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Abstract: The paper builds a Variance-Gamma (VG) model with five parameters: location (µ),
symmetry (δ), volatility (σ), shape (α), and scale (θ); and studies its application to the pricing of
European options. The results of our analysis show that the five-parameter VG model is a stochastic
volatility model with a Γ(α, θ) Ornstein–Uhlenbeck type process; the associated Lévy density of the

VG model is a KoBoL family of order ν = 0, intensity α, and steepness parameters δ
σ2 −

√
δ2

σ4 +
2

θσ2

and δ
σ2 +

√
δ2

σ4 +
2

θσ2 ; and the VG process converges asymptotically in distribution to a Lévy process

driven by a normal distribution with mean (µ + αθδ) and variance α(θ2δ2 + σ2θ). The data used for
empirical analysis were obtained by fitting the five-parameter Variance-Gamma (VG) model to the
underlying distribution of the daily SPY ETF data. Regarding the application of the five-parameter
VG model, the twelve-point rule Composite Newton–Cotes Quadrature and Fractional Fast Fourier
(FRFT) algorithms were implemented to compute the European option price. Compared to the
Black–Scholes (BS) model, empirical evidence shows that the VG option price is underpriced for out-
of-the-money (OTM) options and overpriced for in-the-money (ITM) options. Both models produce
almost the same option pricing results for deep out-of-the-money (OTM) and deep-in-the-money
(ITM) options.

Keywords: stochastic volatility; Lévy process; Ornstein–Uhlenbeck process; infinitely divisible
distribution; Variance-Gamma (VG) model; function characteristic; Esscher transform

1. Introduction

The Black–Scholes (BS) model Black and Scholes (1973) is considered the cornerstone of
option pricing theory. The model relies on the fundamental assumption that asset returns have
a normal distribution with a known mean and variance. However, based on empirical studies,
the Black–Scholes (BS) model is inconsistent with a set of well-established stylized features Cont
(2001). Due to the subsequent development of option pricing theory, a new class of models has
emerged in the literature to address the stylized characteristics of the markets. The probabilistic
property of infinitely divisible distribution is the main characteristic of these new models, which
belong to the family of Lévy processes Kyprianou (2014).

The new class of models can be divided into two subclasses: Jump-Diffusion and
Stochastic Volatility. The Jump-Diffusion process is modeled as an independent Brown-
ian motion plus a Compound Poisson Process. The popular models in the literature are
Merton’s jump-diffusion model Matsuda (2004) and Kou’s jump-diffusion model Kou
(2002), in which the logarithmic jump size follows a normal distribution and an asym-
metric double exponential distribution, respectively. Stochastic volatility (SV) models are
another extension of the standard geometric Brownian motion (GBM) model, where the
observed volatility is modeled as a stochastic process. In a stochastic volatility framework
Alhagyan et al. (2020), the constant volatility (σ) in a standard geometric Brownian motion
model is replaced by a deterministic function of a stochastic process (σ(Yt)), where Yt rep-
resents the solution of the stochastic differential equation (SDE). There are two main types
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of SV models in the literature: diffusion-based SV models and non-Gaussian Ornstein–
Uhlenbeck based SV models. In the popular diffusion-based SV models, Yt follows a
Cox-Ingersoll-Ross (CIR) process Heston (1993) or a Log-normal process Hull and White
(1987). The deterministic function is a squared root of the stochastic process (σ(Yt) =

√
Yt).

The non-Gaussian Ornstein–Uhlenbeck based SV models were introduced and thoroughly
studied in Barndorff-Nielsen et al. (1998) and Barndorff-Nielsen and Shephard (2001b, 2002,
2003). The SV model with the Ornstein–Uhlenbeck type process is mathematically tractable
and has many appealing features.

From the perspective of derivative asset analysis, we will build a five-parameter VG
model as a stochastic volatility model with a Γ(α, θ) Ornstein–Uhlenbeck type process.
While there are a large number of studies on option pricing using the VG model, most
of the papers in the literature use three parameters Adeosun et al. (2016); Li et al. (2020);
Madan et al. (1998); Mozumder et al. (2015), which is certainly due to technical issues
inherent in fitting a high-parametric model to the marginal distribution of asset returns.
The number of studies in the literature considering a VG model with five parameters
is rather limited. Using the five-parameter Variance-Gamma model as an underlying
distribution of European options allows us to control both the excess kurtosis and the
skewness in the market data. In option pricing theory, the main challenge often involves
the existence of the Equivalent Martingale Measure (EMM) and whether it preserves the
structure of the Variance-Gamma measure. The Variance-Gamma (VG) process is not
a Gaussian process, and the market is incomplete; therefore, the Equivalent Martingale
Measure is not unique. The Esscher transform of the historical measure is considered
optimal with respect to some optimization criterion Boyarchenko and Levendorskii (2002).
The Esscher Martingale measure was shown in Andrusiv and Engelbert (2020) to coincide
with the minimal entropy Martingale measure for Lévy processes.

The remainder of the paper is organized as follows. Section 2 is devoted to building a
five-parameter VG process, presenting parameter estimations and simulations of the VG
process. Section 3 investigates the Lévy density and asymptotic distribution of the VG
process. Finally, in Section 4, we extend the Black–Scholes framework, provide the integral
representation for the option price, and compute the VG option price numerically.

2. Variance-Gamma Process: Stochastic Volatility Model
2.1. Lévy Framework and Asset Pricing

Let (Ω, F , {Ft}t≥0, P) be a filtered probability space, with F = ∨t>0Ft, {Ft}t≥0 a
filtration, Ft a σ-algebra included in F , and Fτ ⊆ Ft for τ < t.

A stochastic process Y = {Yt}t≥0 is a Lévy process if it has the following properties:
(L1): Y0 = 0 a.s.
(L2): Yt has independent increments, that is, for 0 < t1 < t2 < · · · < tn, the random

variables Yt1 , Yt1 −Yt2 , . . . , Ytn −Ytn−1 are independent
(L3): Yt has stationary increments, that is, for any t1 < t2 < +∞ the probability

distribution of Yt1 −Yt2 depends only on t1 − t2
(L4): Yt is stochastically continuous; for any t and ε > 0, lims→t P(|Ys −Yt| > ε) = 0
(L5): càdlàg paths, that is, t 7→ Yt is a.s. right continuous with left limits
Given a Lévy process Y = {Yt}t≥0 on the filtered probability space (Ω, F , {Ft}t≥0, P),

we define the asset value process S = {St}t≥0 such as St = S0eYt .

Theorem 1. (Lévy–Khintchine representation)
Let Y = {Yt}t≥0 be a Lévy process on R. Then, the characteristic exponent admits the

following representation:

ϕ(ξ) = −Log
(

EeiY1ξ
)
= −iγξ +

1
2

σ2ξ2 +
∫ t

0

(
eiξy − 1− yξ1|y|≤1

)
Π(dy) (1)



J. Risk Financial Manag. 2023, 16, 55 3 of 28

where γ ∈ R, σ ≥ 0, and Π is a σ-finite measure called the Lévy measure of Y, satisfying
the property ∫ +∞

−∞
Min(1, |y|2)Π(dy) < +∞

For the theorem-proof, see Applebaum (2009); Ken-Iti (1999); Tankov (2003).
Each Lévy process is uniquely determined by the Lévy–Khintchine triplet (γ, σ2, Π).

The terms of this triplet suggest that a Lévy process can be seen as having three independent
components: a linear drift, a Brownian motion, and a Lévy jump process. With the
diffusion term σ = 0, we have a Lévy jump process; in addition, if γ = 0, we have a pure
jump process.

2.2. Γ(α, θ) Ornstein–Uhlenbeck Proces

The Ornstein–Uhlenbeck process is a diffusion process introduced by Ornstein and
Uhlenbeck Uhlenback and Ornstein (1930) to model the stochastic behavior of the velocity of
a particle undergoing Brownian motion. Ornstein–Uhlenbeck diffusion σ2 = {σ2(t), t ≥ 0}
is the solution of the Langevin Stochastic Differential Equation (SDE) (2)

dσ2(t) = −λσ2(t)dt + dB(λt). (2)

where λ > 0 and B = {Bt, t ≥ 0} is a Brownian motion.
In recent years, the Ornstein–Uhlenbeck process has been used in finance to capture

important distributional deviations from Gaussianity and to model dependence structures.
The extension of the Ornstein–Uhlenbeck process has been obtained by replacing the
Brownian motion in (2) by z(t), which is a background driving Lévy process (BDLP)
Barndorff-Nielsen and Shephard (2001a, 2002, 2003). The SDE (2) becomes

dσ2(t) = −λσ2(t)dt + dz(λt) λ > 0. (3)

where the process z(t) = {z(t), t ≥ 0, z(0) = 0} is subordinator, that is, a process with non-
negative, independent, and stationary increments, which implies σ2(t) ≥ 0. Correspond-
ingly, z(t) moves up entirely by jumps and then tails off exponentially Barndorff-Nielsen
and Shephard (2001b).

