis (GFC), COVID-19 pandemic, and other influential and/or extreme events. Figure 2
illustrates the dynamic total connectedness (TCI) across time to explain the volatility
transmission across financial assets. As shown in Figure 2, the total connectedness is within
the 45% to 95% range. The TCI is higher during 2016 and it remained at 55% from 2018 to
the first days of 2020. However, the TCI values sharply increase during the first wave of
the COVID-19 pandemic, with a TCI value of around 77%.
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The consistent presence of the TCI value above 50% across a majority of time frames pro-
vides substantial evidence for heightened return and volatility spillover within these financial
assets. This trend signifies that elevated cryptocurrency uncertainty indices wield a notable
influence over these financial components. The amplified dynamic connectedness values
recorded during the COVID-19 pandemic can be attributed to the escalated apprehension
among investors triggered by negative news related to the COVID-19 situation. Concurrently,



J. Risk Financial Manag. 2023, 16, 428 12 of 18

the surge in economic policy uncertainty further compounds this situation. It is noteworthy
that cryptocurrencies were particularly susceptible to changes in the COVID-19 pandemic
scenario (Allen 2022; Lahmiri and Bekiros 2020; Salisu and Vo 2020).

4.3. Net Total Directional Connectedness

Net total directional connectedness results are displayed in Figure 3 This figure
presents the time-varying role of net receiving or net transmitting role of financial as-
sets. Figure 4 shows that the UCRY policy and price indices remain stable before the
COVID-19 pandemic and that the UCRY price index acts as a transmitter of shocks during
the first days of COVID-19; these findings are consistent with Lundgren et al. (2018). UCRY
policy index is a net receiver of the shocks. As shown in Figure 3, Ethereum, Bitcoin, gold,
and soft commodities are net receivers of shocks. The silver, platinum, and green bonds are
net receivers of shocks before COVID-19, but they become the net transmitter of shocks
during it. Overall, most of the assets are net receivers of shocks and their spillover behavior
changes during the pandemic.
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4.4. Net Pairwise Directional Connectedness

The results of time-varying net pairwise connectedness between cryptocurrency un-
certainty indices and financial assets are presented below in Figure 4. The pairwise connect-
edness is higher between UCRY indices, cryptocurrencies, and precious metals, especially
during the COVID-19 pandemic. The connectedness between precious metals, soft com-
modities, and green bonds is also higher, especially during the outbreak’s spread. Overall,
the magnitude of net pairwise connectedness is higher, and the spillover patterns were
changed during the COVID-19 pandemic, which is consistent with findings of other studies
(Bouri et al. 2021a; Elsayed et al. 2022a; Le et al. 2021a). These findings suggest that in-
vestors should consider persistence of asset before investing as patterns of spillovers were
changed during COVID-19 pandemic.

4.5. Dynamic Connectedness Network Plot

Figure 5 illustrates the network plot of the return and volatility connectedness between
cryptocurrency uncertainty indices and different financial assets. The UCRY price and
policy indices are net transmitters of shocks to Bitcoin, Ethereum, gold, silver, platinum,
and soft commodities. Moreover, the green bonds are net transmitter of shocks towards
gold and soft commodities. The net total directional connectedness between UCRY price to
Bitcoin, Platinum, and gold is higher because the node size is large. Our findings suggest
that equity market investors should look for volatility spillovers from cryptocurrency
uncertainty indices towards different financial assets before investing in these assets during
a financial crisis. These findings suggest that investors in traditional markets should be
cautious during financial turmoil and its influence on traditional assets as our findings show
that cryptocurrency uncertainties transmit the shocks towards traditional assets market;
hence, traditional investors experienced lower returns during the COVID-19 pandemic.
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5. Concluding Remarks

This study examines the dynamic connectedness of return and volatility spillover
among cryptocurrency uncertainty, cryptocurrencies, green bonds, precious metals, and
soft commodities. The investigation relies on weekly returns data from 7 August 2015 to
31 December 2021, using the TVP-VAR approach as detailed by Antonakakis et al. (2020).
The total connectedness is higher, a trend particularly heightened during the COVID-19
pandemic. During this crisis, the cryptocurrency policy uncertainty index emerged as
the primary transmitter of shocks to other financial assets, while the cryptocurrency price
index assumed the role of shock receiver of shock during COVID-19. The pandemic has
instigated shifts in returns and volatility connectedness across these financial assets. For
instance, certain assets that were previously net shocks receivers transitioned into shock
transmitters during the COVID-19 outbreak. Moreover, the pandemic has fostered height-
ened connection among precious metals, soft commodities, and green bonds. Precious
metals and cryptocurrencies, as recipients of shocks, warrant particular attention from
investors and practitioners who can opt for alternative assets as a strategy to hedge the
cryptocurrency uncertainty and reduce the portfolio risk in times of financial turmoil.

These findings hold considerable implications, urging investors to carefully assess
volatility spillovers from cryptocurrency uncertainty indices into traditional markets for
comprehensive diversification insights across assets. Consequently, policymakers and
investors are encouraged to scrutinize cryptocurrency uncertainty spillover patterns onto
various traditional markets, enabling them to optimize returns through diversified global
asset portfolios—especially crucial amidst financial disturbances.

To acknowledge this study’s limitations, it is worth noting that the availability of
UCRY uncertainty indices in a weekly frequency prompted the utilization of weekly data.
However, this choice may omit some critical information. For future investigations, re-
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searchers should consider constructing a daily cryptocurrency uncertainty index to explore
its dynamic connectedness with other assets, thereby offering a more nuanced perspective.
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