Lemma 1. The general form of the stationary process σ2(t), a solution of (3), is provided by

σ2(t) = −
∫ +∞

0
e−sdz(λt− s) λ > 0. (4)

Proof.

σ2(t) = −
∫ +∞

0
e−sdz(λt− s) = −

∫ +∞

0
e−λsdz(λ(t− s)) =

∫ t

−∞
e−λ(t−s)dz(λs) (5)

By using the variable changing method, we can have different expressions of (4).

σ2(t) =
∫ t

−∞
e−λ(t−s)dz(λs) =⇒ dσ2(t) = −λσ2(t)dt + dz(λt) (6)

Expression (5) can be written as follows:

σ2(t) = e−λtσ2(0) +
∫ t

0
e−λ(t−s)dz(λs) σ2(0) =

∫ 0

−∞
eλsdz(λs) (7)

Theorem 2. Assume that z(t) = ∑
N(t)
k=1 ξk is a compound poison process, that is, N(t) is a Poisson

process with instantaneous rate α and ξk follows an exponential distribution with rate θ.
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The stationary marginal distribution of σ2(t) is the Gamma distribution Γ(α, θ)

Proof.

σ2(t + u) =
∫ t+u

−∞
e−λ(t+u−s)dz(λs) = e−λuσ2(t) +

∫ u

0
e−λ(u−s)dz(λs) u ≥ 0 (8)

The stationary solution σ2(t) of (3) can be written as in (8). Because of the stationarity,
we have

ϑ(ξ) = ϑ(ξe−λu)Φ(u, ξ) (9)

where ϑ(ξ) is the characteristic function of the stationary distribution of σ2(t) and Φ(u, ξ)
is the characteristic function of

∫ u
0 e−λ(u−s)dz(λs). We have 0 ≤ e−λu ≤ 1 for u ≥ 0, and

the relation (8) shows that σ2(t) is self-decomposable.
z(t) is a compound Poisson process with the following characteristic function:

g(ξ) = E(eiξz(1)) = exp
{∫ ∞

0
(eiξx − 1)α f (x)dx

}
= exp(ρ(ξ)) ρ(ξ) =

iξα

θ − iξ
(10)

It was shown in Barndorff-Nielsen et al. (1998) that Φ(u, ξ) can be expressed as follows:

Φ(u, ξ) = exp
{

λ
∫ u

0
ρ(ξe−λ(u−s))ds

}
= exp

{∫ ξ

ξe−λu

ρ(w)

w
dw
}

(11)

By replacing, ρ(w)
w = iα

θ−iw , we have

Φ(u, ξ) =

(
θ − iξe−λu

θ − iξ

)α

(12)

where ϑ(ξ) is continuous at zero, and we have

ϑ(ξ) = lim
u→∞

ϑ(ξe−λu)Φ(u, ξ) =

(
1

1− i 1
θ ξ

)α

=
(

1− iθ−1ξ
)−α

(13)

From (13), ϑ(ξ) is the characteristic function of the gamma distribution, and the
stationary marginal distribution of σ2(t) is the Gamma distribution Γ(α, θ).

Another method developed in Barndorff-Nielsen and Shephard ( 2001a, 2001b, 2002,
2003) uses the relationship between the z(t) Lévy density w(x) and the Lévy density u(x)
of σ2(t):

u(x) =
∫ ∞

1
w(xr)dr (14)

From (10), we have the Lévy density w(x) = α f (x) = αθe−θx, and the Lévy density
u(x) of σ2(t) can be deduced as follows:

u(x) =
∫ ∞

1
αθe−θxrdr =

α

x
e−θx x > 0 (15)

which is the Lévy density of the Gamma distribution Γ(α, θ).

We can integrate the stationary non-negative process σ2(t) as follows:

σ2∗(t) =
∫ t

0
σ2(s)ds (16)
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By integration using part method, (16) becomes

σ2∗(t) = λ−1σ2(0)(1− e−λt) + λ−1
∫ t

0

(
1− e−λ(t−s)

)
dz(λs) (17)

= λ−1
(
−σ2(t) + z(λt) + σ2(0)

)
(18)

It results from (18) that the process σ2∗(t) is continuous, as z(λt) and σ2(t) co-break
Barndorff-Nielsen and Shephard (2001b, 2002). In addition, the shape of σ2∗(t) is deter-
mined by z(λt). In fact, σ2∗(t) and z(λt) co-integrate. The co-integration can be shown
by transforming Equation (18) into Equation (19). λσ2∗(t)− z(λt) is a stationary process
such that

λσ2∗(t)− z(λt) = −σ2(t) + σ2(0). (19)

For λ = 1 and σ2(0) = 0, the compound Poisson process (z(t)), the Γ(α, θ) Ornstein–
Uhlenbeck process in (σ2(t)), and σ2∗(t) in (20) were simulated, with the results shown in
Figure 1a, 1b, and 1c, respectively.

z(t) =
N(t)

∑
k=1

ξk σ2(t) = σ2(0)eλt +
N(t)

∑
k=1

exp(−λ(t− ak))ξk σ2∗(t) =
∫ t

0
σ2(s)ds (20)

 
(a)

 

(b)
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Figure 1. Simulations with α̂ = 0.8845, θ̂ = 0.9378: (a) compound Poisson process, ẑ(t); (b) Gamma
process, σ̂2(t); (c) subordinator, σ̂2∗(t).

The estimations of the Gamma distribution parameter Γ(α, θ) were performed by
applying the FRFT maximum likelihood to the daily SPY ETF prices Nzokem (2021a).
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2.3. Variance-Gamma Process: Semi-Martingale

Let Y∗ = {Y∗t }, a stochastic process used to model the log of an asset price.

Y∗t = At + Mt At = βt + δσ2∗(t) (21)

Mt = σ
∫ t

0
σ(s)dW(s) (22)

where β and δ are the drift parameters, t represents the continuous time clock, and W(t) is
the standard Brownian motion and is independent of σ2(t).

σ(t) =
√

σ2(t) σ2∗(t) =
∫ t

0
σ2(s)ds (23)

where σ(t) is the spot or instantaneous volatility and σ2∗(t) is the chronometer or integrated
variance of the process. As shown in Figure 1c, the Gamma process (σ2∗(t)) is a strictly
increasing process of the stationary process (σ2(t)).

The mean process At is a predictable process with locally bounded variation. In fact,
At is continuous and differentiable because of σ2∗(t).

Mt is a local Martingale. The derivative of Mt in (22) can be written as a stochastic
differential equation (SDE) (24):

dMt = σσ(t)dW(t) (24)

where Y∗t is a special semi-Martingale Barndorff-Nielsen and Shephard (2002); Protter
(2005) and the decomposition Y∗t = At + Mt is unique.

Figure 2, in blue, displays the simulation results for the logarithmic of the asset price
(Y∗) in (21). The simulation results are compared with the daily SPY ETF historical return
data from 4 January 2010 to 30 December 2020, displayed in red.

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

20

40

60

80

100

120

140

160

180

200
VGM simulations
SPY ETF real data

Figure 2. Simulations (with Y∗ = {Y∗t }) versus SPY ETF data: µ̂ = 0.0848, δ̂ = −0.0577, σ̂ = 1.0295,
α̂ = 0.8845, θ̂ = 0.9378.
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2.4. Variance-Gamma Process: Parameter Estimations

The stochastic process in (21) is the solution of the following stochastic differential
equation (SDE):

dY∗t = (β + δσ2(t))dt + σσ(t)dW(t) (25)

Considering an interval of length ∆, we define σ2
n and Yn over the interval [(n− 1)∆; n∆].

σ2
n =

∫ n∆

(n−1)∆
dσ2∗(s) = σ2∗

n∆ − σ2∗
(n−1)∆ Yn =

∫ n∆

(n−1)∆
dY∗s = Y∗n∆ −Y∗(n−1)∆ (26)

The volatility component can be transformed into a normally distributed variable X(1)
as follows:∫ n∆

(n−1)∆
σ(t)dW(t) d

= N
(

0,
∫ n∆

(n−1)∆
σ2(s)ds

)
= N

(
0, σ2∗

n∆ − σ2∗
(n−1)∆

)
= N

(
0, σ2

n

)
d
= σnN(0, 1) d

= σnX(1).

(27)

where X(1) d
= N(0, 1) and N(0, 1) denotes a standard normal distribution.

By integrating the instantaneous return rate (25) per component, we have∫ n∆

(n−1)∆
dY∗s = β∆ + δ

∫ n∆

(n−1)∆
dσ2∗(s) + σ

∫ n∆

(n−1)∆
σ(t)dW(t)

Based on (26) and (27), we have the following equation over the interval [(n− 1)∆; n∆]:

Yn = µ + δσ2
n + σσnX(1) µ = β∆ σ2

n
d
= Γ(α, θ) (28)

In the case where ∆ is a daily length, Yn becomes the daily return rate. Equation (28)
was analyzed in Nzokem (2021a, 2021b) as a daily return rate, and the parameters were
estimated. The data came from the daily SPY ETF prices for the period spanning from
4 January 2010 to 30 December 2020; see Nzokem (2021a, 2021b, 2021d) for more details on
the methodology and results.

Table 1 presents the estimation results of the five parameters (µ, δ, α, θ, σ) of Yn in (28)
along with four statistical indicators.

Table 1. FRFT Maximum Likelihood VG parameter estimation.

Model Parameters Statistics

µ̂ = 0.0848 ˆE(Y) = 0.0369
δ̂ = −0.0577 ˆVar(Y) = 0.8817

VG σ̂ = 1.0295 ˆSkew(Y) = −0.173
α̂ = 0.8845 ˆKurt(Y) = 6.412
θ̂ = 0.9378

Source: Nzokem (2021a, 2021b).

As shown in Table 2, with initial parameter values (σ = α = θ = 1, δ = µ = 0), the
maximization procedure convergences after 21 iterations. The values of the optimizing
function (log(ML)) are provided along with the values of || d log(ML)

dV ||. During the maxi-
mization process, both quantities converge to −3549.692 and 0, respectively. The location
parameter µ is positive, the symmetric parameter δ is negative, and other parameters have
the expected sign.
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Table 2. Results of VG model parameter estimation.

Iterations µ δ σ α θ Log(ML) || dLog(ML)
dV ||

1 0 0 1 1 1 −3582.8388 598.743231
2 0.05905599 −0.0009445 1.03195903 0.9130208 1.03208412 −3561.5099 833.530396
3 0.06949925 0.00400035 1.04101444 0.88478895 1.05131996 −3559.5656 447.807305
4 0.07514039 0.00055771 1.17577397 0.67326429 1.17778666 −3569.6221 211.365781
5 0.08928373 −0.0263716 1.03756321 0.83842661 0.94304967 −3554.4434 498.289445
6 0.08676498 −0.0521887 1.03337015 0.85591875 0.95066351 −3550.6419 204.467192
7 0.086995 −0.0608517 1.02788937 0.87382621 0.95054954 −3549.8465 66.8039738
8 0.08542912 −0.058547 1.02705241 0.88258411 0.94321299 −3549.7023 15.3209117
9 0.08478622 −0.0576654 1.02995166 0.88447791 0.93670036 −3549.6921 1.14764198

10 0.08477798 −0.0577736 1.02922308 0.88449072 0.93831041 −3549.692 0.17287708
11 0.08476475 −0.0577271 1.02960343 0.88450434 0.93755549 −3549.692 0.07850459
12 0.08477094 −0.0577488 1.02942608 0.8844984 0.93790784 −3549.692 0.03723941
13 0.08476804 −0.0577386 1.02950937 0.88450117 0.93774266 −3549.692 0.01732146
14 0.0847694 −0.0577434 1.02947043 0.88449987 0.93781995 −3549.692 0.00813465
15 0.08476876 −0.0577411 1.02948868 0.88450048 0.93778375 −3549.692 0.00380345
16 0.08476906 −0.0577422 1.02948014 0.88450019 0.9378007 −3549.692 0.00178206
17 0.08476892 −0.0577417 1.02948414 0.88450033 0.93779276 −3549.692 0.00083415
18 0.08476898 −0.0577419 1.02948226 0.88450026 0.93779648 −3549.692 0.00039063
19 0.08476895 −0.0577418 1.02948314 0.88450029 0.93779474 −3549.692 0.00018289
20 0.08476897 −0.0577419 1.02948273 0.88450028 0.93779555 −3549.692 8.56 ∗ 10−5

21 0.08476896 −0.0577418 1.02948292 0.88450029 0.93779517 −3549.692 4.01 ∗ 10−5

3. Variance-Gamma Process: Probability versus Lévy Density

Based on (21) and (22), the VG Process Y = {Yt}t≥0 with five parameters (µ, δ, σ, α, θ)
can be written as follows:

Yt = µt + δσ2∗(t) + σ
∫ t

0
σ(s)dW(s). (29)

where µ, δ ∈ R , σ > 0, α > 0, θ > 0, t represents the continuous time clock, W(t) is the
standard Brownian motion and is independent of σ2(t), and

σ2∗(t) =
∫ t

0
σ2(s)ds σ(t) =

√
σ2(t) (30)

where σ(t) is the spot or instantaneous volatility, σ2(t) is the spot or instantaneous variance,
and σ2∗(t) is the chronometer or the integrated variance of the process.

We now consider the characteristic function of the VG process Y = {Yt}:

E
[
eiξYt

]
= E

[
eiξ(µt+δσ2∗(t)+σ

∫ t
0 σ(s)dW(s))

]
= eitµξ E

[
eiξ(δσ2∗(t)+σ

∫ t
0 σ(s)dW(s))

]
. (31)

where
∫ t

0 σ(s)dW(s) is the Itô integral with respect to the Brownian motion, and we have

∫ t

0
σ(s)dW(s) d

= N
(

0,
∫ t

0
σ2(s)ds

)
= N

(
0, σ2∗(t)

)
(32)

where N(0, 1) is a standard normal distribution.
From expressions (31) and (32), we have

E
[
eiξ(δσ2∗(t)+σ

∫ t
0 σ(s)dW(s))

]
= E

[
eiξN(δσ2∗(t),σ2σ2∗(t))

]
= E

[
E
[
eiξN(δσ2∗(t),σ2σ2∗(t))|σ2∗(t)

]]
= E

[
e(iδξ− 1

2 σ2ξ2)σ2∗(t)
] (33)
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where σ2∗(t) is a Lévy process generated by the Gamma distribution Γ(α, θ), and we have

E
[
e(iδξ− 1

2 σ2ξ2)σ2∗(t)
]
=

1
(1 + 1

2 θσ2ξ2)tα
E
[
eiδξW

]
σ2∗(t) d

= Γ(tα, θ)

=
1(

1− iδθξ + 1
2 σ2θξ2

)tα W d
= Γ(tα, 1

2 σ2ξ2 + 1
θ )

(34)

From expressions (31), (33), and (34), we have

E
[
eiYtξ

]
=

eitµξ(
1− iδθξ + 1

2 σ2θξ2
)tα (35)

We define two related functions φ(ξ) and ϕ(ξ, t) such that

φ(ξ) =
eiµξ(

1− iδθξ + 1
2 σ2θξ2

)α ϕ(ξ, t) = −Log(E
[
eiYtξ

]
) = −tLog(φ(ξ)) (36)

The characteristic function can be written as follows:

E
[
eiYtξ

]
= (φ(ξ))t = E[e−tLog(φ(ξ))] (37)

3.1. Lévy Measure and the Structure of the Jumps

Lemma 2. (Frullani integral) ∀α, β > 0 and ∀z ∈ C with <(z) ≤ 0.
We have

1(
1− z

α

)β
= e−

∫ ∞
0 (1−ezx)βx−1e−αxdx

For lemma proof, see Arias-de Reyna (1990).

Theorem 3. (Variance-Gamma model representation)
Let Y = {Yt}t≥0, a Lévy process onR generated by the VG model with parameter (µ, δ, σ, α, θ).

The characteristic exponent of the Lévy process has the following representation:

ϕ(ξ, 1) = −Log
(

EeiY1ξ
)
= iµξ +

∫ +∞

−∞

(
1− e−iξu

)
Π(u)du (38)

Π(u) is the Lévy density of Y and has the following expression:

Π(u) = α

(1{u>0}
u

e−x1u +
1{u<0}
|u| e−x2u

)
(39)

with

x1 =
δ

σ2 +

√
δ2

σ4 +
2

θσ2 x2 =
δ

σ2 −
√

δ2

σ4 +
2

θσ2 (40)

and Π(u) satisfies the following properties:∫ +∞

−∞
Π(u)du = +∞ and

∫ +∞

−∞
Min(1, |u|)Π(u)du < +∞ (41)
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Proof. We consider the characteristic function φ(ξ) in (36) of the VG model with parameter
(µ, δ, σ, α, θ), as developed previously:

φ(ξ) =
eiµξ(

1− iδθξ + 1
2 σ2θξ2

)α

We factor the quadratic function in the denominator of φ(ξ)(
1 +

1
2

θσ2x2 − iδθx
)α

=

(
1
2

θσ2
)α

(x− ix1)
α(x− ix2)

α (42)

with

x1 =
δ

σ2 +

√
δ2

σ4 +
2

θσ2 x2 =
δ

σ2 −
√

δ2

σ4 +
2

θσ2

We apply Lemma 2 on each factor of the quadratic function (42):(
1
2

θσ2
)α

(x− ix1)
α(x− ix2)

α =

(
1 +

ix
x1

)α(
1 +

ix
x2

)α

=
(

e
∫ ∞

0 (1−e−ixu) α
u e−x1udu

)(
e
∫ ∞

0 (1−eixu) α
u ex2udu

)
= e

∫ ∞
0 (1−e−ixu) α

u e−x1udu+
∫ 0
−∞ (1−e−ixv) α

|v| e
−x2vdv

= e
∫ +∞
−∞ (1−e−ixu)Π(u)du

taking into account the expression (42), we have(
1 +

1
2

θσ2x2 − iδθx
)α

= e
∫ +∞
−∞ (1−e−ixu)Π(u)du. (43)

where Π(u) = α
( 1{u>0}

u e−x1u +
1{u<0}
|u| e−x2u

)
From expression (36), we have

ϕ(ξ, t) = −tLog(φ(ξ)) = −itµξ + tLog
(

1 +
1
2

θσ2x2 − iδθx
)α

= −itµξ + tLog
(

1 +
1
2

θσ2x2 − iδθx
)α

= −itµξ +
∫ +∞

−∞
(1− e−ixu)tΠ(u)du

We have

ϕ(ξ, t) = −tLog(φ(ξ)) = −itµξ +
∫ +∞

−∞
(1− e−ixu)tΠ(u)du (44)

For t = 1, we have the expression (38).
We can check the properties of Π(u) as follows:∫ +∞

−∞
Π(u)du = +∞ in fact lim|u|→0 Π(u) = +∞ (45)
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∫ +∞

−∞
Min(1, |u|)Π(du) =

∫ 1

−1
Min(1, |u|)Π(du) +

∫ +∞

1
Min(1, |u|)Π(du)

+
∫ −1

−∞
Min(1, |u|)Π(du)

= α

(
1− e−x1

x1
+

1− ex2

−x2
+ Γ(0, x1) + Γ(0,−x2)

)
.

with Γ(s, u) =
∫ +∞

u ys−1e−ydy.
Finally, we have ∫ +∞

−∞
Min(1, |u|)Π(du) < +∞ (46)

It results from (45) that the VG process is not a finite activities process and cannot be
written as a compound Poisson process Barndorff-Nielsen and Shephard (2002). The VG
process is an infinite activity process with an infinite number of jumps in any given time
interval. The arrival rate of jumps of all sizes in the VG process is defined by the Lévy
density (47):

Π(u) =

{
α
|u| e
−x2u if u < 0

α
u e−x1u if u > 0.

(47)

As shown in Figure 3a, the high arrival rates of jumps are concentrated around the
origin 0. The smaller the jump size, the higher the arrival rate for the VG model. The
steepness parameters Boyarchenko and Levendorskii (2002), −x2 and x1, define the rate
of exponential decay of the tails on each side. As shown in Figure 3a and (47), the Lévy
density is asymmetric, and the left tail is heavier as −x2 < x1. On the other hand, the
result in (46) proves that the VG process is a finite variation process, which is contrary to
the Brownian motion process. The Gamma distribution parameter (α), called the process
intensity Boyarchenko and Levendorskii (2002), plays an important role in the Lévy density.
The intensity of the process (α) has a similar role as the variance parameter in the Brownian
motion process. The Lévy density function (47) is different for negative and positive jump
sizes. This difference led Madan et al. (1998) to consider the VG process as the difference
between two increasing processes, with one process providing the upward movement and
another the downward movement in the market.
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Figure 3. VG model:µ̂ = 0.0848, δ̂ = −0.0577, σ̂ = 1.0295, α̂ = 0.8845, θ̂ = 0.9378: (a) Lévy density of
the VG model and (b) Probability density of the VG model.
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Using the VG parameter estimations in Table 1, we have x1 = 1.4775 and x2 = −1.3640.
The Lévy and probability densities are displayed in Figure 3a and 3b, respectively. As
shown in Figure 3, the shape of the density functions are different, even though the same
characteristic function links both densities.

The Variance-Gamma (VG) process can be described as a subfamily of the KoBoL
family, which is the extension of Koponen’s family by Boyarchenko and Levendorskii
Boyarchenko and Levendorskii (2002). The KoBoL family is sometimes called the CGMY
model (named after Carr, German, Madan, and Yor) Carr et al. (2003). Under the KoBoL
family, the Lévy density has the following general form (see Boyarchenko and Levendorskii
(2002) for more details):

Π(u) =

{
C−|u|−ν−1eλ−u if u < 0
C+u−ν−1e−λ+u if u > 0

(48)

where C+ > 0, C− > 0, ν > 0, and λ− < 0 < λ+.
As a subfamily of the KoBoL family, the VG process belongs to the process class

with order ν = 0, intensity C+ = C− = α, and steepness parameters λ− = −x2 =

− δ
σ2 +

√
δ2

σ4 +
2

θσ2 and λ+ = x1 = δ
σ2 +

√
δ2

σ4 +
2

θσ2 . For 0 < ν < 1, see Nzokem and
Montshiwa (2022) for a general case of tempered stable distribution.

3.2. Variance-Gamma Process: Asymptotic Distribution

Theorem 4. (Variance-Gamma process probability density)
Let Y = {Yt}t≥0, a Lévy process onR generated by the VG model with parameter (µ, δ, σ, α, θ).

The probability density function can be written as follows:

f (y, t) =
1

σΓ(tα)θtα

∫ +∞

0

1√
2πv

e−
(y−tµ−δv)2

2vσ2 vtα−1e−
v
θ dv t ≥ 0 y ∈ R (49)

Proof: ϕ(ξ, t) in (44) provides the relation between the characteristic exponent and the
Lévy density; the expression is used as follows:

ϕ(ξ, t) = −Log
(

EeiYtξ
)
= −itµξ +

∫ +∞

−∞
(1− e−ixu)tΠ(u)du

tΠ(u) = tα
(1{u>0}

u
e−x1u +

1{u<0}
|u| e|x2|u

)

µt = tµ αt = tα (50)

It was shown in Nzokem (2021a) that the probability density of a VG model with
parameter (µ, δ, σ, α, θ) can be written as

f (y) =
1

σΓ(α)θα

∫ +∞

0

1√
2πv

e−
(y−µ−δv)2

2vσ2 vα−1e−
v
θ dv

By replacing the parameters in (50), we have the result in Theorem 4.

Theorem 5. (Asymptotic distribution of Variance-Gamma process)
Let Y = {Yt}t≥0, a Lévy process onR generated by the VG model with parameter (µ, δ, σ, α, θ).
Then, Yt converges in distribution to a Lévy process driven by a normal distribution with mean

a = µ + αθδ and variance σ2 = α(θ2δ2 + σ2θ).

Yt
d∼ N(ta, tσ2) as t→ +∞ (51)
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Proof: Consider the following:

bt =
√

tb at = ta

b =
√

α(θ2δ2 + σ2θ) a = µ + αθδ

We define φ(ξ, t), the characteristic function of the process Y = {Yt}t≥0 and use the
expression (35)

φ(ξ, t) = E
[
eiYtξ

]
=

eitµξ(
1− iδθξ + 1

2 σ2θξ2
)tα

We define φT(ξ, t), the characteristic function of the stochastic process {Yt−at
bt
}t≥0.

The expression of φT(ξ, t) can be derived from φ(ξ, t) as follows:

φT(ξ, t) = E{ei Yt−at
bt

ξ} = e−i at
bt

ξ E{ei ξ
bt

Yt} = e−i at
bt

ξ
φ(

ξ

bt
, t) =

eitαθδ ξ
bt(

1 + 1
2 θσ2 ξ2

b2
t
− iδθ ξ

bt

)tα

= eitαθδ ξ
bt

(
1 +

1
2

θσ2 ξ2

tb2 − iδθ
ξ√
tb

)−tα

Let us define u(t) as follows:

u(t) =
1
2

θσ2 ξ2

tb2 − iδθ
ξ√
tb

lim
t→+∞

u(t) = 0

We use the Taylor expansions of ln(1 + u):

ln(1 +
1
2

θσ2 ξ2

tb2 − iδθ
ξ√
tb
) =

1
2
(θσ2 + δ2θ2)

ξ2

tb2 − iδθ
ξ√
tb

+ o
(

1
t
√

t

)
lim

t→+∞
o
(

1
t
√

t

)
= 0

The characteristic function φT(ξ, t), developed previously, becomes

φT(ξ, t) = eitαθδ ξ
bt

(
1 +

1
2

θσ2 ξ2

tb2 − iδθ
ξ√
tb

)−tα

= eitαθδ ξ
bt e−tα ln(1+ 1

2 θσ2 ξ2

tb2−iδθ ξ√
tb
)

= e−
1
2 α(θσ2+δ2θ2) ξ2

b2 +o
(

1√
t

)

= e−
1
2 ξ2+o

(
1√

t

)

We have

lim
t→+∞

φT(ξ, t) = lim
t→+∞

E{ei Yt−at
bt

ξ} = e−
1
2 ξ2

(52)

By applying the limit in (52), we produce the cumulant-generating function of the
normal distribution Kendall (1946). We now have the following convergence in distribution:

Yt − at

bt

d∼ N(0, 1) as t→ +∞
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As shown in (50), the dynamic of the probability density f (y, t) is carried by two
parameters, tµ and tα; f (y, t) can be compared to the histogram of the daily SPY ETF return
data, as shown in Figure 4a. Figure 4b shows the shape of the probability densities (49)
adjusted at different timeframes: Quarterly (τ = 0.25), Semi-Annually (τ = 0.5), Third-
Quarterly (τ = 0.75), and Annually (τ = 1).
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Figure 4. f (y, t) with µ̂ = 0.0848, δ̂ = −0.0577, σ̂ = 1.0295, α̂ = 0.8845, θ̂ = 0.9378: (a) daily SPY ETF
return in (%) and (b) f (y, τ): τ in years.

The discrepancy between the shape of the probability densities (49) can be explained
by the asymptotic distribution in Theorem 5. When the timeframe becomes large, the VG
probability density generated by the Lévy Process changes its nature and becomes a normal
distribution process. Empirically, the convergence is illustrated in Figure 4b.

4. Variance-Gamma Process: Pricing European Options
4.1. Variance-Gamma Process: Risk-Neutral Esscher Measure

The method of Esscher transforms introduced by Gerber and Shiu (1993) represents
an efficient technique for pricing derivative securities when a Lévy process models the
logarithms of the underlying asset prices. An Esscher transform of a stock price process
provides an equivalent Martingale measure; under such a measure, the price of any deriva-
tive security is calculated as the expectation of the discounted payoffs. In some cases, the
Esscher transform of a distribution Gerber and Shiu (1993) remains in the family of the
original distributions. Gamma, Exponential, Normal, Inverse Gaussian, Negative Binomial,
Geometric, Poisson, and Compound Poisson distributions are examples of conservative
distributions. The existence of the equivalent Esscher transform measure is not always
guaranteed, and the issue of the unicity of the equivalent Martingale measure remains
recurrent when pricing an option with a Lévy process.

From the characteristic function φ(ξ) in (36), we have the moment-generating function
of the VG model:

M(h, t) = φ(−ih)t =
etµh(

1− 1
2 θσ2h2 − δθh

)tα = M(h, 1)t with h1 < h < h2

M(h, 1) =
eµh(

1− 1
2 θσ2h2 − δθh

)α with h1 < h < h2

h1 = − δ

σ2 −
√

δ2

σ4 +
2

θσ2 h2 = − δ

σ2 +

√
δ2

σ4 +
2

θσ2

(53)
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Under the Esscher transform with parameter h, the probability density of Y = Yt becomes

f̂ (x, t, h) =
ehx f (x, t)
M(h, t)

with h1 < h < h2 (54)

The moment-generating function of the Esscher transform VG model with h1 < h <
h2 − z is

M(z, t, h) = Eh
[
ezXt

]
=
∫ +∞

0
ezx f̂ (x, t, h)dx =

∫ +∞

0

e(h+z)x f (x, t)
M(x, t)

dx

=
M(h + z, t)

M(h, t)
with h1 < h < h2 − z

=

(
M(h + z, 1)

M(h, 1)

)t
= M(z, 1, h)t

(55)

with

M(z, 1, h) =
M(h + z, 1)

M(h, 1)
= eµz(M∗∗(z, 1, h))α

M∗∗(z, 1, h) =
1− 1

2 θσ2h2 − δθh
1− 1

2 θσ2(h + z)2 − δθ(h + z)

(56)

f̂ (x, t, h) is the modified probability density of f (x, t) defined in (49). The function
exp(x) is a strictly increasing function, and the probability measure generated by f̂ (x, t, h)
is equivalent to the original probability measure generated by f (x, t). Both probability mea-
sures have the same null sets Gerber and Shiu (1993) (sets with probability measure zero).

We consider the process {e−rτS(τ)}τ≥0, with r constant risk-free interest rate. We look
into the necessary conditions to have h = h∗ such that

Eh∗[e−rτS(τ)
]
= S(0). (57)

From Lévy Framework and Asset Pricing in Section 2.1, we have S(τ) = S(0)eYτ , with
Yτ being the Variance-Gamma process. Equation (57) then becomes

erτ = Eh∗
[
eYτ

]
= M(1, 1, h∗)τ =

(
M(h∗ + 1, 1)

M(h∗, 1)

)τ

with h1 < h∗ < h2 − 1 (58)

The first condition is that

h2 − h1 > 1
δ2

σ4 +
2

θσ2 >
1
4

Equation (58) is equivalent to (59).

e
r−µ

α = M∗∗(1, 1, h∗) =
M(h∗ + 1, 1)

M(h∗, 1)
=

1− 1
2 θσ2h∗2 − δθh∗

1− 1
2 θσ2(h∗ + 1)2 − δθ(h∗ + 1)

(59)

We consider the function g(h), defined as follows:

g(h) =
1− 1

2 θσ2h2 − δθh
1− 1

2 θσ2(h + 1)2 − δθ(h + 1)

dg
dh

(h) =
1
2 θ2σ4h2 + δθ2( 1

2 σ2 + δ)h + δθ2( 1
2 σ2 + δ) + θσ2

(1− 1
2 θσ2(h + 1)2 − δθ(h + 1))2
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and we have

dg
dh

(h) > 0 h1 < h < h2 − 1 lim
h→h1

g(h) = 0 lim
h→h2−1−

g(h) = +∞ (60)

where (60) shows the existence and unicity of h∗ in [h1, h2 − 1[ such that

e
r−µ

α = g(h∗).

For the VG model in Table 1 Nzokem (2021a, 2021b), the existence and unicity of
h∗ can be studied empirically, as shown in Figure 5. Over the interval [h1; h2 − 1], g(h)
is an increasing function, as shown in Figure 5a. Figure 5b provides the solution h∗ of
Equation (59) for a free interest rate less than 10%. The solution of h∗ increases with the
free interest rate r.
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Figure 5. VG model with µ̂ = 0.0848, δ̂ = −0.0577, σ̂ = 1.0295, α̂ = 0.8845, θ̂ = 0.9378, h1 = −13.6511,
and h2 = 14.7399: (a) g(h); (b) e

r−µ
α = g(h).

From the Esscher transform, we have the Equivalent Martingale Measure (EMM) Q,
which can be written as the Radon–Nikodym derivative:

dQ
dP

=
eh∗Yτ

M(h∗, τ)
= eh∗Yτ−log(M(h∗ ,τ)) (61)

and EQ for the expectation with respect to Q:

EQ[e−rτS(τ)
]
= EP

[
e−rτS(τ)

dQ
dP

]
= S(0)EP

[
e(1+h∗)Yτ−log(M(h∗ ,τ))−rτ

]
= S(0)EP

[
e(1+h∗)Yτ

]
e−log(M(h∗ ,τ))−rτ

= S(0)
M(1 + h∗, τ)

M(h∗, τ)
e−rτ (58) erτ =

(
M(h∗ + 1, τ)

M(h∗, τ)

)
= S(0)

We have the expression (57)

EQ[e−rτS(τ)
]
= S(0). (62)
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Theorem 6. (Variance-Gamma Esscher transform distribution)
The Esscher transform of the Variance-Gamma process Y = {Yt}t≥0 with parameter

(tµ, δ, σ, tα, θ) is a Variance-Gamma process with parameter (tµ, δ̃, σ, tα, θ̃):

δ̃ = δ + hσ2 θ̃ =
θ

1− 1
2 θσ2h2 − δθh

(63)

Proof: From (56), we have

M∗∗(z, 1, h) =
1− 1

2 θσ2h2 − δθh
1− 1

2 θσ2(h + z)2 − δθ(h + z)
(64)

We can divide the denominator by the numerator of the function M∗∗(z, 1, h) in (64)
and rearrange the resulting expression:

M∗∗(z, 1, h) =
1

1− 1
2 θ̃σ2z2 − δ̃θ̃z

θ̃ =
θ

1− 1
2 θσ2h2 − δθh

δ̃ = δ + hσ2 (65)

M(z, 1, h) in (56) becomes

M(z, 1, h) =
eµz(

1− 1
2 θ̃σ2z2 − δ̃θ̃z

)α (66)

Using the Esscher transform method, the moment-generating function for the Variance-
Gamma process Y = {Yt}t≥0 becomes

M(z, t, h) = Eh
[
ezYt
]
= M(z, 1, h)t =

etµz(
1− 1

2 θ̃σ2z2 − δ̃θ̃z
)tα with h̃1 < z < h̃2 (67)

We now have a new Variance-Gamma process with parameter (tµ, δ̃, σ, tα, θ̃).

The Esscher transform method preserves the structure of the five-parameter VG
process, introduces an addition symmetric parameter (hσ2), and inflates the Gamma scale
parameter by a factor of 1

1− 1
2 θσ2h2−δθh

.

4.2. Variance-Gamma Model: Extended Black–Scholes Formula

Corollary 1. (Extended Black–Scholes)
Let r, a continuously compounded risk-free rate of interest; Y = {Yt}t≥0, a VG Process with

parameter (µt, δ, σ, αt, θ); and (S(0)eXT − K)+, the terminal payoff for a contingent claim with
expiry date T.

Then, at time t < T, the arbitrage price of a European call option with strike price K can be
written as follows:

FGV
call (St, t) = S(t)

[
1− F̂(log(

K
S(t)

), τ, h∗ + 1)
]
− Ke−rτ

[
1− F̂(log(

K
S(t)

), τ, h∗)
]

(68)

F̂(log(
K

S(t)
), τ, h∗) =

∫ log( K
S(t) )

−∞
f̂ (ξ, τ, h∗)dξ f̂ (ξ, τ, h∗) in (54) (69)

where τ = T − t and F̂(k, τ, h∗) and F̂(k, τ, h∗ + 1) are the cumulative distribution of the VG
models with parameters (τµ, δ̃, σ, τα, θ̃) and (τµ, δ̃ + σ2, σ, τα, θ̃e

r−µ
α ), respectively.
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Proof:

f (YT , K) = (S(0)eYT − K)+ = S(t)(eYτ − k)+ YT = Yτ + Yt

= S(t)g(Yτ) S(t) = S(0)eYt and k = K
S(t)

Under the Equivalent Martingale Measure (EMM), f̂ (ξ, τ, h∗) is the probability density
of the VG model with parameter (τµ, δ̃, σ, τα, θ̃). We note that k = K

S(t) .

S(t)e−rτ
∫ +∞

log(k)
eξ f̂ (ξ, τ, h∗)dξ = S(t)e−rτ

∫ +∞

log(k)
eξ eh∗ξ f (ξ, τ)

M(h, t)
dξ f̂ (ξ, τ, h∗) in (54)

= S(t)e−rτ
∫ +∞

log(k)

e(1+h∗)ξ f (ξ, τ)

M(h∗, t)
dξ erτ = M(h∗+1,τ)

M(h∗ ,τ) in (58)

= S(t)
∫ +∞

log(k)

e(1+h∗)ξ f (ξ, τ)

M(1 + h∗, t)
dξ = S(t)

∫ +∞

log(k)
f̂ (ξ, τ, h∗ + 1)dξ

We can now show the relation in (68):

FGV
call (St, t) = S(t)e−rτEQ[g(Xτ)] = S(t)e−rτ

∫ +∞

−∞
f̂ (ξ, τ, h∗)(eξ − k)+dy

= S(t)e−rτ
∫ +∞

log(k)
eξ f̂ (ξ, τ, h∗)dξ − Ke−rτ

∫ +∞

log(k)
f̂ (ξ, τ, h∗)dξ

= S(t)
∫ +∞

log(k)
f̂ (ξ, τ, h∗ + 1)dξ − Ke−rτ

∫ +∞

log(k)
f̂ (ξ, τ, h∗)dξ

= S(t)
[
1− F̂(log(k), τ, h∗ + 1)

]
− Ke−rτ

[
1− F̂(log(k), τ, h∗)

]
with

F̂(log(k), τ, h∗) =
∫ log(k)

−∞
f̂ (ξ, τ, h∗)dξ F̂(log(k), τ, h∗ + 1) =

∫ log(k)

−∞
f̂ (ξ, τ, h∗ + 1)dξ

From Theorems 4 and 6, f̂ (ξ, τ, h∗) is the probability density of the VG model with
parameter (τµ, δ̃, σ, τα, θ̃).

f̂ (ξ, τ, h∗) =
1

σΓ(τα)θ̃τα

∫ +∞

0

1√
2πv

e−
(y−µ−δ̃v)2

2vσ2 vτα−1e−
v
θ̃ dv (δ̃, θ̃) in (63) (70)

Following the same methodology, f̂ (ξ, τ, h∗ + 1) is the probability density of the VG
model with parameter (τµ, δ̃′, σ, τα, θ̃′). Thus, we have

δ̃′ = δ̃ + σ2 θ̃′ = θ̃e
r−µ

α (71)

In fact, as in (70), we have

δ̃′ = δ + (h∗ + 1)σ2 = δ̃ + σ2

and

θ̃′ =
θ

1− 1
2 θσ2(h∗ + 1)2 − δθ(h∗ + 1)

=
θ

1− 1
2 θσ2h∗2 − δθh∗

e
r−µ

α = θ̃e
r−µ

α
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We have the probability density,

f̂ (ξ, τ, h∗ + 1) =
1

σΓ(τα)θ̃′τα

∫ +∞

0

1√
2πv

e−
(y−µ−δ̃′v)2

2vσ2 vτα−1e−
v
θ̃′ dv (72)

Equivalent Martingale Measure (EMM) Computation

Under the Equivalent Martingale Measure (EMM), f̂ (ξ, τ, h∗) is the probability density
of the VG model with parameter (τµ, δ̃, σ, τα, θ̃). The Fourier transform is

F [ f̂ ](y, τ, h∗) = E
[
e−iyXτ

]
=

 e−iµy(
1 + 1

2 θ̃σ2y2 + iδ̃θ̃y
)α


τ

see (67)

= φ(−y)τ = eτlog(φ(−y)) = e−τϕ(−y)

F [ f̂ ](y, τ, h∗) = e−τϕ(−y) ϕ(y) = −iµy + αlog(1 +
1
2

θ̃σ2y2 − iδ̃θ̃y) (73)

where φ(y) is defined in (36) and ϕ(y) is the characteristic exponent of the VG model with
parameter (µ, δ̃, σ, α, θ̃).

f̂ (ξ, τ, h∗) can be written as the inverse Fourier Transform from (73):

f̂ (ξ, τ, h∗) =
1

2π

∫ +∞

−∞
eiξzF [ f̂ ](z, τ, h∗)dz =

1
2π

∫ +∞

−∞
eiξz−τϕ(−z)dz

=
1

2π

∫ +∞

−∞
e−iξz−τϕ(z)dz

It was shown in Nzokem (2021a) that we can have

F [F̂](ξ, τ, h∗) =
F [ f̂ ](ξ, τ, h∗)

iξ
+ πF [ f̂ ](0)δ(ξ). (74)

Based on (74), we can deduce that

F̂(ξ, τ, h∗) =
1

2π

∫ +∞

−∞
eiξzF [F̂](z, τ, h∗)dz =

−1
2π

∫ +∞

−∞

e−iξz−τϕ(z)

iz
dz +

1
2

We have the probability density and cumulative functions:

f̂ (ξ, τ, h∗) =
1

2π

∫ +∞

−∞
e−iξz−τϕ(z)dz F̂(ξ, τ, h∗) =

−1
2π

∫ +∞

−∞

e−iξz−τϕ(z)

iz
dz +

1
2

(75)

The Fractional Fast Fourier Transform (FRFT) Nzokem (2021a) was used to compute
f̂ (ξ, τ, h∗) and f̂ (ξ, τ, h∗ + 1) in (75). The results are shown in Figures 6b and 7b.

The twelve-point rule Composite Newton–Cotes Quadrature Formulas Nzokem (2020,
2021c) was also used to compute f̂ (ξ, τ, h∗) and f̂ (ξ, τ, h∗ + 1). This method relies on the
numerical integration technique and aims to estimate the density function as follows:

f̂ (ξ, τ, h) ≈ b
n

n
Q−1

∑
p=0

Q

∑
j=0

Wjg(xQp+j, τ, h)

g(x, τ, h) =
1

σθ̃ταΓ(τα)
√

2π
e−

(x−τµ−δ̃v)2

2vσ2 vτα− 1
2 e−

v
θ̃

(76)

For the VG model in Table 1 Nzokem (2021a, 2021b) with µ̂ = 0.0848, δ̂ = −0.0577,
σ̂ = 1.0295, α̂ = 0.8845, and θ̂ = 0.9378; we added a 6% risk-free interest rate and
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computed the Esscher transform parameter (h∗ = −2.6997) from (58). In order to perform
the computation in (76), the following parameter values were used a = 0, b = 20, Q = 12,
n = 5000Q, n0 = 5000; and the weight values {Wj}0≤j≤Q come from Table 1 Nzokem
(2021c) and Table 4.1 Nzokem (2020). The estimation results are shown in Figures 6a and 7a.
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Figure 6. Estimation of f̂ (ξ, τ, h∗) versus f̂ (ξ, τ, h∗ + 1), τ = 0.25: (a) Newton–Cotes Martingale;
(b) FRFT Martingale Measure; (c) error: FRFT versus Newton.

Both methods produce smooth density functions, as shown in Figures 6 and 7. Figures 6c
and 7c provide the estimation error of f̂ (ξ, τ, h∗ + 1). Fractional Fast Fourier (FRFT) under-
estimates the peakedness of the density function when the timeframe is small (τ = 0.25
years), as shown in Figure 6c. The estimation error decreases significantly when the
timeframe increases; see Figure 7c when τ = 0.5 years.
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Figure 7. Estimation of f̂ (ξ, τ, h∗) versus f̂ (ξ, τ, h∗ + 1), τ = 0.5: (a) Newton–Cotes Martingale;
(b) FRFT Martingale Measure; (c) error: FRFT versus Newton.

Both methods will be implemented in the empirical analysis section to produce the
arbitrage price of a European call option.

4.3. Variance-Gamma Model: Generalized Black–Scholes Formula

Theorem 7. (Generalized Black–Scholes)
Let r, a continuously compounded risk-free rate of interest; Y = {Yt}t≥0, a VG Process with

parameter (µt, δ, σ, αt, θ); and (S(0)eXT − K)+, the terminal payoff for a contingent claim with
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expiry date T. Then, at time t < T, the arbitrage price of a European call option with strike price K
can be written as follows:

FGV
call (St, t) =

K
2π

∫ +∞+iq

−∞+iq

e
(

iξlog( S(t)
K )−τ(r+ϕ(ξ))

)
iξ(iξ − 1)

dξ (77)

where ϕ(z) is the characteristic exponent of the VG model with parameter (µ, δ̃, σ, α, θ̃) in (63),
τ = T − t, and q < −1.

Proof:

(S(0)eYT − K)+ = S(t)(eYτ − k)+ YT = Yτ + Yt (78)

= S(t)g(Yτ , k) S(t) = S(0)eYt and k = K
S(t) (79)

where (S(0)eYT − K)+ is the payoff of the call option. The Fourier transform can be written as

F [g](y, k) =
∫ +∞

0
e−iyxg(x, k)dx =

∫ +∞

0
e−iyx(ex − k)+dx =

∫ +∞

log(k)
e−iyx(ex − k)dx

=
∫ +∞

log(k)
e(1−iy)xdx− k

∫ +∞

log(k)
e−iyxdx =

1
1− iy

[
e(1−iy)x

]+∞

ln(k)
+

k
iy

[
e−iyx

]+∞

ln(k)

=
ke−iylog(k)

iy(iy− 1)
for =(y) < −1

We have the Fourier transform of the call payoff

ĝ(y, k) = F [g](y, k) =
ke−iylog(k)

iy(iy− 1)
for =(y) < −1 (80)

It is shown in (75) and (73) that f̂ (ξ, τ, h∗) and ϕ(y) can be written as follows:

f̂ (ξ, τ, h∗) =
1

2π

∫ +∞

−∞
e−iξz−τϕ(z)dz ϕ(y) = −iµy + αlog(1 +

1
2

θ̃σ2y2 − iδ̃θ̃y) (81)

with (δ̃, θ̃) defined as in (63).
FGV

call (St, t) is the call option price under the Equivalent Martingale Measure (EMM),
and we have the following expression.

FGV
call (St, t) = e−rτEh∗

[
(S(0)eXT − K)+

]
= S(t)e−rτEh∗ [g(Xτ)] (recall (79))

= S(t)e−rτ
∫ +∞

−∞
f̂ (y, τ, h∗)g(y, k)dy =

S(t)
2π

∫ +∞

−∞

∫ +∞

−∞
e−iyz−τ(r+ϕ(z))g(y, k)dydz

=
S(t)
2π

∫ +∞

−∞
e−τ(r+ϕ(z)) ĝ(z, k)dz recall (80)

=
K

2π

∫ +∞+iq

−∞+iq

exp[−izlog(k)− τ(r + ϕ(z)))]
iz(iz− 1)

dz =(z) ≤ q < −1 and k = K
S(t)

=
K

2π

∫ +∞+iq

−∞+iq

exp
[
izlog( S(t)

K )− τ(r + ϕ(z))
]

iz(iz− 1)
dz

We have the following formula (77):

FGV
call (St, t) =

K
2π

∫ +∞+iq

−∞+iq

exp
[
izlog( S(t)

K )− τ(r + ϕ(z))
]

iz(iz− 1)
dz (82)
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4.4. European Option Pricing by Fractional Fast Fourier Transform (FRFT)
4.4.1. Evaluation of Parameter q

We consider a stock or index price S = S0eY and a strike price K; it was shown in (80)
that the Fourier transform of the call payoff can be written as follows:

ĝ(y, k) = F [g](y, k) =
ke−iylog(k)

iy(iy− 1)
for =(y) < −1

We can recover the call payoff from the inverse Fourier in (80):

ǧ(x, k) =
1

2π

∫ +∞+iq

−∞+iq
eiyxF [g](y, k)dy for q < −1 (83)

The payoff in (83) depends on the q parameter. As shown in Figure 8a, for q = −2, the
inverse Fourier in (83) produces poor results; in fact, the curve in red fluctuates around the
real call payoff (eY − k)+. For q = −1.002, the inverse Fourier overestimates the call payoff.
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Figure 8. Optimal value of q parameter: (a) (ex − k)+ versus ǧ(x, k) ; (b) ER(k, q) and q.

To find a value of q that results in high accuracy, we define the error function (ER(k, q))
between the real call payoff and the inverse Fourier payoff, with k (strike price) and the q
parameter as inputs:

ER(k, q) =

√√√√ 1
m

m

∑
j=1

[
(exj − k)+ − ǧ(xj, k)

]2 with −M ≤ xj ≤ M (84)

For an at-the-money (ATM) option, the strike price k = 1 and ER(k, q) can be analyzed
as a function of one variable q. Figure 8b displays the error (ER) as a function of q. ER is
a convex function that decreases and increases over the interval ]−∞,−1[. The section
method was applied to determine q∗ = −1.0086, which minimizes ER(1, q∗).

Figure 9a displays the ER(k, q∗) minimum value as a function of strike price k; and
Figure 9b displays the correspondent optimal parameter q∗ as a function of strike price k.
Both graphs display almost a constant function with respect to strike price.
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Figure 9. Optimal q parameter and Error ER(k, q) values: (a) ER(k, q∗) minimum value; (b) optimal
q∗ parameter.

4.4.2. Calculating the Fourier Integral by FRFT

The Fourier transform method Li et al. (2020) provides valuable and powerful tools
for option pricing under a class of Lévy processes when the characteristic function is much
simpler than the density function. We can compute the call option’s value on the SPY ETF
with the Fractional Fast Fourier Transform (FRFT).

For x = log( S(t)
K ), FGV

call (S(t),t)
K is the price per one dollar of the strike price. We have

FGV
call (St, τ)

K
=

1
2π

∫ +∞+iq

−∞+iq

exp
[
izlog( S(t)

K )− τ(r + ϕ(z))
]

iz(iz− 1)
dz

=
1

2π

∫ +∞+iq

−∞+iq
eizx exp[−τ(r + ϕ(z))]

iz(iz− 1)
dz

and we assume that

f (ξ) =
exp[−τ(r + ϕ(z))]

iξ(iξ − 1)
F(x) =

1
2π

∫ +∞+iq

−∞+iq
eiξx f (ξ)dξ (85)

Based on the Fractional Fast Fourier (FRFT) notations in Nzokem (2021a) (Section 2
and Appendix A.1), we have developed the following approximation

F(xk) =
1

2π

∫ +∞+iq

−∞+iq
eiξxk f (ξ)dξ =

e−qxk

2π

∫ +∞

−∞
eiξxk f (ξ + iq)dξ

≈ e−qxk

2π

∫ a
2

− a
2

eiξxk f (ξ + iq)dξ ≈ γ

2π
e−(q+

m
2 β)xk Gk( f (ξ j + iq)eπijnδ,−δ)

F(xk) ≈
γ

2π
e−(q+

m
2 β)xk Gk( f (ξ j + iq)eπijnδ,−δ) (86)

4.5. Empirical Analysis

Based on parameter data from the VG model Nzokem (2021a, 2021b) with µ̂ = 0.0848,
δ̂ = −0.0577, σ̂ = 1.0295, α̂ = 0.8845, and θ̂ = 0.9378, we added a 6% risk-free interest rate
and computed the Esscher transform parameter (h∗ = −2.6997). The VG option pricing
is calculated across maturity and option moneyness using the extended and generalized
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Black–Scholes formulas. The closed-form Black–Scholes model Hull (2003) was added to
the analysis as a benchmark.

FBS
call(St, τ) = StN(d1)− Ke−rτ N(d2)

d1 =
Ln( St

K ) + (r + 1
2 σ∗2)τ

σ∗
√

τ
d2 = d1 − σ∗

√
τ N(x) =

1√
2π

∫ x

−∞
exp

(
− t2

2

)
dt

(87)

The variance σ∗2 = 0.1848 is the annualized variance computed from the daily SPY
ETF return variance in Nzokem (2021a).

Option Moneyness describes the intrinsic value of an option in its current state. It indi-
cates whether the option would make money if exercised immediately. Option moneyness
can be classified into three categories: At-The-Money (ATM) options (k = St

K = 1), Out-of-
The Money (OTM) options (k = St

K < 1), and In-The-Money (ITM) options (k = St
K > 1). On

4 August 2021, the SPY ETF market price closed at 438.98. We compute the VG call option
price on SPY ETF using the spot price (S0) 438.98. The results are summarised in Table 3.
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Table 3. Price of European call option on SPY ETF.

Strike Price Moneyness BSM VGM (68) VGM (77) BSM VGM (68) VGM (77) BSM VGM (68) VGM (77) BSM VGM (68) VGM (77) BSM VGM (68) VGM (77) BSM VGM (68) VGM (77)
Period (In Year) 0.0625 0.125 0.25 0.5 0.75 1

219.49 2.00 220.31 220.28 219.86 221.13 221.10 220.48 222.76 222.72 221.71 225.98 225.93 224.14 229.15 229.13 226.53 232.27 232.26 228.88
225.12 1.95 214.70 214.74 214.10 215.54 215.58 214.74 217.21 217.25 216.01 220.52 220.54 218.53 223.77 223.82 221.01 226.97 227.04 223.45
231.04 1.90 208.80 208.83 208.18 209.66 209.69 208.84 211.38 211.41 210.16 214.77 214.80 212.77 218.10 218.16 215.34 221.39 221.47 217.88
237.29 1.85 202.58 202.53 202.10 203.47 203.42 202.79 205.23 205.18 204.16 208.71 208.67 206.86 212.13 212.13 209.53 215.51 215.53 212.16
243.88 1.80 196.02 196.06 195.38 196.92 196.97 196.10 198.73 198.78 197.51 202.31 202.37 200.32 205.83 205.93 203.10 209.31 209.43 205.84
250.85 1.75 189.07 189.16 188.47 190.01 190.10 189.21 191.87 191.96 190.68 195.55 195.66 193.61 199.17 199.33 196.50 202.75 202.94 199.36
258.22 1.70 181.72 181.81 181.36 182.69 182.78 182.13 184.60 184.69 183.66 188.39 188.52 186.70 192.12 192.30 189.71 195.81 196.03 192.70
266.05 1.65 173.93 173.98 173.53 174.92 174.97 174.33 176.89 176.95 175.92 180.79 180.91 179.09 184.64 184.83 182.24 188.45 188.69 185.37
274.36 1.60 165.64 165.64 165.45 166.67 166.66 166.28 168.70 168.70 167.94 172.73 172.82 171.26 176.70 176.87 174.56 180.63 180.88 177.84
283.21 1.55 156.83 156.75 156.56 157.88 157.81 157.43 159.98 159.91 159.18 164.14 164.21 162.66 168.25 168.42 166.14 172.33 172.59 169.60
292.65 1.50 147.42 147.28 146.81 148.51 148.38 147.73 150.68 150.56 149.56 154.98 155.05 153.24 159.24 159.45 156.93 163.49 163.79 160.59
302.75 1.45 137.37 137.50 136.72 138.50 138.63 137.69 140.74 140.89 139.62 145.20 145.61 143.53 149.64 150.21 147.45 154.08 154.76 151.34
313.56 1.40 126.60 126.45 126.29 127.77 127.64 127.31 130.09 129.99 129.36 134.73 135.00 133.53 139.39 139.85 137.71 144.06 144.63 141.86
325.17 1.35 115.03 115.01 114.85 116.24 116.25 115.94 118.65 118.71 118.15 123.51 124.07 122.64 128.44 129.20 127.14 133.40 134.25 131.59
337.68 1.30 102.57 102.48 102.35 103.83 103.80 103.53 106.34 106.39 105.94 111.50 112.20 110.84 116.79 117.68 115.72 122.10 123.05 120.53
351.18 1.25 89.11 89.15 88.69 90.42 90.55 90.00 93.08 93.33 92.69 98.68 99.71 98.12 104.44 105.61 103.48 110.16 111.34 108.71
365.82 1.20 74.53 74.60 74.52 75.91 76.15 76.02 78.82 79.18 79.08 85.10 86.32 85.17 91.45 92.73 91.09 97.65 98.88 96.78
381.72 1.15 58.69 59.15 58.38 60.22 60.94 60.20 63.67 64.34 63.82 70.94 72.47 70.85 77.99 79.48 77.46 84.70 86.09 83.68
399.07 1.10 41.51 42.09 41.76 43.56 44.29 44.08 48.03 48.30 48.53 56.55 57.74 56.68 64.32 65.45 64.03 71.52 72.55 70.80
418.08 1.05 23.73 24.37 24.15 27.03 27.33 27.36 32.83 32.25 33.00 42.51 43.25 42.47 50.85 51.63 50.57 58.42 59.16 57.83
438.98 1.00 8.92 6.45 6.76 13.11 11.13 11.40 19.53 18.35 18.43 29.61 29.17 29.01 38.11 38.01 37.61 45.79 45.79 45.20
462.08 0.95 1.64 1.19 1.27 4.40 2.94 3.02 9.62 7.41 7.50 18.70 17.17 17.09 26.72 25.85 25.50 34.12 33.67 33.01
487.76 0.90 0.10 0.35 0.40 0.89 0.96 1.02 3.68 2.82 2.94 10.42 8.69 8.83 17.24 15.73 15.71 23.87 22.75 22.48
516.45 0.85 0.00 0.10 0.13 0.09 0.31 0.34 1.02 1.03 1.11 4.96 3.92 4.09 10.02 8.48 8.63 15.46 13.90 13.93
548.73 0.80 0.00 0.03 0.04 0.00 0.10 0.12 0.19 0.37 0.41 1.94 1.66 1.78 5.12 4.19 4.37 9.10 7.80 7.96
585.31 0.75 0.00 0.01 0.01 0.00 0.03 0.04 0.02 0.12 0.14 0.60 0.64 0.72 2.23 1.85 2.02 4.76 3.91 4.14
627.11 0.70 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.04 0.04 0.14 0.23 0.26 0.80 0.75 0.83 2.15 1.77 1.91
675.35 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.07 0.09 0.22 0.27 0.31 0.81 0.72 0.81
731.63 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.05 0.09 0.11 0.24 0.26 0.31
798.15 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.06 0.08 0.10
877.96 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03

(68): twelve-point rule Composite Newton–Cotes Quadrature; (77): Fractional Fourier Transform (FRFT).
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The Fractional Fourier Transform (FRFT) algorithm performs poorly for in-the-money
(ITM) options. The FRFT underprices the VG for in-the-money (ITM) options, whereas
the twelve-point rule Composite Newton–Cotes Quadrature produces consistent option
pricing results with the Black–Scholes model. Both algorithms yield consistent results for
at-the-money and out-of-the-money options.

To generalize the analysis and account for a large range of option moneyness and
maturity, The error (88) was computed as the difference between VG and BS option prices:

Error(k, τ) =
FGV

call (St, τ)

K
−

FBS
call(St, τ)

K
(k = St

K ) (88)

Figure 10 displays the error Error(k, τ) as a function of the time to maturity (τ) and the
option moneyness (k). The spot price (St) is a constant, and the option moneyness depends
on the strike price.

(a) (b)

Figure 10. Combined effects of Time to Maturity (τ) and option Moneyness (k = St
K ): (a) error (k,τ)

and (b) error (k,τ) (top view).

The Black–Scholes (BS) and VG models produce different option pricing results. The
Black–Scholes model is overpriced for out-of-the-money (OTM) options (indicated by blue
in Figure 10) and underpriced for the in-the-money (ITM) options (indicated by red in
Figure 10).

The results shown in Figure 10 are consistent with Mozumder et al. (2015), where VG
pricing was performed on S&P500 index data. The shape in Figure 10a looks similar to that
in Figure 6 in Mozumder et al. (2015), with the option Moneyness variable replacing the
strike price. However, the overpriced Black–Scholes model, shown in blue in (Figure 10),
does not support the findings in Madan and Milne (1991) that VG option prices are typically
higher than Black–Scholes model prices, with the percentage bias rising when the stock is
out-of-the-money (OTM). One of the limitations of these studies is that the VG model is
symmetric and uses three parameters; the five-parameter VG model controls the excess
kurtosis and the skewness of the daily SPY ETF return data.

5. Conclusions

In the paper, a Γ(α, θ) Ornstein–Uhlenbeck type process was used to build a continuous
sample path of a five-parameter Variance-Gamma (VG) process (µ, δ, σ, α, θ): location (µ),
symmetry (δ), volatility (σ), shape (α), and scale (θ). The data parameters Nzokem (2021a,
2021b) were used to simulate the gamma process (σ2(t)) and the continuous sample path
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of the subordinator process (σ2∗(t)). Both simulations were used as inputs to simulate
the continuous sample path of the VG process. The Lévy density of the VG process was
derived and shown to belong to a KoBoL family of order ν = 0, intensity α, and steepness

parameters δ
σ2 −

√
δ2

σ4 +
2

θσ2 and δ
σ2 +

√
δ2

σ4 +
2

θσ2 . We have shown that the VG process
converges asymptotically in distribution to a Lévy process driven by a normal distribution
with mean (µ+ αθδ) and variance α(θ2δ2 +σ2θ). The existence of the Equivalent Martingale
Measure (EMM) of the five-parameter VG process was also shown. The EMM preserves the
structure of the five-parameter VG process, with an inflated Gamma scale parameter and
a constant term adjustment symmetric parameter. The extended Black–Scholes formula
provides the closed form of the VG option price. The Lévy process generated by the
VG model provides the generalized Black–Scholes formula. The daily SPY ETF return
data illustrate the computation of European option pricing under the five-parameter VG
process. The twelve-point rule Composite Newton–Cotes Quadrature and Fractional Fast
Fourier Transform (FRFT) algorithms were implemented to compute the European option
price. The results show that the FRFT yields inconsistent European option prices for in-the-
money options. The Black–Scholes (BS) and VG models produce different option pricing
results. The Black–Scholes model is overpriced for out-of-the-money (OTM) options and
underpriced for in-the-money (ITM) options. However, for deep out-of-the-money (OTM)
and deep in-the-money (ITM) options, the Black–Scholes and VG models yield almost the
same option prices.
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